224 DESIGN THEORY FOR RELATIONAL DATABASES

3. For no X—A in F and proper subset Z of X is F —{X—A}U {Z—-A}
equivalent to F.
Intuitively, (2) guarantees that no dependency in F' is redundant, and (3)
guarantees that no attribute on any left side is redundant. As each right side
has only one attribute by (1), surely no attribute on the right is redundant.

Theorem 7.3: Every set of dependencies F is equivalent to a set F” that is
minimal.

Proof: By Lemma 7.4, assume no right side in F' has more than one attribute.
To satisfy condition (2), consider each dependency X —Y in F', in some order,
and if F — { X—Y } is equivalent to F, then delete X —Y from F. Note that
considering dependencies in different orders may result in the elimination of
different sets of dependencies. For example, given the set F":

A—B A—-C
B—A C—A
B—C

we can eliminate both B—A and A—C, or we can eliminate B—C, but we
cannot eliminate all three.

Having satisfied (2), we proceed to satisfy (3) by considering each depen-
dency remaining in F', and each attribute in its left side, in some order. If we
can eliminate an attribute from a left side and still have an equivalent set of
attributes, we do so, until no more attributes can be eliminated from any left
side. Again, the order in which attributes are eliminated may affect the result.
For example, given

AB—-C
A—B
B—A

we can eliminate either A or B from AB—C, but we cannot eliminate them
both. [

Example 7.6: Let us consider the dependency set F' of Example 7.5. If we use
the algorithm of Lemma 7.4 to split right sides we are left with:

AB—C BE—-C
C—A CG—B
BC—D CG—D
ACD—B CE—A
D—FE CE—-G
D—-G

Clearly CE— A is redundant, since it is implied by C—A. CG—B is redundant,
since CG—D, C—A, and ACD—B imply CG—B, as can be checked by
computing (CG)*. Then no more dependencies are redundant. However.

[V)}

w

T+ oy (L

W

7.2 FUNCTIONAL DEPENDENCIES 225

AB—C AB—-C

C—-A C—A
BC—D BC—-D
CD—-B D-E

D—E D—-G

D—-G BE-C
BE—-C CG—-B
CcG—-D CE—-G
CE—-G

(a) (b)

Fig. 7.2. Two minimal covers.

ACD—B can be replaced by CD— B, since C—A is given. Thus one minimal
cover for F' is shown in Fig. 7.2(a). Another minimal cover, constructed from F
by eliminating CE—A, CG—D, and ACD— B, is shown in Fig. 7.2(b). Note
that the two minimal covers have different numbers of dependencies. []

7.3 DECOMPOSITION OF RELATION SCHEMES

The decomposition of a relation scheme R = { A;, Ag,..., A, } is its replace-
ment by a collection p = { R}, Ry, ..., Ry } of subsets of R such that

R=R URyU---U Ry

There is no requirement that the R;’s be disjoint. One of the motivations
for performing a decomposition is that it may eliminate some of the problems
mentioned in Section 7.1. In general, it is the responsibility of the person
designing a database (the “database administrator”) to decompose an initial
set of relation schemes when warranted.

Example 7.7: Let us reconsider the SUPPLIERS relation scheme introduced
in Example 3.1, but as a shorthand, let the attributes be S (SNAME), A
(SADDRESS), I (ITEM), and P (PRICE). The functional dependencies we shall
assume are S—A and SI—P. We mentioned in Section 7.1 that replacement
of the relation scheme SAIP by the two schemes SA and SIP makes certain
problems go away. For example, in SAIP we cannot store the address of a
supplier unless the supplier provides at least one item. In SA, there does not
have to be an item supplied to record an address for the supplier. []

One might question whether all is as rosey as it looks, when we replace
SAIP by SA and SIP in Example 7.7. For example, suppose we have a relation
r -as the current value of SAIP. If the database uses SA and SIP instead of
SAIP, we would naturally expect the current relation for these two relation
schemes to be the projection of r onto SA and SIP, that is rs4 = wsa(r)

e

226 DESIGN THEORY FOR RELATIONAL DATABASES

and rgrp = wgrp(r). How do we know that rs4 and rg;p contain the same
information as r? One way to tell is to check that r can be computed knowing
only rsa and rgrp. We claim that the only way to recover r is by taking the
natural join of rg4 and rgrp.t The reason is that, as we shall prove in the next
lemma, if we let s = rg4 ><lrgyp, then ms4(s) = rsa, and wgyp(s) = rgrp. If
s 7 r, then given rg4 and rgrp there is no way to tell whether r or s was the
original relation for scheme SAIP. That is, if the natural join doesn’t recover
the original relation, then there is no way whatsoever to recover it uniquely.

Lossless Joins

If R is a relation scheme decomposed into schemes Ry, Rs,..., Rx, and D is a
set of dependencies, we say the decomposition is a lossless join decomposition
(with respect to D) if for every relation r for R satisfying D:

r =g, (r)>d R, (r)>l. - - >7g, (r)

that is, r is the natural join of its projections onto the R;’s. From our remarks
above, it is apparent that the lossless join property is a desirable condition for a
decomposition to satisfy, so we shall study the subject of lossless joins in some
detail.

Some basic facts about project-join mappings follow in Lemma 7.5. First
we introduce some notation. If p = (R;, Ry, ..., Rx), then m, is the mapping
defined by m,(r) = ><t5_ 7R, (r). That is, m,(r) is the join of the projections
of r onto the relation schemes in p. Thus the lossless join condition with respect
to a set of dependencies D can be expressed as: for all r satisfying D, r = mp(r);
As another useful notational convention, if ¢ is a tuple, we define ¢[X], where
X is a set of attributes, to be the components of ¢ for the attributes of X .}

For example, we could express mx(r) as {¢t[X] |t isin r}.

Lemma 7.5: Let R be a relation scheme, p = (Ry, ..., Rx) a decomposition of
R, r a relation for R, and r; = wg,(r). Then
a) 1 C my(r).

b) If s = my,(r), then 7g,(s) = r;.

c) mp(my(r)) = my(r).

Proof:

a) Let t be in r. Then for each ¢, t; = t[R;] is in r;. By definition of the
natural join, ¢ is in m,(r), since ¢ agrees with ¢; on the attributes of R; for
all 1.

b) Asr C s by (a), it follows that ng,(r) C 7g,(s). That is, r; C 7g,(s). To

t Recall Section 5.2 for a definition of the natural join.

