
A P P E N D I X D
Network Model

In the relational model, the data and the relationships among data are represented
by a collection of tables. The network model differs from the relational model in
that data are represented by collections of records, and relationships among data
are represented by links.

In this chapter we illustrate our concepts using a bank enterprise with the
schema shown in Figure 2.15.

D.1 Basic Concepts

A network database consists of a collection of records connected to one another
through links. A record is in many respects similar to an entity in the E-R model.
Each record is a collection of fields (attributes), each of which contains only one
data value. A link is an association between precisely two records. Thus, a link
can be viewed as a restricted (binary) form of relationship in the sense of the E-R
model.

As an illustration, consider a database representing a customer-account rela-
tionship in a banking system. There are two record types, customer and account. As
we saw earlier, we can define the customer record type, using Pascal-like notation:

type customer = record
customer name: string;
customer street: string;
customer city: string;

end

The account record type can be defined as

type account = record
account number: string;
balance: integer;

end

The sample database in Figure D.1 shows that Hayes has account A-102, Johnson
has accounts A-101 and A-201, and Turner has account A-305.

1

2 Appendix D Network Model

Figure D.1 Sample database.

D.2 Data-Structure Diagrams

A data-structure diagram is a schema representing the design of a network database.
Such a diagram consists of two basic components:

1. Boxes, which correspond to record types

2. Lines, which correspond to links

A data-structure diagram serves the same purpose as an E-R diagram; namely, it
specifies the overall logical structure of the database. So that you will understand
how such diagrams are structured, we shall show how to transform E-R diagrams
into their corresponding data-structure diagrams.

D.2.1 Binary Relationship

Consider the E-R diagram of Figure D.2a, consisting of two entity sets, customer
and account, related through a binary, many-to-many relationship depositor, with
no descriptive attributes. This diagram specifies that a customer may have sev-
eral accounts, and that an account may belong to several different customers.
The corresponding data-structure diagram appears in Figure D.2b. The record
type customer corresponds to the entity set customer. It includes three fields—

Figure D.2 E-R diagram and its corresponding data-structure diagram.

D.2 Data-Structure Diagrams 3

Figure D.3 Two data-structure diagrams.

customer-name, customer street, and customer city—as defined in Section D.1. Simi-
larly, account is the record type corresponding to the entity set account. It includes
the two fields account number and balance. Finally, the relationship depositor has
been replaced with the link depositor.

The relationship depositor is many to many. If the relationship depositor were
one to many from customer to account, then the link depositor would have an arrow
pointing to customer record type (Figure D.3a). Similarly, if the relationship deposi-
tor were one to one, then the link depositor would have two arrows: one pointing to
account record type and one pointing to customer record type (Figure D.3b). Since,
in the E-R diagram of Figure D.2a, the depositor relationship is many to many, we
draw no arrows on the link depositor in Figure D.2b.

A database corresponding to the described schema may thus contain a num-
ber of customer records linked to a number of account records. A sample database
corresponding to the data-structure diagram of Figure D.2 appears in Figure D.4.
Since the relationship is many to many, we show that Johnson has accounts A-101
and A-201 and that account A-201 is owned by both Johnson and Smith. A sample
database corresponding to the data-structure diagram of Figure D.3a is depicted
in Figure D.1. Since the relationship is one to many from customer to account, a
customer may have more than one account, as Johnson does—she owns both
A-101 and A-201. An account, however, cannot belong to more than one customer,
and the database observes this restriction. Finally, a sample database correspond-
ing to the data-structure diagram of Figure D.3b is shown in Figure D.5. Since the
relationship is one to one, an account can be owned by precisely one customer,
and a customer can have only one account; the sample database follows those
rules.

Figure D.4 Sample database corresponding to diagram of Figure D.2b.

4 Appendix D Network Model

Figure D.5 Sample database corresponding to diagram of Figure D.3b.

If a relationship includes descriptive attributes, the transformation from an
E-R diagram to a data-structure diagram is more complicated. A link cannot
contain any data value, so a new record type needs to be created and links need
to be established.

Consider the E-R diagram of Figure D.2a. Suppose that we add the attribute
access date to the relationship depositor, to denote the most recent time that a
customer accessed the account. This newly derived E-R diagram appears in Fig-
ure D.6a. To transform this diagram to a data-structure diagram, we must

1. Replace entities customer and account with record types customer and account,
respectively.

2. Create a new record type access date with a single field to represent the date.

3. Create the following many-to-one links:

Figure D.6 E-R diagram and its corresponding network diagram.

D.2 Data-Structure Diagrams 5

Figure D.7 Sample database corresponding to diagram of Figure D.6b.

• customer date from the access date record type to the customer record type

• account date from the access date record type to the account record type

The resulting data-structure diagram appears in Figure D.6b.
An instance of a database corresponding to the described schema appears in

Figure D.7. It shows that:

• Account A-201 is held by Johnson alone, and was last accessed by her on 17
June.

• Account A-305 is held by Turner alone, and was last accessed by him on 28
May.

• Account A-102 is held by both Hayes and Johnson. Hayes accessed it last on
10 June, and Johnson accessed it last on 24 May.

D.2.2 General Relationships

Consider the E-R diagram of Figure D.8a, which consists of three entity sets—
account, customer, and branch—related through the general relationship CAB with
no descriptive attribute.

Since a link can connect precisely two different record types, we need to
connect these three record types through a new record type that is linked to each
of them directly.

To transform the E-R diagram of Figure D.8a to a network data-structure
diagram, we need to do the following:

1. Replace entity sets account, customer, and branch with record types account,
customer, and branch, respectively.

2. Create a new record type Rlink that may either have no fields or have a single
field containing a unique identifier. The system supplies this identifier, and
the application program does not use it directly. This new type of record is
sometimes referred to as a dummy (or link or junction) record type.

