Storage and retrieval of videos, such as movies, and video clips from news or personal digital cameras

Data mining applications that analyze large amounts of data to search for the occurrences of specific patterns or relationships, and for identifying unusual patterns in areas such as credit card fraud detection

Spatial applications that store and analyze spatial locations of data, such as weather information, maps used in geographical information systems, and automobile navigational systems

Time series applications that store information such as economic data at regular points in time, such as daily sales and monthly gross national product figures

It was quickly apparent that basic relational systems were not very suitable for many of these applications, usually for one or more of the following reasons:

- More complex data structures were needed for modeling the application than the simple relational representation.
- New data types were needed in addition to the basic numeric and character string types.
- New operations and query language constructs were necessary to manipulate the new data types.
- New storage and indexing structures were needed for efficient searching on the new data types.

This led DBMS developers to add functionality to their systems. Some functionality was general purpose, such as incorporating concepts from object-oriented databases into relational systems. Other functionality was special purpose, in the form of optional modules that could be used for specific applications. For example, users could buy a time series module to use with their relational DBMS for their time series application.

1.7.6 Emergence of Big Data Storage Systems and NOSQL Databases

In the first decade of the twenty-first century, the proliferation of applications and platforms such as social media Web sites, large e-commerce companies, Web search indexes, and cloud storage/backup led to a surge in the amount of data stored on large databases and massive servers. New types of database systems were necessary to manage these huge databases—systems that would provide fast search and retrieval as well as reliable and safe storage of nontraditional types of data, such as social media posts and tweets. Some of the requirements of these new systems were not compatible with SQL relational DBMSs (SQL is the standard data model and language for relational databases). The term NOSQL is generally interpreted as Not Only SQL, meaning that in systems than manage large amounts of data, some of the data is stored using SQL systems, whereas other data would be stored using NOSQL, depending on the application requirements.
accounts for the front-end modules (clients) communicating with a number of back-end databases (servers).

Advances in encryption and decryption technology make it safer to transfer sensitive data from server to client in encrypted form, where it will be decrypted. The latter can be done by the hardware or by advanced software. This technology gives higher levels of data security, but the network security issues remain a major concern. Various technologies for data compression also help to transfer large amounts of data from servers to clients over wired and wireless networks.

2.6 Classification of Database Management Systems

Several criteria can be used to classify DBMSs. The first is the data model on which the DBMS is based. The main data model used in many current commercial DBMSs is the relational data model, and the systems based on this model are known as SQL systems. The object data model has been implemented in some commercial systems but has not had widespread use. Recently, so-called big data systems, also known as key-value storage systems and NoSQL systems, use various data models: document-based, graph-based, column-based, and key-value data models. Many legacy applications still run on database systems based on the hierarchical and network data models.

The relational DBMSs are evolving continuously, and, in particular, have been incorporating many of the concepts that were developed in object databases. This has led to a new class of DBMSs called object-relational DBMSs. We can categorize DBMSs based on the data model: relational, object, object-relational, NoSQL, key-value, hierarchical, network, and other.

Some experimental DBMSs are based on the XML (eXtended Markup Language) model, which is a tree-structured data model. These have been called native XML DBMSs. Several commercial relational DBMSs have added XML interfaces and storage to their products.

The second criterion used to classify DBMSs is the number of users supported by the system. Single-user systems support only one user at a time and are mostly used with PCs. Multiuser systems, which include the majority of DBMSs, support concurrent multiple users.

The third criterion is the number of sites over which the database is distributed. A DBMS is centralized if the data is stored at a single computer site. A centralized DBMS can support multiple users, but the DBMS and the database reside totally at a single computer site. A distributed DBMS (DDBMS) can have the actual database and DBMS software distributed over many sites connected by a computer network. Big data systems are often massively distributed, with hundreds of sites. The data is often replicated on multiple sites so that failure of a site will not make some data unavailable.
each class are specified in terms of predefined procedures called methods. Relational DBMSs have been extending their models to incorporate object database concepts and other capabilities; these systems are referred to as object-relational or extended relational systems. We discuss object databases and object-relational systems in Chapter 12.

Big data systems are based on various data models, with the following four data models most common. The key-value data model associates a unique key with each value (which can be a record or object) and provides very fast access to a value given its key. The document data model is based on JSON (JavaScript Object Notation) and stores the data as documents, which somewhat resemble complex objects. The graph data model stores objects as graph nodes and relationships among objects as directed graph edges. Finally, the column-based data models store the columns of rows clustered on disk pages for fast access and allow multiple versions of the data. We will discuss some of these in more detail in Chapter 24.

The XML model has emerged as a standard for exchanging data over the Web and has been used as a basis for implementing several prototype native XML systems. XML uses hierarchical tree structures. It combines database concepts with concepts from document representation models. Data is represented as elements; with the use of tags, data can be nested to create complex tree structures. This model conceptually resembles the object model but uses different terminology. XML capabilities have been added to many commercial DBMS products. We present an overview of XML in Chapter 13.

Two older, historically important data models, now known as legacy data models, are the network and hierarchical models. The network model represents data as record types and also represents a limited type of 1:N relationship, called a set type. A 1:N, or one-to-many, relationship relates one instance of a record to many record instances using some pointer linking mechanism in these models. The network model, also known as the CODASYL DBTG model, has an associated record-at-a-time language that must be embedded in a host programming language. The network DML was proposed in the 1971 Database Task Group (DBTG) Report as an extension of the COBOL language.

The hierarchical model represents data as hierarchical tree structures. Each hierarchy represents a number of related records. There is no standard language for the hierarchical model. A popular hierarchical DML is DL/1 of the IMS system. It dominated the DBMS market for over 20 years between 1965 and 1985. Its DML, called DL/1, was a de facto industry standard for a long time.

14CODASYL DBTG stands for Conference on Data Systems Languages Database Task Group, which is the committee that specified the network model and its language.