1 Recall that ¢ is a mapping from attributes to values, so t[X] is that mapping restricted to
domain X. In practice, we always pick some ordering for the attributes and show tuples, or
restricted tuples such as £[X], as lists of values.

ne
ag
he
xt

If
he

er

on

ks

e

st
1g
ns
ct

re

of

1€
oar

to
or

7.3 DECOMPOSITION OF RELATION SCHEMES 227

show 7g,(s) C r;, suppose for some particular ¢ that ¢; is in 7 (s). Then
there is some tuple ¢ in s such that ¢[R;] = t;. As tis in s, there is some
u; in r; for each j such that t[R;] = u;. Thus, in particular, t[R;] is in r,.
But t[R;] = t;, so t; is in r;, and therefore wg.(s) C r;. We conclude that
ri = TR,(S).

¢) If s = my,(r), then by (b), ngr,(s) = r;. Thus m,(s) = ><tb_;r; = m,(r).
L]

Let us observe that if for each 7, r; is some relation for F;, and

then 7g,(s) is not necessarily equal to r;. The reason is that r; may contain
“dangling” tuples that do not match with anything when we take the join. For
example, if Ry = AB, Ry = BC, r1 = {a1b1}, and rg9 = {byc1, baca }, then
s = {ajbic1 } and wpe(s) = {bic1 } 7~ ro. However, in general, ng,(s) C 7,
and if the r;’s are each the projection of some one relation r, then g, (s) = ;.

The ability to store “dangling” tuples is an advantage of decomposition.
As we mentioned previously, this advantage must be balanced against the
need to compute more joins when we answer queries, if relation schemes are
decomposed, than if they are not. When all things are considered, it is generally
believed that decomposition is desirable when necessary to cure the problems,
such as redundancy, described in Section 7.1, but not otherwise.

Testing Lossless Joins

It turns out to be fairly easy to tell whether a decomposition has a lossless join
with respect to a set of functional dependencies.

Algorithm 7.2: Testing for a Lossless Join.
Input: A relation scheme R — A;---A,, a set of functional dependencies F,
and a decomposition p = (Ry,..., Rk)-
Qutput: A decision whether p is a decomposition with a lossless join.
Method: We construct a table with n columns and k rows; column j corresponds
to attribute A;, and row ¢ corresponds to relation scheme R;. In row ¢ and
column j put the symbol a; if A; is in R;. If not, put the symbol b;; there.
Repeatedly “consider” each of the dependencies X —Y in F', until no more
changes can be made to the table. Each time we “consider” X —Y, we look
for rows that agree in all the columns for the attributes of X. If we find two
such rows, equate the symbols of those rows for the attributes of Y. When we
equate two symbols, if one of them is a;, make the other be a;. If they are b;;
and be;, make them both b;; or be;, arbitrarily.
If after modifying the rows of the table as above, we discover that some
row has become a;---ax, then the join is lossless. If not, the join is lossy (not
lossless). []

228 DESIGN THEORY FOR RELATIONAL DATABASES

Example 7.8: Let us consider the decomposition of SAIP into SA and SIP as
in Example 7.7. The dependencies are S—A and SI— P, and the initial table
is

S A I P

a az bis b

ay boo as a4

Since S— A, and the two rows agree on S, we may equate their symbols for A,
making bgo become ag. The resulting table is

S A I P

a; as bi3 b4

a a9 as a4

Since one row has all a’s, the join is lossless.
For a more complicated example, let R = ABCDFE, Ry = AD, R, = AB,
R3s = BE, Ry — CDEFE, and R — AE. Let the functional dependencies be:

A-C DE—-C
B-C CE—-A
C—D

The initial table is shown in Fig. 7.3(a). We can apply A—C to equate b3,
ba3, and bs3. Then we use B—C to equate these symbols with b33; the result is
shown in Fig. 7.3(b), where b;3 has been chosen as the representative symbol.
Now use C—D to equate ay4, boy, bz, and bsy; the resulting symbol is a4. Then
DE—C enables us to equate by3 with a3z, and CE—A lets us equate b3y, by,
and a;. The result is shown in Fig. 7.3(c). Since the middle row is all a’s, the
decomposition has a lossless join. []

It is interesting to note that one might assume Algorithm 7.2 could be
simplified by only equating symbols if one was an a;. The above example shows
this is not the case; if we do not begin by equating by3, bes, b33, and bs3, we
can never get a row of all a’s.

Theorem 7.4: Algorithm 7.2 correctly determines if a decomposition has a
lossless join.

Proof: Suppose the final table produced by Algorithm 7.2 does not have a row
of all a’s. We may view this table as a relation r for scheme R; the rows are
tuples, and the a;’s and b;;’s are distinct symbols chosen from the domain of A;.
Relation r satisfies the dependencies F', since Algorithm 7.2 modifies the table
whenever a violation of the dependencies is found. We claim that r 5£ m,(r).
Clearly r does not contain the tuple ajas- - -a,,. But for each R;, there is a tuple
t; in r, namely the tuple that is row 7, such that ¢;[R;| consists of all a’s. Thus
the join of the mg. (r)’s contains the tuple with all a’s, since that tuple agrees
with ¢; for all 7. We conclude that if the final table from Algorithm 7.2 does

¥ >

(NP V]

7.3 DECOMPOSITION OF RELATION SCHEMES 229

A B C D E
ay b1z bi3 a4 b1s
a as bas ba4 bas
bs1 ag b33 b3y as
ba1 bs2 as a4 as
ay bs2 bs3 bs 4 as
(a)
A B C D E
ay b12 b13 a4 b1s
a ag bis bay bas
bs1 as b3 b34 as
bs1 bso as a4 as -
aq bs2 bis bs4 as
(b)
A B C D E
a; bi2 as a4 bis
aq ag as N bas
a as as ay as
a bso as a4 as
3 aj b52 as a4 as

Fig. 7.3. Applying Algorithm 7.2.

not have a row with all a’s, then the decomposition p does not have a lossless
join; we have found a relation r for R such that m,(r) 5 r.