6 Appendix D Network Model

Figure D.8 E-R diagram and its corresponding data-structure diagram.

3. Create the following many-to-one links:

• CustRlnk from Rlink record type to customer record type

• AcctRlnk from Rlink record type to account record type

• BrncRlnk from Rlink record type to branch record type

The resulting data-structure diagram appears in Figure D.8b.
A sample database corresponding to the described schema appears in Fig-

ure D.9. It shows that Hayes has account A-102 in the Perryridge branch, Johnson
has accounts A-101 and A-201 in the Downtown and Perryridge branches, re-
spectively, and Turner has account A-305 in the Round Hill branch.

We can extend this technique in a straightforward manner to deal with rela-
tionships that span more than three entity sets. We create a many-to-one link from
the Rlink record to the record types corresponding to each entity set involved in
the relationship. We can also extend the technique to deal with a general rela-
tionship that has descriptive attributes. We need to add one field to the dummy
record type for each descriptive attribute.

D.3 The DBTG CODASYL Model 7

Figure D.9 Sample database corresponding to diagram of Figure D.8b.

D.3 The DBTG CODASYL Model

The first database-standard specification, called the CODASYL DBTG 1971 report,
was written in the late 1960s by the Database Task Group. Since then, a number
of changes have been proposed many of which are reflected in our discussion
concerning the DBTG model.

D.3.1 Link Restriction

In the DBTG model, only many-to-one links can be used. Many-to-many links are
disallowed to simplify the implementation. We represent one-to-one links using a
many-to-one link. These restrictions imply that the various algorithms of Section
D.2 for transforming an E-R diagram to a data-structure diagram must be revised.

Consider a binary relationship that is either one to many or one to one. In
this case, the transformation algorithm defined in Section D.2.1 can be applied
directly. Thus, for our customer-account database, if the depositor relationship is
one to many with no descriptive attributes, then the appropriate data-structure
diagram is as shown in Figure D.10a. If the relationship has a descriptive attribute
(for example, access-date), then the appropriate data-structure diagram is as shown
in Figure D.10b.

If the depositor relationship, however, is many to many, then our transforma-
tion algorithm must be refined; if the relationship has no descriptive attributes
(Figure D.11a), then this algorithm must be employed:

1. Replace the entity sets customer and account with record types customer and
account, respectively.

2. Create a new dummy record type, Rlink, that may either have no fields or
have a single field containing an externally defined unique identifier.

3. Create the following two many-to-one links:

8 Appendix D Network Model

Figure D.10 Two data-structure diagrams.

• CustRlnk from Rlink record type to customer record type

• AcctRlnk from Rlink record type to account record type

The corresponding data-structure diagram is as shown in Figure D.11b. An
instance of a database corresponding to the described schema appears in Fig-
ure D.12. We encourage you to compare this sample database with the one de-
scribed in Figure D.4.

If the relationship depositor is many to many with a descriptive attribute
(for example, access date), then the transformation algorithm is similar to the one
described. The only difference is that the new record type Rlink now contains the
field access date.

Figure D.11 E-R diagram and its corresponding data-structure diagram.

D.3 The DBTG CODASYL Model 9

Figure D.12 Sample database corresponding to the diagram of Figure D.11.

In the case of general (that is, nonbinary) relationships, the transformation
algorithm is the same as the one described in Section D.2.2. Thus, the E-R diagram
of Figure D.8a is transformed into the data-structure diagram of Figure D.8b.

D.3.2 DBTG Sets

Given that only many-to-one links can be used in the DBTG model, a data-structure
diagram consisting of two record types that are linked together has the general
form of Figure D.13. This structure is referred to in the DBTG model as a DBTG
set. The name of the set is usually chosen to be the same as the name of the link
connecting the two record types.

In each such DBTG set, the record type A is designated as the owner (or parent)
of the set, and the record type B is designated as the member (or child) of the set.
Each DBTG set can have any number of set occurrences—that is, actual instances
of linked records. For example, in Figure D.14, we have three set occurrences
corresponding to the DBTG set of Figure D.13.

Since many-to-many links are disallowed, each set occurrence has precisely
one owner, and has zero or more member records. In addition, no member record
of a set can participate in more than one occurrence of the set at any point. A mem-
ber record, however, can participate simultaneously in several set occurrences of
different DBTG sets.

As an illustration, consider the data-structure diagram of Figure D.15. There
are two DBTG sets:

Figure D.13 DBTG set.

10 Appendix D Network Model

Figure D.14 Three set occurrences.

1. depositor, which has customer as the owner of the DBTG set, and account as
the member of the DBTG set

2. account branch, which has branch as the owner of the DBTG set, and account
as the member of the DBTG set

The set depositor can be defined as follows:

set name is depositor
owner is customer
member is account

The set account branch can be defined similarly:

set name is account branch
owner is branch
member is account

An instance of the database appears in Figure D.16. There are six set occur-
rences listed next: three of set depositor (sets 1, 2, and 3), and three of set account
branch (sets 4, 5, and 6).

1. Owner is customer record Hayes, with a single member account record A-102.

2. Owner is customer record Johnson, with two member account records A-101
and A-201.

3. Owner is customer record Turner, with three member account records A-305,
A-402, and A-408.

Figure D.15 Data-structure diagram.

D.3 The DBTG CODASYL Model 11

Figure D.16 Six set occurrences.

4. Owner is branch record Perryridge, with three member account records
A-102, A-201, and A-402.

5. Owner is branch record Downtown, with one member account record A-101.

6. Owner is branch record Round Hill, with two member account records A-305
and A-408.

Note that an account record (which is, in this case, a member of both DBTG sets)
cannot appear in more than one set occurrence of one individual set type. This
restriction exists because an account can belong to exactly one customer, and can
be associated with only one bank branch. An account, however, can appear in two
set occurrences of different set types. For example, account A-102 is a member of
set occurrence 1 of type depositor, and is also a member of set occurrence 4 of type
account branch.

