### Introduction to Big Data Systems

CS 448 - Spring 2019 March 18th Thamir Qadah

### Overview

#### • Discussion on:

- Motivation for Big Data
- The MapReduce Model
- Hadoop distributed file system
- Spark data processing framework
- Think-Pair-Share Sessions, given a few discussion question:
  - 2 minutes of thinking
  - 2-4 minutes discuss with partner
  - 2-4 minutes class-wide discussion

## **Discussion on Big Data**

What are the characteristics of Big Data?

How are they different from traditional database applications?

Why do we need different data management systems for them?

# What are the characteristics of Big Data?

Volume: Size of data

Velocity: Rate of data

Variety: Types of data

Veracity: Quality of data

## How are they different from traditional database applications?



#### Structured

e.g. Database tables

Semi- or Un-structured

e.g. JSON, XML, Images, Videos ...

## Why do we need different data management systems for Big Data?

Traditional DBMSs require some form of ETL

Not ideal for certain use-cases (e.g., Build an inverted index of webpages, Page-rank of web-pages)

#### One size **does not** fit all

#### **BIG DATA & AI LANDSCAPE 2018**



Final 2018 version, updated 07/15/2018

mattturck.com/bigdata2018

FIRSTMARK

#### **Discussion on MapReduce**

What are the main pieces of logic a programmer needs to specify?

What are the benefits of the MapReduce and Hadoop?

## What are the main pieces of logic a programmer needs to specify?



**Figure 25.1** Overview of MapReduce execution. (Adapted from T. White, 2012)

### MapReduce Model

map(K1,V1) : List[K2,V2]

reduce(K2, List[V2]) : List[K3,V3]

### MapReduce Example

```
map[LongWritable,Text](key, value) : List[Text, LongWritable] = {
   String[] words = split(value)
  for(word : words) {
     context.out(Text(word), LongWritable(1))
}
reduce[Text, Iterable[LongWritable]](key, values) : List[Text, LongWritable] = {
  LongWritable c = 0
  for( v : values) {
     c += v
   context.out(key,c)
```

What does this code compute?

# What are the benefits of the MapReduce and Hadoop?

Simple distributed programming

Allows for highly parallel and distributed and reliable data processing

Free and open source

### **Discussion on HDFS**

What are the design goals for HDFS?

What are the main architectural components of HDFS?

# What are the design goals for HDFS?

Fault-tolerance

Throughput-optimized

Support for large files

Append-only data write model

# What are the main architectural components of HDFS?

Name Node (+ secondary)

Data Nodes

### **Discussion on YARN**



What is the key concept behind YARN?

#### What are the benefits?

### **Discussion on YARN**



#### Separation of Concerns Improved resource utilization Allow other applications to run on cluster



Zaharia et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012

Shi et al. Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics, VLDB 2015



## What are the elements of the vision behind Spark?

What is the key feature introduced in Spark 2.0?



#### What are the elements of the vision behind Spark?

Functional High-level API to support data scientists workflows

Unified data processing

#### What is the key feature introduced in Spark 2.0?

Structured APIs

### What technology is better?

|                                   | Parallel Databases | MapReduce |
|-----------------------------------|--------------------|-----------|
| Structured Data                   |                    |           |
| Unstructured Data                 |                    |           |
| Fault-tolerance                   |                    |           |
| Query Expressiveness              |                    |           |
| Simple Usage                      |                    |           |
| Support for Novel<br>Applications |                    |           |

### Project 4

#### Use a real cluster environment (<u>RCAC</u> <u>Scholar</u>)

Practice with HDFS

Practice with Spark and Spark-SQL (possibly Spark-Streaming too!)