Conversely, suppose the final table has a row with all a’s. We can in general
view the table as shorthand for the domain relational calculus expression

{a1a2--an | (Fb11) - (Fokn)(R(w1) A -+ - A R(wk)) } (7.1)

where w; is the 7** row of the initial table. Formula (7.1) defines the function
m,, since m,(r) contains an arbitrary tuple a;---a, if and only if for each ¢,
r contains a tuple with a’s in the attributes of R; and arbitrary values in the
other attributes.

Since we assume that any relation r for scheme R, to which (7.1) could
be applied, satisfies the dependencies F, we can infer that (7.1) is equivalent
to a set of similar formulas with some of the a’s and/or b’s identified. The
modifications made to the table by Algorithm 7.2 are such that the table is

230 DESIGN THEORY FOR RELATIONAL DATABASES

RiNR| Ri—R, | R — R
aa -+ a | bb---b

row for By aa---a

row for Ry aa---a bb---b aa---a

Fig. 7.4. A general two row table.

always shorthand for some formula whose value on relation r is m,(r) whenever
r satisfies F', as can be proved by an easy induction on the number of symbols
identified. Since the final table contains a row with all a’s, the domain calculus
expression for the final table is of the form.

{a1---an | Rlar--an) A -} | (7.2)

Clearly the value of (7.2) applied to relation r for R, is a subset of r.
However, if r satisfies F', then the value of (7.2) is m,(r), and by Lemma 7.5(a),
r C m,(r). Thus whenever r satisfies F, (7.2) computes r, so r = m,(r). That
is to say, the decomposition p has a lossless join with respect to F'. [

Algorithm 7.2 can be applied to decompositions into any number of relation
schemes. However, for decompositions into two schemes we can give a simpler
test, the subject of the next theorem.

Theorem 7.5: If p = (Ry, R3) is a decomposition of R, and F is a set of
functional dependencies, then p has a lossless join with respect to F if and only
if (R; N R2)—(R;—R3) or (R N Ry)—(R2— R1). Note that these dependencies
need not be in the given set F'; it is sufficient that they be in F'T.

Proof: The initial table used in an application of Algorithm 7.2 is shown in
Fig. 7.4, although we have omitted the subscripts on @ and b, which are easily
determined and immaterial anyway. It is easy to show by induction on the
number of symbols identified by Algorithm 7.2 that if the b in the column for
attribute A is changed to an a, then A is in (R; N Re)'. It is also easy to
show by induction on the number of steps needed to prove (R; N Rz)—Y by
Armstrong’s axioms, that any b’s in the columns for attributes in Y are changed
to a’s. Thus the row for R; becomes all a’s if and only if R, — Ry, C (Ry N R2)™T,
that is (R; N R2)—(R2 — Ry), and similarly, the row for Ry becomes all a’s if
and only if (R; N Re)—(R; — Rz). [

Example 7.9: Suppose R = ABC and F = { A—»B}. Then the decomposition
of R into AB and AC has a lossless join, since AB N AC = A, AB—AC = B,?}
and A— B holds. However if we decompose R into Ry — AB and R; = BC, we
discover that R; N R, = B, and B functionally determines neither B; — Ry =
A nor Ry — Ry = C. Thus the decomposition AB and BC does not have a

lossless join with respect to FF = { A—B}, as can be seen by considering the

t To make sense of equations like these do not forget that Aj;Aga---A, stands for the set of
attributes { A1, A2,..., A }.

7.3 DECOMPOSITION OF RELATION SCHEMES 231

relation r = {a;1b1c1, azbice } for R. Then map(r) = {a1by1, azb; }, mc(r) =
{bic1, bice }, and wap(r)>dwpe(r) = {a1bicy, arbice, agbicy, azbice }. U

Decompositions that Preserve Dependencies

We have seen that it is desirable for a decomposition to have the lossless join
property, because it guarantees that any relation can be recovered from its
projections. Another important property of a decomposition of relation scheme
R into p = (R, ..., R) is that the set of dependencies F for R be implied by
the projection of F' onto the R;’s. Formally, the projection of F' onto a set of
attributes Z, denoted mwz(F), is the set of dependencies X —Y in F'* such that
XY C Z. (Note that X—Y need not be in F; it need only be in F*.) We
say decomposition p preserves a set of dependencies F' if the union of all the
dependencies in mg,(F), for i = 1,2, ...,k logically implies all the dependencies
in F.

The reason it is desirable that p preserve F' is that the dependencies in
F can be viewed as integrity constraints for the relation R. If the projected
dependencies do not imply F', then should we represent R by p = (R4, ..., Rk),
we could find that the current value of the R;’s represented a relation R that
did not satisfy F', even if p had the lossless join property with respect to F.
Alternatively, every update to one of the R;’s would require a join to check
that the constraints were not violated.

Example 7.10: Let us reconsider the problem of Example 7.3, where we had
attributes CITY, ST, and ZIP, which we here abbreviate C, S, and Z. We ob-
served the dependencies CS—Z and Z—C. The decomposition of the relation
scheme C'SZ into SZ and CZ has a lossless join, since

(SZNCZ)—(CZ—82)

However, the projection of F = { CS—Z, Z—C } onto SZ gives only the trivial
dependencies that follow from reflexivity, while the projection onto C'Z gives
Z—C and the trivial dependencies. It can be checked that Z—C and trivial
dependencies do not imply CS—Z, so the decomposition does not preserve
dependencies.

For example, the join of the two relations in Fig. 7.5(a) and (b) is the rela-
tion of Fig. 7.5(c). Figure 7.5(a) satisfies the trivial dependencies, as any rela-
tion must. Figure 7.5(b) satisfies the trivial dependencies and the dependency
Z—C. However, their join in Fig. 7.5(c) violates CS—Z. [

We should note that a decomposition may have a lossless join with respect
to set of dependencies F', yet not preserve F. Example 7.10 gave one such
instance. Also, the decomposition could preserve F' yet not have a lossless join.
For example, let FF = { A—»B, C—D}, R = ABCD, and p = (AB,CD).

232 DESIGN THEORY FOR RELATIONAL DATABASES

S | z C | z
545 Tech Sq. | 02138 Cambridge, Mass.]02138
545 Tech Sq. | 02139 Cambridge, Mass. |02139

() (b)

C | S | 2
Cambridge, Mass. | 545 Tech Sq. | 02138
Cambridge, Mass. | 545 Tech Sq. | 02139

()
Fig. 7.5. A join violating a functional dependency.