The member records of a set occurrence can be ordered in a variety of ways.
We shall discuss this issue in greater detail in Section D.6.6, after we describe the
mechanism for inserting and deleting records into a set occurrence.

The DBTG model allows more complicated set structures, in which one single
owner type and several different member types exist. For example, suppose
that we have two types of bank accounts: checking and saving. Then, the data-
structure diagram for the customer-account schema is as depicted in Figure D.17a.
Such a schema is similar in nature to the E-R diagram of Figure D.17b.

The DBTG model also provides for the definition of a special kind of set,
referred to as a singular set (or system set). In such a set, the owner is a system-
defined, unique record type, called system, with no fields. Such a set has a single
set occurrence. This scheme is useful in searching records of one particular type,
as we shall discuss in Section D.4.4.

D.3.3 Repeating Groups

The DBTG model provides a mechanism for a field (or collection of fields) to have
a set of values, rather than one single value. For example, suppose that a customer

12 Appendix D Network Model

Figure D.17 Data-structure and E-R diagram.

has several addresses. In this case, the customer record type will have the (street,
city) pair of fields defined as a repeating group. Thus, the customer record for
Turner may be as in Figure D.18.

The repeating-groups construct provides another way to represent the notion
of weak entities in the E-R model. As an illustration, let us partition the entity set
customer into two sets:

1. customer, with descriptive attribute customer name

2. customer address, with descriptive attributes customer street and customer city

The customer address entity set is a weak entity set, since it depends on the strong
entity set customer.

The E-R diagram describing this schema appears in Figure D.19a. If we do not
use the repeating-group construct in the schema, then the corresponding data-

Figure D.18 A customer record.

D.4 DBTG Data-Retrieval Facility 13

Figure D.19 E-R and data-structure diagram.

structure diagram is the one in Figure D.19b. If, on the other hand, we do use
the repeating-group construct, then the data-structure diagram consists of simply
one single record type customer.

D.4 DBTG Data-Retrieval Facility

The data-manipulation language of the DBTG proposal consists of commands
that are embedded in a host language. In this section, we present several of
these commands, and use Pascal as the host language. To illustrate the various
concepts, we use the example of the customer-account-branch schema discussed
in Section D.3.2. In particular, the data-structure diagram corresponding to our
schema is the one depicted in Figure D.15, and the database sample is the one
shown in Figure D.16.

D.4.1 Program Work Area

Each application program executing in the system consists of a sequence of state-
ments; some are Pascal statements, whereas others are DBTG command state-
ments. Each such program is called a run unit. These statements access and
manipulate database items, as well as locally declared variables. For each such
application program, the system maintains a program work area (referred to in the
DBTG model as a user work area), which is a buffer storage area that contains the
following variables:

• Record templates: A record (in the Pascal sense) for each record type accessed
by the application program

14 Appendix D Network Model

• Currency pointers: A set of pointers to various database records most recently
accessed by the application program; currency pointers are of the following
types:

◦ Current of record type: One currency pointer for each record type T
referenced by the application program; each pointer contains the address
(location on disk) of the most recently accessed record of type T

◦ Current of set type: One currency pointer for each set type S referenced
by the application program; each pointer contains the address of the most
recently accessed record of that set type; note that this pointer may point
to a record of either the owner or member type, depending on whether an
owner or a member was most recently accessed

◦ Current of run unit: One single currency pointer, containing the address of
the record (regardless of type) most recently accessed by the application
program

• Status flags: A set of variables used by the system to communicate to the
application program the outcome of the last operation applied to the database;
the most frequently used one is DB-status, set to 0 if the most recent operation
succeeded and otherwise set to an error code.

The additional status variables (DB-set-name, DB-record-name, and DB-
data-name) are set when the final operation fails, to help identify the source
of the difficulty.

We emphasize that a particular program work area is associated with precisely
one application program.

For our customer-account-branch database example, a particular program
work area contains the following:

• Templates: three record types:

◦ customer record

◦ account record

◦ branch record

• Currency pointers: six pointers:

◦ Three currency pointers for record types: one to the most recently accessed
customer record, one to the most recently accessed account record, and one
to the most recently accessed branch record

◦ Two currency pointers for set types: one to the most recently accessed
record in an occurrence of the set depositor, and one to the most recently
accessed record in an occurrence of the set account branch

◦ One current of run-unit pointer

• Status flags: the four status variables that we defined previously.

D.4 DBTG Data-Retrieval Facility 15

Figure D.20 Program work area.

D.4.2 The Find and Get Commands

The two most frequently used DBTG commands are

• find, which locates a record in the database and sets the appropriate currency
pointers

• get, which copies the record to which the current of run unit points from the
database to the appropriate program work area template

Let us illustrate the general effect that the find and get statements have on the
program work area. Consider the sample database of Figure D.16. Suppose that
the current state of the program work area of a particular application program is
as shown in Figure D.20. Further suppose that a find command is issued to locate
the customer record belonging to Johnson. This command causes the following
changes to occur in the state of the program work area:

• The current of record type customer now points to the record of Johnson.

• The current of set type depositor now points to the record of Johnson.

• The current of run unit now points to customer record Johnson.

16 Appendix D Network Model

If the get command is executed, the result is that the information pertaining
to Johnson is loaded into the customer record template.

D.4.3 Access of Individual Records

The find command has a number of forms. We shall present only a few of these
commands in this appendix. There are two different find commands for locating
individual records in the database. The simplest command has the form

find any <record type> using <record-field>

This command locates a record of type <record type> whose <record-field>

value is the same as the value of <record-field> in the <record type> template in
the program work area. Once the system finds such a record, it sets the following
currency pointers to point to that record:

• The current of run-unit pointer

• The record-type currency pointer for <record type>

• The set currency pointer for every set in which <record type> is either the
owner type or member type.

As an illustration, let us construct the DBTG query that prints the street address
of Hayes:

customer.customer name := "Hayes";
find any customer using customer name;
get customer;
print (customer.customer street);

There may be several records with the specified value. The find command
locates the first of these in some prespecified ordering (see Section D.6.6). To locate
other database records that match the <record-field>, we use the command

find duplicate <record type> using <record-field>

which locates (according to a system-dependent ordering) the next record that
matches the <record-field>. The currency pointers noted previously are affected.

As an example, let us construct the DBTG query that prints the names of all
the customers who live in Harrison:

D.4 DBTG Data-Retrieval Facility 17

customer.customer city := "Harrison";
find any customer using customer city;
while DB-status = 0 do

begin
get customer;
print (customer.customer name);
find duplicate customer using customer city;

end;

We have enclosed part of the query in a while loop, because we do not know in
advance how many such customers exist. We exit from the loop when DB-status
�= 0. This action indicates that the most recent find duplicate operation failed,
implying that we have exhausted all customers residing in Harrison.

D.4.4 Access of Records within a Set

The previous find commands located any database record of type <record type>.
In this subsection, we concentrate on find commands that locate records in a
particular DBTG set. The set in question is the one that is pointed to by the <set-
type> currency pointer. There are three different types of commands. The basic
find command is

find first <record type> within <set-type>

which locates the first member record of type <record type> belonging to the
current occurrence of <set-type>. The various ways in which a set can be ordered
are discussed in Section D.6.6.

To step through the other members of type <record type> belonging to the
set occurrence, we repeatedly execute the following command:

find next <record type> within <set-type>

The find first and find next commands need to specify the record type since a
DBTG set can have members of different record types.

As an illustration of how these commands execute, let us construct the DBTG
query that prints the total balance of all accounts belonging to Hayes.

18 Appendix D Network Model

sum := 0;
customer.customer name := "Hayes";
find any customer using customer name;
find first account within depositor;
while DB-status = 0 do

begin
get account;
sum := sum + account.balance;
find next account within depositor;

end
print (sum);

Note that we exit from the while loop and print out the value of sum only when
the DB-status is set to a value not equal to zero. Such a nonzero value results after
the find next operation fails, indicating that we have exhausted all the members
of a set occurrence of type depositor, whose owner is the record of customer Hayes.

The previous find commands locate member records within a particular DBTG
set occurrence. There are many circumstances, however, under which it may be
necessary to locate the owner of a particular DBTG set occurrence. We can do so
through the following command:

find owner within <set-type>

The set in question is <set-type>. Note that, for each set occurrence, there exists
precisely one single owner.

As an illustration, consider the DBTG query that prints all the customers of
the Perryridge branch:

branch.branch name := "Perryridge";
find any branch using branch name;
find first account within account branch;
while DB-status = 0 do

begin
find owner within depositor;
get customer;
print (customer.customer name);
find next account within account branch;

end

Note that, if a customer has several accounts in the Perryridge branch, then his
name will be printed several times.

As a final example, consider the DBTG query that prints the names of all the
customers of the bank. Such a query cannot be formed easily with the mechanism
that we have described thus far, since no one single set has all the customer records

D.4 DBTG Data-Retrieval Facility 19

as its members. The remedy is to define a singular set (Section D.3.2) consisting
of members of type customer. This set is defined as follows:

set name is AllCust
owner is system
member is customer

Once such a set has been defined, we can form our query as follows:

find first customer within AllCust;
while DB-status = 0 do

begin
get customer;
print (customer.customer name);
find next customer within AllCust;

end

D.4.5 Predicates

The find statements that we have described allow the value of a field in one of the
record templates to be matched with the corresponding field in the appropriate
database records. Although, with this technique, we can formulate a variety of
DBTG queries in a convenient and concise way, there are many queries in which
a field value must be matched with a specified range of values, rather than to
only one. To accomplish this match, we need to get the appropriate records into
memory, to examine each one separately for a match, and thus to determine
whether each is the target of our find statement.

As an illustration, consider the DBTG query to print the total number of
accounts in the Perryridge branch with a balance greater than $10,000:

count := 0;
branch.branch name := "Perryridge";
find any branch using branch name;
find first account within account branch;
while DB-status = 0 do

begin
get account;
if account.balance > 10000 then count := count + 1;
find next account within account branch;

end
print (count);

20 Appendix D Network Model

D.5 DBTG Update Facility

In Section D.4, we described the various DBTG commands for querying the
database. In this section, we describe the mechanisms available for updating in-
formation in the database. They include the creation of new records and deletion
of old records, as well as the modification of the content of existing records.

D.5.1 Creation of New Records

To create a new record of type <record type>, we insert the appropriate values
in the corresponding <record type> template. We then add this new record to
the database by executing

store <record type>

Note that this technique allows us to create and add new records only one at a
time.

As an illustration, consider the DBTG program for adding a new customer,
Jackson, to the database:

customer.customer name := "Jackson";
customer.customer street := "Old Road";
customer.customer city := "Richardson";
store customer;

Note that, if a new record is created that must belong to a particular DBTG set
occurrence (for example, a new account), then, in addition to the store operation,
we need a mechanism for inserting records into set occurrences. This mechanism
is described in Section D.6.