Testing Preservation of Dependencies

In principle, it is easy to test whether a decomposition p = (Ry,..., Rx)
preserves a set of dependencies F. Just compute F* and project it onto all
the R;’s. Take the union of the resulting sets of dependencies, and test whether
this set covers F'.

However, in practice, just computing F'* is a formidable task, since the
number of dependencies it contains will be exponential in the size of F'. There-
fore, it is fortunate that there is a way to test preservation without actually
computing FT; this method takes time that is polynomial in the size of F.

Algorithm 7.3: Testing Preservation of Dependencies.

Input: A decompostion p = (Ry,..., Rx) and a set of functional dependencies
F.

Output: A decision whether p preserves F'.

Method: Define ‘G to be U¥_; 7g.(F). Note that we do not compute G; we
merely wish to see whether it covers F'. To test whether G covers F', we must
consider each X =Y in F' and determine whether X+, computed with respect
to G, contains Y. The trick we use to compute X * without having G available
is to consider repeatedly what the effect is of closing X with respect to the
projections of F' onto the various R;’s.

That is, define an R-operation on set of attributes Z with respect to a
set of dependencies F' to be the replacement of Z by Z U ((Z N R)* N R),
the closure being taken with respect to F'. This operation adjoins to Z those
attributes A such that (Z N R)—A is in mg(F). Then we compute X with
respect to G by starting with X, and repeatedly running through the list of
R;’s, performing the R;-operation for each ¢ in turn. If at some pass, none of
the R;-operations make any change in the current set of attributes, then we are
done; the resulting set is X . More formally, the algorithm is:

o O & 0

7.3 DECOMPOSITION OF RELATION SCHEMES 233

Z=X
while changes to Z occur do
for: =1 to k do
Z=Z7ZU((ZNR)" Nk)

IfY is a subset of the Z that results from executing the above steps, then X —Y
is in G. If each X —Y in F is thus found to be in GG, answer “yes,” otherwise
answer “no.” [

Example 7.11: Consider set of attributes ABCD with decomposition
{AB,BC,CD}

and set of dependencies F' = { A—»B, B—C, C—D, D—A}. Thatis, in FT,
each attribute functionally determines all the others. We might first imagine
that when we project F' onto AB, BC, and CD, we fail to get the dependency
D— A, but that intuition is wrong. When we project F', we really project F'*
onto the relation schemes, so projecting onto AB we get not only A— B, but also
B—A. Similarly, we get C— B in mgc(F) and D—C in mop(F), and these three
dependencies logically imply D— A. Thus, we should expect that Algorithm 7.3
will tell us that D— A follows logically from

G = map(F) U mpc(F) U mop(F)

We start with Z = {D}. Applying the AB-operation does not help,
since {D}U({D}N{AB}* N{A,B})is just {D}. Similarly, the BC-
operation does not change Z. However, when we apply the CD-operation we
get

{Dyu({Dyn{C, D" n{C,D})
={D}u({D} n{C,D})
{DYU({ABCD}N{C,D})

Similarly, on the next pass, the BC-operation applied to the current Z —
{C,D} produces Z = {B,C,D}, and on the third pass, the AB-operation
sets Z to { A, B,C, D}, whereupon no more changes to Z are possible.

Thus, with respect to G, { D} = {4, B,C, D }, which contains A, so we
conclude that G = D—A. Since it is easy to check that the other members
of F are in Gt (in fact they are in G), we conclude that this decomposition
preserves the set of dependencies F'. []

Theorem 7.6: Algorithm 7.3 correctly determines if X —Y isin G™.

Proof : Each time we add an attribute to Z, we are using a dependency in G, so
when the algorithm says “yes,” it must be correct. Conversely, suppose X —Y
is in G*. Then there is a sequence of steps whereby, using Algorithm 7.1 to
take the closure of X with respect to G, we eventually include all the attributes

234 DESIGN THEORY FOR RELATIONAL DATABASES

of Y. Each of these steps involves the application of a dependency in G, and
therefore it is a dependency in wg,(F) for some z. Let one such dependency be
U—YV. An easy induction on the number of dependencies applied in Algorithm
7.1 shows that eventually U becomes a subset of Z, and then on the next pass
the R;-operation will surely cause all attributes of V' to be added to Z if they
are not already there. []

7.4 NORMAL FORMS FOR RELATION SCHEMES

A number of different properties, or “normal forms” for relation schemes with
dependencies have been defined. The most significant -of these are called “third
normal form”t{ and “Boyce-Codd normal form.” These normal forms guarantee
that most of the problems of redundancy and anomalies discussed in Section

7.1 do not occur.

Boyce-Codd Normal Form

The strongest of these normal forms is called Boyce-Codd. A relation scheme
R with dependencies F' is said to be in Boyce-Codd normal form if whenever
X —A holds in R, and A is not in X, then X is a superkey for R; that is, X is
or contains a key. Put another way, the only nontrivial dependencies are those
in which a key functionally determines one or more other attributes.

Example 7.12: The relation scheme CSZ of Example 7.10, with dependencies
CS—Z7 and Z—C, is not in Boyce-Codd normal form (although we shall see it
is in third normal form). The reason is that Z—C holds (in fact it is a given

. dependency), but Z is not a key of CSZ, nor does it contain a key.

- The MEMBERS and ORDERS relations of Example 3.1 are in Boyce-Codd
normal form, since their keys, NAME and ORDER NO respectively, are the
left sides of the only dependencies that were given for their respective relations.
We shall see that the SUPPLIERS relation is neither in Boyce-Codd normal
form nor third normal form. []

Third Normal Form

It turns out that in some circumstances, Boyce-Codd normal form is too strong

a condition, in the sense that it is not possible to bring a relation scheme into
that form by decomposition without losing the ability to preserve dependencies.
Thus third normal form has seen use as a condition that has almost the benefits
of Boyce-Codd normal form, as far as elimination of anomalies is concerned,
yet that we can achieve for an arbitrary database scheme without giving up
either dependency preservation or the lossless join property. '

~ Before defining third normal form, we need a preliminary definition. Call

t Yes Virginia, there is a first normal form and a second normal form. There’s even a fourth
normal form. All in good time - - -

(%

7.4 NORMAL FORMS FOR RELATION SCHEMES 235

i .
an attribute A in relation scheme R a prime attribute if A is a member of any
key for R (recall there may be many keys). If A is not a member of any key,
thep- A is nonprime.

xample 7.13: In the relation scheme CSZ of Example 7.10, all attributes are
prime, since given the dependencies CS—Z and Z—C, both CS and SZ are
keys.