D.5.2 Modification of an Existing Record

To modify an existing record of type <record type>, we must find that record
in the database, get that record into memory, and then change the desired fields
in the template of <record type>. Then, we reflect the changes to the record to
which the currency pointer of <record type> points by executing

modify <record type>

The DBTG model requires that the find command executed prior to modifica-
tion of a record must have the additional clause for update, so that the system is
aware that a record is to be modified. We are not required to update a record that
we “find for update.” However, we cannot update a record unless it is found for
update.

As an example, consider the DBTG program to change the street address of
Turner to North Loop.

D.5 DBTG Update Facility 21

customer.customer name := "Turner";
find for update any customer using customer name;
get customer;
customer.customer street := "North Loop";
modify customer;

D.5.3 Deletion of a Record

To delete an existing record of type <record type>, we must make the currency
pointer of that type point to the record in the database to be deleted. Then, we
can delete that record by executing

erase <record type>

Note that, as in the case of record modification, the find command must have the
attribute for update attached to it.

As an illustration, consider the DBTG program to delete account A-402 be-
longing to Turner:

finish := false;
customer.customer name := "Turner";
find any customer using customer name;
find for update first account within depositor;
while DB-status = 0 and not finish do

begin
get account;
if account.account number = "A-402" then

begin
erase account;
finish := true;

end
else find for update next account within depositor;

end

We can delete an entire set occurrence by finding the owner of the set—say,
a record of type <record type>—and executing

erase all <record type>

This command will delete the owner of the set, as well as all the set’s members.
If a member of the set is an owner of another set, the members of that second set
also will be deleted. Thus, the erase all operation is recursive.

Consider the DBTG program to delete customer “Johnson” and all her ac-
counts:

22 Appendix D Network Model

customer.customer name := "Johnson";
find for update any customer using customer name;
erase all customer;

A natural question is what happens when we wish to delete a record that is
an owner of a set, but we do not specify all in the erase statement. In this case,
several possibilities exist:

• Delete only that record.

• Delete the record and all its members.

• Do not delete any records.

It turns out that each of these options can be specified in the DBTG model. We
discuss them in Section D.6.

D.6 DBTG Set-Processing Facility

We saw in Section D.5 that the store and erase statements are closely tied to the
set-processing facility. In particular, a mechanism must be provided for inserting
records into and removing records from a particular set occurrence. In the case
of deletion, we have a number of different options to consider if the record to be
deleted is the owner of a set.

D.6.1 The connect Statement

To insert a new record of type <record type> into a particular occurrence of <set-
type>, we must first insert the record into the database (if it is not already there).
Then, we need to set the currency pointers of <record type> and <set-type> to
point to the appropriate record and set occurrence. Then, we can insert the new
record into the set by executing

connect <record type> to <set-type>

A new record can be inserted as follows:

1. Create a new record of type <record type> (see Section D.5.1). This action
sets the appropriate <record type> currency pointer.

2. Find the appropriate owner of the set <set-type>. This automatically sets
the appropriate currency pointer of <set-type>.

3. Insert the new record into the set oocurrence by executing the connect
statement.

D.6 DBTG Set-Processing Facility 23

As an illustration, consider the DBTG query for creating new account A-267,
which belongs to Jackson:

account.account number := "A-267";
account.balance := 0;
store account;
customer.customer name := "Jackson";
find any customer using customer name;
connect account to depositor;

D.6.2 The disconnect Statement

To remove a record of type <record type> from a set occurrence of type <set-
type>, we need to set the currency pointer of <record type> and <set-type>

to point to the appropriate record and set occurrence. Then, we can remove the
record from the set by executing

disconnect <record type> from <set-type>

Note that this operation only removes a record from a set; it does not delete
that record from the database. If deletion is desired, we can delete the record by
executing erase <record type>.

Assume that we wish to close account A-201. To do so, we need to delete
the relationship between account A-201 and its customer. However, we need to
keep the record of account A-201 in the database for the bank’s internal archives.
The following program shows how to perform these two actions within the DBTG
model. This program will remove account A-201 from the set occurrence of type
depositor. The account will still be accessible in the database for record-keeping
purposes.

account.account number := "A-201";
find for update any account using account number;
find owner within depositor;
disconnect account from depositor;

D.6.3 The reconnect Statement

To move a record of type <record type> from one set occurrence to another set
occurrence of type <set-type>, we need to find the appropriate record and the
owner of the set occurrences to which that record is to be moved. Then, we can
move the record by executing

reconnect <record type> to <set-type>

Consider the DBTG program to move all accounts of Hayes that are currently
at the Perryridge branch to the Downtown branch:

24 Appendix D Network Model

customer.customer name := "Hayes";
find any customer using customer name;
find first account within depositor;
while DB-status = 0 do

begin
find owner within account branch;
get branch;
if branch.branch name = "Perryridge" then

begin
branch.branch name := "Downtown";
find any branch using branch name;
reconnect account to account branch;

end
find next account within depositor;

end

D.6.4 Insertion and Retention of Records

When a new set is defined, we must specify how member records are to be
inserted. In addition, we must specify the conditions under which a record must
be retained in the set occurrence in which it was initially inserted.

D.6.4.1 Set Insertion

A newly created member record of type <record type> of a set type <set-type>

can be added to a set occurrence either explicitly (manually) or implicitly (auto-
matically). This distinction is specified at set-definition time via

insertion is <insert mode>

where <insert mode> can take one of two forms:

• Manual. We can insert the new record into the set manually (explicitly) by
executing

connect <record type> to <set-type>

• Automatic. The new record is inserted into the set automatically (implicitly)
when it is created—that is, when we execute

store <record type>

In either case, just prior to insertion, the <set-type> currency pointer must point
to the set occurrence into which the insertion is to be made.