In the relation scheme ABCD with dependencies AB—C, B—D, and
BC—A we can check that AB and BC are the only keys, so A, B, and C
are prime; D is nonprime. []

A relation scheme R is in third normal form if whenever X — A holds in R
and A is not in X, then either X is a superkey for R, or A is prime. Notice
that the definitions of Boyce-Codd and third normal forms are identical except
for the clause “or A is prime” that makes third normal form a weaker condition
than Boyce-Codd normal form.

If X' — A violates third normal form, then one of two cases can occur. Either

1. X is a proper subset of a key, or
2. X is a proper subset of no key.
In the first case, we say that X — A is a partial dependency, and in the second
case we call it a transitive dependency. The term “transitive” comes from the
fact that if Y is a key, then Y —X —A is a nontrivial chain of dependencies. It
is nontrivial because we know that X is not a subset of Y, by (2), A is given
not to be in X, and A cannot be in Y because A is nonprime. If R has no
partial dependencies, although it may have transitive dependencies, we say R
is in.second normal form.t :

xample 7.14: The relation scheme SAIP from Example 7.7, with dependencies
” SI—P and S— A violates third normal form, and in fact violates second normal
form. A is a nonprime attribute, since the only key is SI. Then S—A
violates the third normal form condition, since S is not a superkey. Note
that in this case, the violating dependency, S—A, not only holds, it is even
a given dependency. In general, however, it is sufficient that the violating
dependency follow from the given set of dependencies, even if it is not itself a
given dependency.

As another example, the relation scheme CSZ from Example 7.12 is in
third normal form. Since all of its attributes are prime, the conditions for third
normal form hold vacuously.

For an example of a relation scheme in second normal form but not third,
consider the attributes S (Store) I (Item) D (Department number), and M
t O.K., we might as well mention “first normal form.” That form simply requires that the
domain of each attribute consists of indivisible values, not sets or tuples of values from a
more elementary domain or domains. We have not considered set-valued domains and so feel

free to ignore first normal form. In effect, “relation” is for us synonymous with “first normal
form relation” in some works appearing in the literature.

236 ' DESIGN THEORY FOR RELATIONAL DATABASES

(Manager). The functional dependencies we assume are SI—D (each item in
each store is sold by at most one department) and SD— M (each department
in each store has one manager). The only key is SI. Then SD—M violates
third normal form, since SD is not a superset of a key. Note the application of
transitivity implied by the chain SI—-SD—M. However, there are no partial
dependencies, since no proper subset of the key SI functionally determines D
or M. []

Motivation Behind Normal Forms

We may suppose that the functional dependencies X —Y not only represent
an integrity constraint on relations, but also represent a relationship that the
database is intended to store. That is, we regard it important to know, given
an assignment of values to the attributes in X, what value for each of the Y
attributes is associated with this assignment of X -values. If we have a partial
dependency Y —A, where X is a key and Y a proper subset of X, then in every
tuple used to associate an X-value with values for other attributes besides A
and those in X, the same association between Y and A must appear. This
situation is best seen in the running example of the SAIP scheme, where S—A
is a partial dependency, and the supplier’s address must be repeated once for
each item supplied by the supplier. The third normal form condition eliminates
this possibility and the resultant redundancy and update anomalies.

If we have a transitive dependency X —Y —A, then we cannot associate a
Y -value with an X -value unless there is an A-value associated with the Y value.
This situation leads to insertion and deletion anomalies, where we cannot insert
an X-to-Y association without a Y.-to-A association, and if we delete the A-
value associated with a given Y-value, we may lose track of an X-to-Y associa-
tion. For example, in the relation scheme SIDM with dependencies S{—D
and SD—M, mentioned in Example 7.14, we cannot record the department
selling hats in Bloomingdales if that department has no manager.

As we saw from Example 7.14, a relation scheme can be in third normal
form but not Boyce-Codd normal form. However, every Boyce-Codd normal
form relation scheme is in third normal form. The benefits of Boyce-Codd
normal form are the same as for third normal form—freedom from insertion
and deletion anomalies and redundancies. Note how Boyce-Codd normal form
eliminates some anomalies not prevented by third normal form. For instance,
in the C'SZ example, we cannot record the city to which a zip code belongs
unless we know a street address with that zip code.

It is worth mentioning that relations intended to represent an entity set or
a many-one mapping between entity sets will be in Boyce-Codd normal form
unless there are unexpected relationships among attributes. It is interesting
to conjecture that all functional dependencies that satisfy third normal form
but violate Boyce-Codd normal form are in a sense irrelevant. That is, they

NSO e

NN

7.4 NORMAL FORMS FOR RELATION SCHEMES 237

tell us something about the structure of the real world that is of no use to the
database designer. For example, Z—C in the above example tells us how cities
are broken into zip codes, but the information is not really useful, since the
apparent application of the CSZ database is not to relate zip codes to cities,
but to store zip codes for addresses.

Lossless Join Decomposition into Boyce-Codd Normal Form

We have now been introduced to the properties we desire for relation schemes:
Boyce-Codd normal form or, failing that, third normal form. In the last section
we saw the two most important properties of database schemes as a whole, the
lossless join and dependency preservation properties. Now we must attempt to
put these ideas together, that is, construct database schemes with the properties
we desire for database schemes, and with each individual relation scheme having
the properties we desire for relation schemes.

It turns out that any relation scheme has a lossless join decomposition into
Boyce-Codd Normal Form, and it has a decomposition into third normal form
that has a lossless join and is also dependency-preserving. However, there may
be no decomposition of a relation scheme into Boyce-Codd normal form that is
dependency-preserving. The CSZ relation scheme is the canonical example. It
is not in Boyce-Codd normal form because the dependency Z—C holds, yet if
we decompose C'SZ in any way such that CSZ is not one of the schemes in the
decomposition, then the dependency CS—Z is not implied by the projected
dependencies. Before giving the decomposition algorithms, we shall state some
properties of natural joins that we shall need.

Lemma 7.6:

a) Suppose R is a relation scheme with functional dependencies F. Let p =
(Ri,...,Rx) be a decomposition of R with a lossless join with respect to
F. For a particular ¢, let F; = 7g,(F), and let 0 = (S1,...,Sm) be
a decomposition of R; whose join is lossless with respect to F;. Then
the decomposition of R into (Ry,...,R;—1,51,.--,Sm, Rit1,.-.,Rx) has a
lossless join with respect to F'.

b) Suppose R, F and p are as in (a), and let 7 = (Ry, ..., Rg, Rey1,---, Rn)
be a decomposition of R into a set of relation schemes that includes those
of p. Then 7 also has a lossless join with respect to F'.

Proof: Each of these statements follows by algebraic manipulation from the
definition of a lossless join decomposition. We shall leave formal proofs as
exercises and only give the intuition here. The reason (a) holds is that if we
take relation r for R and project it to relations r; for each R;, and then project
r; to relations s, for each Sy, the lossless join property tells us we can join the
sp’s to recover r;. Then we can join the 7;’s to recover r. Since the natural join
is an associative operation (another exercise for the reader) the order in which

238 DESIGN THEORY FOR RELATIONAL DATABASES

we perform the join doesn’t matter, so we recover r no matter in what order
we take the join of the r,’s, for ¢ 7 7, and the s;’s.

For part (b), we again appeal to the associativity of the natural join.
Observe that if we project relation r for R onto the R;’s, 1 = 1,2,...,n, then
when we take the join of the projections onto Ky, ..., Rx we recover r. Since
Ry, ..., R include all the attributes of R, further joins can only produce a
subset of what we already have, which is . But by Lemma 7.5(a), »r C m.(r),
so we cannot wind up with less than r. That is, m,(r) = r, and 7 is a lossless
join decomposition. []

Algorithm 7.4: Lossless Join Decomposition into Boyce-Codd Normal Form.
Input: Relation scheme R and functional dependencies F'.

Output: A decomposition of R with a lossless join, such that every relation
scheme in the decomposition is in Boyce-Codd normal form with respect to the
projection of F' onto that scheme.

Method: We iteratively construct a decomposition p for R. At all times, p will
have a lossless join with respect to F'. Initially, p consists of R alone. If S is a
relation scheme in p, and S is not in Boyce-Codd normal form, let X —A be a
dependency that holds in S, where X is not a superkey for S, and A is not in
X. Replace S in p by S; and S5, where S; consists of A and the attributes of
X, and S5 consists of all the attributes of S except for A. S5 is surely a proper
subset of S. S is also a proper subset, or else X = § — A, so X is a superkey
for S.

By Theorem 7.5, the decomposition of S into S§; and Ss has a lossless join
with respect to the set of dependencies projected onto S, since S; N S = X,
S1 — Sg = A, and therefore (S; N S2)—(S; — S2). By Lemma 7.6(a), p with S
replaced by S; and S; has a lossless join, if p does. As S; and S; each have
fewer attributes then S, and any relation scheme with two or fewer attributes
must be in Boyee-Codd normal form, we eventually reach a point where each
relation scheme in p is in Boyce-Codd normal form. At that time, p still has a
lossless join, since the initial p consisting of R alone does, and each modification
of p preserves the lossless join property. [l

Example 7.15: Let us consider the relation scheme CTHRSG, where C =
course, T' = teacher, H = hour, R = room, S = student, and G = grade.
The functional dependencies F' we assume are

C—T each course has one teacher
HR—C only one course can meet in a room at one time
HT—R a teacher can be in only one room at one time
CS—G each student has one grade in each course
HS—R astudent can be in only one room at one time

The only key for CTHRSG is HS.
To decompose this relation scheme into Boyce-Codd normal form, we might

7.4 NORMAL FORMS FOR RELATION SCHEMES 239

first consider the dependency CS—G, which violates the condition, since C'S
does not contain a key. Thus, by Algorithm 7.4, we first decompose CTHRSG
into CSG and CTHRS. For further decompositions we must compute F'* and
project it onto CSG and CTHRS.

Note that this process is in general time consuming, as the size of F'*
can be exponential in the size of F. Even in this relatively simple example,
F7T, naturally, has all the trivial dependencies that follow by reflexivity and,
in addition to those in F, some other nontrivial dependencies like CH—R,
HS—C, and HR—T. Once we have F't, we select those involving only C,
S, and G. This is wgge(F). This set has a minimal cover consisting of
CS—G alone; all other dependencies in the set follow from this dependency
by Armstrong’s axioms. We also project F'* onto CTHRS. norars(F) has a
minimal cover

C—-T TH—R
HR—C HS—R

and the only key for CTHRS is HS.

It is easy to check that CSG is in Boyce-Codd normal form with respect
to its projected dependencies. CTHRS must be decomposed further, and we
might choose the dependency C—T to break it into CT and CHRS. Minimal
covers for the projected dependencies are C—T for CT and CH—R, HS—R,
and HR—C for CHRS; HS is the only key of the latter scheme. Observe that
CH—R is needed in a cover of CHRS, although in CTHRS it followed from
C—T and TH—R.

CT is in Boyce-Codd normal form, and one more decomposition of CHRS,
say using CH— R, puts the entire database scheme into the desired form. In
Fig. 7.6 we see the tree of decompositions, with the keys and minimal covers
for the sets of projected dependencies also shown.

The final decomposition of CTHRSG is CSG, CT, CHR, and CHS.
This is not a bad database design, since its four relation schemes tabulate,
respectively,

1. grades for students in courses,

2. the teacher of each course,

3. the hours at which each course meets and the room for each hour, and
4. the schedule of courses and hours for each student.

In fairness it should be noted that not every decomposition produces a
database scheme that matches so well our intuition about what information
should be tabulated in the database. For example, if at the last decomposition
step we had used dependency H R—C instead of CH — R, we would have scheme
HRS instead of CHS, and HRS represents the room in which a student can
be found at a given hour, rather than the class he is attending. Surely the latter
is more fundamental information than the former.

240 DESIGN THEORY FOR RELATIONAL DATABASES

key=SH
CH—-R HR—-C
HS—R

CHR
keys=CH, HR
CH—-R HR—C

Fig. 7.6. Tree of decomposition.