As an illustration, consider the creation of account A-535 that belongs to
Hayes and is at the Downtown branch. Suppose that set insertion is manual for

D.6 DBTG Set-Processing Facility 25

set type depositor and is automatic for set type account branch. The appropriate
DBTG program is

branch.branch name := "Downtown";
find any branch using branch name;
account.account number := "A-535";
account.balance := 0;
store account;
customer.customer name := "Hayes";
find any customer using customer name;
connect account to depositor;

D.6.4.2 Set Retention

There are various restrictions on how and when a member record can be removed
from a set occurrence into which it has been inserted previously. These restrictions
are specified at set-definition time via

retention is <retention-mode>

where <retention-mode> can take one of the three forms:

1. Fixed. Once a member record has been inserted into a particular set oc-
currence, it cannot be removed from that set. If retention is fixed, then, to
reconnect a record to another set, we must erase that record, re-create it, and
then insert it into the new set occurrence.

2. Mandatory. Once a member record has been inserted into a particular set
occurrence, it can be reconnected to another set occurrence of only type
<set-type>. It can neither be disconnected nor be reconnected to a set of
another type.

3. Optional. No restrictions are placed on how and when a member record can
be removed from a set occurrence. A member record can be reconnected,
disconnected, and connected at will.

The decision of which option to choose depends on the application. For
example, in our banking database, the optional retention mode is appropriate for
the depositor set because we may have defunct accounts not owned by anybody.
On the other hand, the mandatory retention mode is appropriate for the account
branch set, since an account has to belong to some branch.

D.6.5 Deletion

When a record is deleted (erased) and that record is the owner of set occur-
rence of type <set-type>, the best way of handling this deletion depends on the
specification of the set retention of <set-type>.

26 Appendix D Network Model

• If the retention status is optional, then the record will be deleted and every
member of the set that it owns will be disconnected. These records, however,
will remain in the database.

• If the retention status is fixed, then the record and all its owned members will
be deleted. This action occurs because the fixed status means that a member
record cannot be removed from the set occurrence without being deleted.

• If the retention status is mandatory, then the record cannot be erased, because
the mandatory status indicates that a member record must belong to a set
occurrence. The record cannot be disconnected from that set.

D.6.6 Set Ordering

The members of a set occurrence of type <set-type> can be ordered in a variety
of ways. These orders are specified by a programmer when the set is defined via

order is <order-mode>

where <order-mode> can be any of the following:

• first. When a new record is added to a set, it is inserted in the first position.
Thus, the set is in reverse chronological order.

• last. When a new record is added to a set, it is inserted in the final position.
Thus, the set is in chronological order.

• next. Suppose that the currency pointer of <set-type> points to record X. If
X is a member type, then, when a new record is added to the set, that record
is inserted in the next position following X. If X is an owner type, then, when
a new record is added, that record is inserted in the first position.

• prior. Suppose that the currency pointer of <set-type> points to record X. If
X is a member type, then, when a new record is added to the set, that record
is inserted in the position just prior to X. If X is an owner type, then, when a
new record is added, that record is inserted in the last position.

• system default. When a new record is added to a set, it is inserted in an
arbitrary position determined by the system.

• sorted. When a new record is added to a set, it is inserted in a position that
ensures that the set will remain sorted. The sorting order is specified by a
particular key value when a programmer defines the set. The programmer
must specify whether members are ordered in ascending or descending order
relative to that key.

Consider again Figure D.16, where the set occurrence of type depositor with
the owner-record customer Turner and member-record accounts A-305, A-402,
and A-408 are ordered as indicated. Suppose that we add a new account A-125 to
that set. For each <order-mode> option, the new set ordering is as follows:

D.7 Mapping of Networks to Files 27

• first: {A-125, A-305, A-402, A-408}
• last: {A-305, A-402, A-408, A-125}
• next: Suppose that the currency pointer points to record “Turner”; then the

new set order is {A-125, A-305, A-402, A-408}
• prior: Suppose that the currency pointer points to record A-402; then the new

set order is {A-305, A-125, A-402, A-408}
• system default: Any arbitrary order is acceptable; thus, {A-305, A-402, A-125,

A-408} is a valid set ordering

• sorted: The set must be ordered in ascending order with account number
being the key; thus, the ordering must be {A-125, A-305, A-402, A-408}

D.7 Mapping of Networks to Files

A network database consists of records and links. We implement links by adding
pointer fields to records that are associated via a link. Each record must have one
pointer field for each link with which it is associated. As an illustration, return
to the data-structure diagram of Figure D.2b, and to the sample database corre-
sponding to it in Figure D.4. Figure D.21 shows the sample instance with pointer
fields to represent the links. Each line in Figure D.4 is replaced in Figure D.21 by
two pointers.

Since the depositor link is many to many, each record can be associated with
an arbitrary number of records. Thus, it is not possible to limit the number of
pointer fields in a record. Therefore, even if a record itself is of fixed length, the
actual record used in the physical implementation is a variable-length record.

Figure D.21 Implementation of instance of Figure D.4.

28 Appendix D Network Model

These complications led the architects of the DBTG model to restrict links to
be either one to one or one to many. We shall see that, under this restriction, the
number of pointers needed is reduced, and it is possible to retain fixed-length
records. To illustrate the implementation of the DBTG model, we assume that the
depositor link is one to many and is represented by the DBTG set depositor as defined
here:

set name is depositor
owner is customer
member is account

A sample database corresponding to this schema is in Figure D.1.
An account record can be associated with only one customer record. Thus, we

need only one pointer in the account record to represent the depositor relationship.
However, a customer record can be associated with many account records. Instead
of using multiple pointers in the customer record, we can use a ring structure to
represent the entire occurrence of the DBTG set depositor. In a ring structure, the
records of both the owner and member types for a set occurrence are organized
into a circular list. There is one circular list for each set occurrence (that is, for
each record of the owner type).