Another problem with the decomposition of Fig. 7.6 is that the dependency
TH—R is not preserved by the decomposition. That is, the projection of F
onto CSG, CT, CHR, and CHS, which can be represented by the cover

CS—-G HR—-C
C—-T HS—-C
CH—-R

found by taking the minimal covers in each of the leaves of Fig. 7.6, does not
imply TH—R. For example, the relation for CTHRSG shown below

¢C T H R S G
c1 t h Ty 81 g1
c2 t h T2 82 g2

7.4 NORMAL FORMS FOR RELATION SCHEMES 241

does not satisfy TH— R, yet its projections onto CSG, CT, CHR, and CHS
satisfy all the projected dependencies. []

We mentioned that the process of projecting dependencies, where we con-
struct F* from F' and then select out those with a particular set of attributes,
can be exponential in the number of dependencies in F. One might wonder
whether Algorithm 7.4 can be made to run in less than exponential time by

using another approach to decomposition. Unfortunately, Beeri and Bernstein "

[1979] proved that it is N P-completet just to determine whether a relation
scheme is in Boyce-Codd normal form. Thus it is extremely unlikely that one
will find a substantially better algorithm.

Dependency Preserving Decompositions into Third Normal Form

We saw from Examples 7.12 and 7.14 that it is not always possible to decompose
a relation scheme into Boyce-Codd normal form and still preserve the depen-
dencies. However, we can always find a dependency-preserving decomposition
into third normal form, as the next algorithm and theorem show.

Algorithm 7.5: Dependency-Preserving Decomposition into Third Normal Form.

Input: Relation scheme R and set of functional dependencies F', which we
assume without loss of generality to be a minimal cover.

Output: A depéndency-preserving decomposition of K such that each relation
scheme is in third normal form with respect to the projection of F' onto that

scheme.

Method: If there are any attributes of R not involved in any dependency of F',
either on the left or right, then that attribute can, in principle, form a relation
scheme by itself, and we shall eliminate it from R.} If one of the dependencies
in F' involves all the attributes of R, then output R itself. Otherwise, the
decomposition p to be output consists of scheme X A for each dependency X —A
in F. However, if X—A;, X—Ag,...,X—A, are in F, we may use scheme
XAjp---A, instead of XA; for 1 < ¢ < n, and in fact, this substitution is
usually preferable. []

Example 7.16: Reconsider the relation scheme CTHRSG of Example 7.15,
whose dependencies have minimal cover

t N P-completeness of a problem almost certainly implies that it is inherently exponential.
See Aho, Hopcroft, and Ullman [1974] or Garey and Johnson [1979] for a description of the
theory.

i Sometimes it is desirable to have two or more attributes, say A and B, appear together
in a relation scheme, even though there is no functional dependency involving them. There
may simply be a many-many relationship between A and B. An idea of Bernstein [1976] is to
introduce a dummy attribute # and functional dependency AB—#, to force this association.
After completing the design, attribute 8 is eliminated.

242 DESIGN THEORY FOR RELATIONAL DATABASES

C-T CcS—-G
HR—C HS—R
HT—-R

Algorithm 7.5 yields the set of relation schemes CT, CHR, HRT, CGS, and
HRS. [

Theorem 7.7: Algorithm 7.5 yields a dependency-preserving decomposition into
third normal form.

Proof: Since the projected dependencies include a cover for F| the decomposi-
tion clearly preserves dependencies. We must show that the relation scheme
Y B, for each functional dependency Y —B in the minimal cover, is in third
normal form. Suppose X —A violates third normal form for Y B, that is, A is
not in X, X is not a superkey for Y B, and A is nonprime. Of course, we also
know that XA C Y B, and X —A follows logically from F. We shall consider
two cases, depending on whether or not A = B.

Case 1: A = B. Then since A is not in X, we know X C Y, and since X is not
a superkey for YB, X must be a proper subset of Y. But then X — B, which
is X—A, could replace Y —B in the supposed minimal cover, contradicting the
assumption that Y —B was part of the given minimal cover.

Case 2: A 3£ B. Since Y is a superkey for Y B, there must be some Z C Y
that is a key for YB. But A is in Y, since we are assuming A 7 B, and A
cannot be in Z, because A is nonprime. Thus Z is a proper subset of Y, yet
Z—B can replace Y —B in the supposedly minimal cover, again providing a
contradiction. [

Decompositions into Third Normal Form with a Lossless Join and
Preservation of Dependencies

We have seen that we can decompose any relation scheme R into a set of schemes
p = (Ry,..., R) such that p has a lossless join and each R; is in Boyce-Codd
normal form (and therefore in third normal form). We can also decompose R
into 0 = (51, ..., Sm) such that o preserves the set of dependencies F', and each
S; is in third normal form. Can we find a decomposition into third normal form
that has both the lossless join and dependency-preservation properties? We can,
if we simply adjoin to o a relation scheme X that is a key for R, as the next
theorem shows.

Theorem 7.8: Let, o be the third normal form decomposition of R constructed by
Algorithm 7.5, and let X be akey for R. Then7 =ocU{X }isa decomposition
of R with all relation schemes in third normal form; the decomp081t10n preserves
dependencies and has the lossless join property.

Proof': It is easy to show that any transitive or partial dependency in X implies..

that a proper subset of X functionally determines X, and therefore R, so X

T

|

7.4 NORMAL FORMS FOR RELATION SCHEMES 243

would not be a key in that case. Thus X, as well as the members of ¢, are in
third normal form. Clearly 7 preserves dependencies, since o does.

To show that 7 has a lossless join, apply the tabular test of Algorithm 7.2.
We.can show that the row for X becomes all a’s, as follows. Consider the order
Ay, Ag, ..., Ar in which the attributes of R — X are added to X in Algorithm
7.1. Surely all attributes are added eventually, since X is a key. We show by
induction on 7 that the column corresponding to A; in the row for X is set to
a; in the test of Algorithm 7.2.

The basis, © = 0, is trivial. Assume the result for ¢ — 1. Then A; is added
to X T because of some given functional dependency Y —A;, where

Y CXU{A,..., A1}

Then Y A; is in 0, and the rows for Y A; and X agree on Y (they are all a’s) after
the columns of the X-row for Ay,...,A;_; are made a’s. Thus these rows are
made to agree on A; during the execution of Algorithm 7.2. Since the Y A;-row
has a; there, so must the X-row. []

Obviously, in some cases 7 is not the smallest set of relation schemes with
the properties of Theorem 7.8. We can throw out relation schemes in 7 one at
a time as long as the desired properties are preserved. Many different database
schemes may result, depending on the order in which we throw out schemes,
since eliminating one may preclude the elimination of others.