Figure D.22 shows the ring structure for the example of Figure D.1. Let us
examine the DBTG-set occurrence owned by the “Johnson” record. There are two
member-type (account) records. Instead of containing one pointer to each member
record, the owner (Johnson) record contains a pointer to only the first member
record (account A-101). This member record contains a pointer to the next member
record (account A-201). Since the record for account A-201 is the final member
record, it contains a pointer to the owner record.

Figure D.22 Ring structure for instance of Figure D.1.

D.7 Mapping of Networks to Files 29

If we represent DBTG sets by using the ring structure, a record contains exactly
one pointer for each DBTG set in which it is involved, regardless of whether
it is of the owner type or member type. Thus, we can represent fixed-length
records within a ring structure without resorting to variable-length records. This
structural simplicity is offset by added complexity in accessing records within a
set. To find a particular member record of a set occurrence, we must traverse the
pointer chain to navigate from the owner record to the desired member record.

The ring-structure implementation strategy for the DBTG model provided the
basis for the DBTG data retrieval facility. Recall these statements:

• find first <record type> within <set type>

• find next <record type> within <set type>

The terms first and next in these statements refer to the ordering of records given
by the ring-structure pointers. Thus, once the owner has been found, it is easy to
do a find first, since all the system must do is to follow a pointer. Similarly, all the
system must do in response to a find next is to follow the ring-structure pointer.

The find owner statement of the DBTG query language can be supported
efficiently by a modified form of the ring structure in which every member-
type record contains a second pointer, which points to the owner record. This
structure appears in Figure D.23. Under this implementation strategy, a record
has one pointer for each DBTG set for which it is of the owner type, and two
pointers (a next-member pointer and an owner pointer) for each DBTG set for which
it is of the member type. This strategy allows efficient execution of a find owner
statement. Under our earlier strategy, it is necessary to traverse the ring structure
until we find the owner.

Figure D.23 Ring structure of Figure D.22 with owner pointers.

30 Appendix D Network Model

Figure D.24 Clustered record placement for instance of Figure D.1.

The physical placement of records is important for an efficient implementation
of a network database, as it is for a relational database.

The statements find first, find next, and find owner are designed for process-
ing a sequence of records within a particular DBTG-set occurrence. Since these
statements are the ones most frequently used in a DBTG query, it is desirable to
store records of a DBTG-set occurrence physically close to one another on disk.
To specify the strategy that the system is to use to store a DBTG set, we add a
placement clause to the definition of the member record type.

Consider the DBTG set depositor and the example shown in Figure D.1. If we
add the clause

placement clustered via depositor

to the definition of record type account (the member-record type of the depositor
DBTG set), the system will store members of each set occurrence close to one
another physically on disk. To the extent possible, members of a set occurrence
will be stored in the same block. Figure D.24 illustrates this storage strategy for
the instance of Figure D.1.

The clustered placement strategy does not require the owner record of a DBTG
set to be stored near the set’s members. Thus, each record type can be stored in
a distinct file. If we are willing to store more than one record type in a file, we
can specify that owner and member records are to be stored close to one another
physically on disk. We do so by adding the clause near owner to the placement
clause. For our example of the depositor set, we add the clause

placement clustered via depositor near owner

to the definition of the record type account. Figure D.25 illustrates this storage
strategy. By storing member records in the same block as the owner, we reduce

D.8 Summary 31

Figure D.25 Record placement using clustering with the near owner option.

the number of block accesses required to read an entire set occurrence. This form
of storage is analogous to the clustering file structure that we proposed earlier for
the relational model. This similarity is not surprising, since queries that require
traversal of DBTG-set occurrences under the network model require natural joins
under the relational model.

D.8 Summary

A network database consists of a collection of records that are connected to
each other through links. A link is an association between precisely two records.
Records are organized in the form of an arbitrary graph.

A data-structure diagram is a schema for a network database. Such a dia-
gram consists of two basic components: boxes, which correspond to record types,
and lines, which correspond to links. A data-structure diagram serves the same
purpose as an E-R diagram; namely, it specifies the overall logical structure of the
database. For every E-R diagram, there is a corresponding data-structure diagram.

In the late 1960s, several commercial database systems based on the network
model emerged. These systems were studied extensively by the Database Task
Group (DBTG) within the CODASYL group. In the DBTG model, only many-to-one
links can be used. Many-to-many links are disallowed to simplify the implemen-
tation. One-to-one links are represented as many-to-one links. A data-structure
diagram consisting of two record types that are linked together is referred to, in
the DBTG model, as a DBTG set. Each DBTG set has one record type designated as
the owner of the set, and another record type designated as a member of the set. A
DBTG set can have any number of set occurrences.

The data-manipulation language of the DBTG model consists of a number of
commands embedded in a host language. These commands access and manipu-

32 Appendix D Network Model

late database records and links, as well as locally declared variables. For each such
application program, the system maintains a program work area, which contains
record templates, currency pointers, and status flags.

The two most frequently used DBTG commands are find and get. There are
many different formats for the find command. The main distinction among them is
whether any records in the database, or records within a particular set occurrence,
are to be located.

There are various mechanisms available in the DBTG model for updating in-
formation in the database. They allow the creation and deletion of new records
(via the store and erase operations), as well as the modification (via the modify
operation) of the content of existing records. The connect, disconnect, and recon-
nect operations provide for inserting records into and removing records from a
particular set occurrence.

When a new set is defined, we must specify how member records are to be
inserted, and under what conditions they can be moved from one set occurrence
to another. A newly created member record can be added to a set occurrence either
explicitly or implicitly. This distinction is specified at set-definition time via the
insertion is statement with the manual and automatic insert-mode options.

There are various restrictions on how and when a member record can be
removed from a set occurrence into which it has been inserted previously. These
restrictions are specified at set-definition time via the retention is statement with
the fixed, mandatory, and optional retention-mode options.