Example 7.17: We could take the union of the database scheme produced for
CTHRSG in Example 7.16 with the key SH, to get a decomposition that has
a lossless join and preserves dependencies. It happens that SH is a subset of
HRS, which is one of the relation schemes already selected. Thus, SH may
be eliminated, and the database scheme of Example 7.16, that is CT, CHR,
HRT, CGS, and HRS, suffices. Although some proper subsets of this set of
five relation schemes are lossless join decompositions, we can check that the
projected dependencies for any four of them do not imply the complete set of
dependencies F', last mentioned in Example 7.16. [

7.5 MULTIVALUED DEPENDENCIES

In previous sections we have assumed that the only possible kind of data depen-
dency is functional. In fact there are many plausible kinds of dependencies, and
at least one other, the multivalued dependency, appears in the “real world.”
Suppose we are given a relation scheme R, and X and Y are subsets of R.
Intuitively, we say that X —Y read “X multidetermines Y,” or “there is a
multivalued dependency of Y on X,” if given values for the attributes of X
there is a set of zero or more associated values for the attributes of Y, and
this set of Y-values is not connected in any way to values of the attributes in
R-X-Y.

244 DESIGN THEORY FOR RELATIONAL DATABASES

C T H R S | G
CS101 | Deadwood, J. | M9 | 222 | Klunk, A. | B+
CS101 | Deadwood, J. | W9 | 333 | Klunk, A. | B+
CS101 | Deadwood, J. F9 222 | Klunk, A. B+
CS101 | Deadwood, J. | M9 | 222 | Zonker, B. C
CS101 | Deadwood, J. | W9 | 333 | Zonker, B. C
CS101 | Deadwood, J. F9 222 | Zonker, B. C

Fig. 7.7. A sample relation for scheme CTHRSG.

Formally, we say X —-Y holds in R if whenever r is a relation for R, and
¢t and s are two tuples in r, with ¢{[X] = s[X] (that is, ¢ and s agree on the
attributes of X'), then r also contains tuples u and v, where
1. u[X] =v[X]=t[X]=s[X],

2. u[Y]=t[Y]andul[R—X —-Y]=3s[R—X —Y], and

3. v[Y]=sY]andv[R—X-Y]|=¢R—-X —-Y]|.}

That is, we can exchange the Y values of £ and s to obtain two new tuples that
must also be in . Note we did not assume that X and Y aré disjoint in the
above definition.

Example 7.18: Let us reconsider the relation scheme CTHRSG of the previous
section. In Fig. 7.7 we see a possible relation for this relation scheme. In this
simple case there is only one course with two students, but we see several salient
facts that we would expect to hold in any relation for this relation scheme. A
course can meet for several hours, in different rooms each time. Each student
has a tuple for each class taken and each session of that class. His grade for the
class is repeated for each tuple.

Thus we expect that in general the multivalued dependency C'—— H R holds,
that is, there is a set of hour-room pairs associated with each course and
disassociated from the other attributes. For example, if in the formal definition
of a multivalued dependency we let

t — CSI101 Deadwood, J. M9 222 Klunk, A. B+
s = CS101 Deadwood, J. W9 333 Zonker, B. C

- then we would expect to be able to exchange (M9, 222) from ¢ with (W9, 333)
in s to get the two tuples

u = CS101 Deadwood, J. M9‘ 222 Zonker, B. C
v = CS101 Deadwood, J. W9 333 Klunk, A. B+

A glance at Fig. 7.7 affirms that u and v are indeed in 7.
It should be emphasized that C——HR holds not because it held in the

t Note we could have eliminated clause (3). The existence of tuple v follows from the existence
of u when we apply the definition with ¢ and s interchanged.

~ o~

2SS

e

1t
1e

1S
1s
1t

1t
1e

1€

ce

7.5 MULTIVALUED DEPENDENCIES 245

one relation of Fig. 7.7. It holds because for any course ¢, if it meets at hour
hi in room 7y, with teacher t; and student s; who is getting grade g;, and it
also meets at hour hg in room re with teacher t9 and student s who is getting
grade g2, then we expect from our understanding of the attributes’ meanings
that the course ¢ also meets at hour A in room r; with teacher {5 and student
so with grade gs.

Note also that C——H does not hold, nor does C——R. In proof, consider
relation r of Fig. 7.7 with tuples ¢t and s as above. If C——H held, we would
expect to find tuple

CS101 Deadwood, J. M9 333 Zonker, B. C

in 7, which we do not. There are a number of other multivalued dependencies
that hold, however, such as C—SG and HR—SG. There are also trivial
multivalued dependencies like HR—— R. We shall in fact prove that every func-
tional dependency X —Y that holds implies that the multivalued dependency
X —-Y holds as well. [

Axioms for Functional and Multivalued Dependencies

We shall now present a sound and complete set of axioms for making inferences
about a set of functional and multivalued dependencies over a set of attributes
U. The first three are Armstrong’s axioms for functional dependencies only; we
repeat them here.
Al: (reflexivity for functional dependencies) If Y C X C U, then X —-Y.
A2: (augmentation for functional dependencies) If X —Y holds, and Z C U,
then XZ7-Y Z.
A3: (transitivity for functional dependencies) { X—-Y,Y—-Z} = X—Z.
The next three axioms apply to multivalued dependencies.
A4 (complementation for multivalued dependencies)

(XY }EX—U-X-Y)

A5: (augmentation for multivalued dependencies) If X —Y holds, and V C W,
then WX VY.
A6: (transitivity for multivalued dependencies)

(XY, Y»Z} =X —(Z-Y)

It is worthwhile comparing A4-A6 with A1-A3. Axiom A4, the com-
plementation rule, has no counterpart for functional dependencies. Axiom Al,
reflexivity, appears to have no counterpart for multivalued dependencies, but
the fact that X—-Y whenever Y C X follows from Al and the rule (Axiom
A7, to be given) that if X—Y then X—-Y. A6 is more restrictive than its
counterpart transitivity axiom, A3. The more general statement, that X —-Y
and Y—-Z7 imply X—-Z7 is false. For instance, we saw in Example 7.18 that