Implementation techniques for the DBTG model exploit the restrictions of the
model to allow the physical representation of DBTG sets without the need for
variable-length records. A DBTG set is represented by one ring structure for each
occurrence.

Exercises

D.1 Transform the E-R diagram of Figure D.26 into a data-structure diagram
assuming that the data model is

a. Network

b. DBTG

D.2 Construct a sample database for the data-structure diagram of Exercise
D.1, with 10 students and three different classes.

D.3 Show the set of variables that exists in a program work area for the data-
structure diagram corresponding to the E-R diagram of Figure D.26.

D.4 Suppose that the attribute grade is added to the relationship enroll of Fig-
ure D.26. Show the corresponding data-structure diagram, assuming the
network and DBTG model.

D.5 Transform the E-R diagram of Figure D.27 into a data-structure diagram.

Exercises 33

Figure D.26 Class enrollment E-R diagram.

D.6 Define the following terms:

a. DBTG set

b. Owner of a set

c. Member of a set

d. Set occurrence

D.7 Explain why a member record of a set occurrence cannot participate in
more than one occurrence of the set at any point.

D.8 Suppose that the find owner statement is not provided as part of the DBTG
query language. Is it still possible to answer the set of queries? Explain
your answer.

D.9 The DBTG find statement does not allow specification of predicates.

a. Discuss the drawbacks of this limitation.

b. Suggest a modification to the language to overcome this difficulty.

D.10 Transform the E-R diagram of Figure D.28 into a data-structure diagram,
assuming the DBTG model.

D.11 For the data-structure diagram corresponding to the E-R diagram of Fig-
ure D.28, construct the following DBTG queries:

a. Find the total number of people whose car was involved in an
accident in 1993.

b. Find the total number of accidents in which the cars belonging to
“John Smith” were involved.

Figure D.27 Parent–child E-R diagram.

34 Appendix D Network Model

Figure D.28 Car-insurance E-R diagram.

c. Add a new customer to the database.

d. Delete the car “Mazda” belonging to “John Smith.”

e. Add a new accident record for the Toyota belonging to “Jones.”

D.12 What is a system-set? Why was it introduced in the DBTG model?

D.13 Explain the concept of repeating groups. Is it necessary to have this construct
available in the network model? Explain your answer.

D.14 Explain the differences among the connect, disconnect, and reconnect
statements.

D.15 Explain the differences among the manual and automatic option in set
insertion.

D.16 Explain the difference between the fixed, mandatory, and optional options
in set retention.

D.17 What are the appropriate set-insertion and set-retention options for the
data-structure diagram corresponding to Figure D.28?

D.18 Give a network data-structure diagram for the following relational data-
base:

employee (person name, street, city)
works (person name, company name, salary)
company (company name, city)
manages (person name, manager name)

D.19 Construct the following DBTG queries for the data-structure diagram that
you obtained as a solution to Exercise D.18:

a. Find the names of all employees who work for First Bank Corpora-
tion.

b. Find the names and cities of residence of all employees who work
for First Bank Corporation.

c. Find the names, streets, and cities of residence of all employees who
work for First Bank Corporation and earn more than $10,000.

Bibliographical Notes 35

d. Find all employees who live in the city where the company they
work for is located.

e. Find all employees who live in the same city and on the same street
as their managers.

f. Find all employees in the database who do not work for First Bank
Corporation.

g. Find all employees in the database who earn more than every em-
ployee of Small Bank Corporation.

h. Assume that the companies can be located in several cities. Find all
companies located in every city in which Small Bank Corporation
is located.

i. Find all employees who earn more than the average salary of em-
ployees who work in their companies.

j. Find the company that employs the most people.

k. Find the company that has the smallest payroll.

l. Find those companies that pay higher salaries, on average, than the
average salary at First Bank Corporation.

m. Modify the database such that Jones now lives in Newtown.

n. Give all employees of First Bank Corporation a 10 percent raise.

o. Give all managers in the database a 10 percent raise.

p. Give all managers in the database a 10 percent raise, unless the
resulting salary would be greater than $100,000; if it would be, give
only a 3 percent raise.

q. Delete all employees of Small Bank Corporation.

D.20 Give a network data-structure diagram for the following relational data-
base:

course (course name, room, instructor)
enrollment (course name, student name, grade)

Also give an example implementation of an instance of this database.

Bibliographical Notes

In the late 1960s, several commercial database systems emerged that relied on the
network model. The most influential of these systems were the Integrated Data
Store (IDS) system, which was developed in General Electric under the guidance of
Charles Bachman [Bachman and Williams 1964], and Associate PL/I (APL) [Dodd

36 Appendix D Network Model

1969]. These and other systems were studied extensively by the DBTG within the
CODASYL group that earlier set the standard for COBOL. This study resulted in
the first database standard specification, called the CODASYL DBTG 1971 report
[CODASYL 1971]. Since then, a number of changes have been suggested to that
report, including [CODASYL 1978].

The concept of data-structure diagrams was introduced by Bachman [1969].
The original presentation of data-structure diagrams used arrows to point from
owner to member record types. This presentation corresponds to the physical
pointer implementation. We have used the arrows pointing from member to
owner record types to be consistent with our presentation of the E-R model. The
same convention is used by Ullman [1988].

Implementation and design issues concerning the DBTG model are discussed
by Schenk [1974], Gerritsen [1975], Dahl and Bubenko [1982], and Whang et al.
[1982]. Discussions concerning the view level (the external level) of DBTG are
offered by Zaniolo [1979a, 1979b] and Clemons [1978, 1979]. A high-level query
language for the network model is proposed by Bradley [1978]. Translation of
network queries to relational queries is discussed by Katz and Wong [1982].
Taylor and Frank [1976] is a survey paper on the DBTG model.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

