
Feature analysis of selected database recovery techniques

by BHARAT BHARGAVA and LESZEK LILIEN
University of Pittsburgh
Pittsburgh, Pennsylvania

ABSTRACT

Database recovery techniques in a real-time environment for
so called single-division databases are investigated. A classi­
fication of database recovery goals and a classification of data­
base system crashes is presented. It is shown that the (best)
recovery goal is a function of a crash category against which
the system is to be protected. In particular, for the broadest
category of hidden hard crashes an actual past state is an
attainable recovery goal. It is described how to reach this goal
using a generic recovery technique, based on an idea of a
database recovery block. The specific recovery techniques im­
plementing the generic technique are described. Then the
representation of each specific recovery technique in terms of
atomic "primitives" is demonstrated. The claim is made that
this "divide-and-conquer" approach can facilitate the analysis
of the database recovery techniques.

INTRODUCTION

Database technology is one of the most rapidly growing areas
of computer science.10 The technology makes it possible to
reduce data redundancy, as compared to independent file
systems, simultaneously improvingi data availability. But it
also introduces the potential for disaster; the database is now
more vulnerable to destruction through hardware and soft­
ware malfunction. The loss of "quality" in a database,
especially its total destruction, may be considered a threat to
the organization owning the database, because data is one of
its most vulnerable assets. The problems can be further aggra­
vated if a database system is to function in a real-time environ­
ment. This case is investigated in this paper.

To avoid confusion let us indicate the meaning of the words
fault, error and crash (failure) as used here.4 A fault is a
malfunction in a hardware, software, or human component of
the system that may introduce or allow to be introduced er­
rors. These are items of data or pieces of program incorrectly
stored or transmitted within the system or lost altogether. In
due course, an error may cause a crash, which is cessation of
normal, timely operation by all or part of the system, or

*This work was partially supported by the grant GTRS 5680-C-00026 of the
U.S. Department of Transportation.

delivery to the outside world of incorrect data. We interpret
a detection of an error at time t as a crash at time t; the
moment an error is detected, the system must take some
special actions and its normal operation is disrupted. But it is
also possible that some crashes will become manifest directly
and not through detection of errors that cause them. For
example, in the case of a major hardware breakdown the fault
and the crash are simultaneous.

Clearly it is impossible to avoid hardware or software
crashes in any computing system. Thus the only way to protect
a database is through the use of recovery techniques that allow
one to restore the correct database state in the case of partial
or total database destruction.

The steps in the ideal recovery process could be as follows:4

• the fact that the system has crashed is recognized, either
through error detection or directly,

• the type of crash is determined,
• the faults in the system which caused the crash are

identified,
• the extent of the damage is determined, in the database,

programs, system files and elsewhere,
• a method of recovery is selected,
• faulty programs and hardware units are repaired,
• the database is repaired or reloaded, as appropriate,
• restart programs are run which reset the state of the

system, undo and reprocess any incorrectly applied
transactions, and re-open contact with the users, and

• normal processing is resumed.

Many of the above operations are so complex that we do not
know how to implement them. After a crash, hard detective
work must be done to diagnose the original fault. If it is a
hardware problem, some help might be had from diagnostic
software or test equipment. Locating software faults is usually
more difficult. Many of the faults which occur in real-time
systems are transient, depending on particular combination of
events and input data. They may be extremely difficult to
reproduce, and if they are ever traced at all, it is usually as a
result of ingenuity or guesswork by the maintenance pro­
grammer.4 It is not a surprise that such informal diagnostic
methods, let alone correction methods, are far from on-line
implementation. Yet there exist some approximate solutions
to the problems of on-line diagnosis and correction of faults.

543

544 National Computer Conference, 1981

invalid state

valid state

potential past state

actual past state

state immediately
before crash

current
state

Figure 1—The hierarchy of database recovery goals

In the following considerations the notion of a division is
used. We define a division as a logical subset of a database
such that integrity assertions of different division are mutually
disjoint, and the sum of all divisions constitutes the database.
In general, database systems can have more than one division.
If an error is detected in one division, it is possible to carry out
the recovery process for that division alone. While a given
division is under recovery, incoming transactions for other
divisions may continue to be processed. This approach in­
creases system availability but makes the recovery procedures
more complicated.

We are going to refer to a method for increasing reliability
of software system components, which is proposed by Rand­
all.8 Its basic idea is that all procedures are encapsulated in
so-called recovery blocks. Each recovery block comprises a
predicate called "acceptance test" (AT) and a collection of
alternative procedures for accomplishing the same task. On
entry to a recovery block, the primary alternative is tried. If
it succeeds, i.e. passes the AT, a normal block exit follows. If
it fails, all variables are restored to their values on entry to the
recovery block, then the second alternative is tried, etc. (In
general, an acceptance test has a limited ability to detect
errors, so it is possible that erroneous results pass the test.)

After classifying database recovery goals and classifying
database crash categories in the next two sections, we show
that the best attainable database recovery goal is a function of
a crash category. Finally, we present some selected database
recovery techniques and analyze their features.

DATABASE RECOVERY GOALS

Each database recovery technique can be viewed as contain­
ing three phases:

1. backing up to a past state;" this phase names goals of
database recovery, as presented below,

2. restoration of the immediate before-crash state (even if
this state is not known explicitly),

3. reexecution of after-crash database operations.

The hierarchy of the database recovery goals, somewhat
different from the one presented by J.S.M. Verhofstad," in­
cludes (see Figure 1):

1. The current (after-crash) correct database state (this can
be a recovery goal only if the database is completely
protected from crash effects),

2. the correct database state as it was immediately before
crash (what "immediately" means is defined by a single
update operation),

3. the actual past database state, i.e. a snapshot of the
correct database as it was some time ago ("some time
ago" will be defined more clearly by the notion of Data­
base Recovery Block),

4. the potential past database state, i.e., a correct state that
is a combination of actual past states of database di­
visions (these states of database divisions could never
exist at the same time, but each of them did exist at some
time in the past),

5. the valid database state, in which only a proper subset of
database divisions is in a correct state, and

6. the invalid database state, in which all database divisions
are incorrect (for a single-division database this goal is
equivalent to 5).

The goals higher in this hierarchy, i.e., those with smaller
indices, are more difficult to attain than those below. This
interpretation underlies Figure 1.

At first glance it seems that goals 1 through 4 are defined in
the dimension of time while goals 5 and 6—in the dimension
of the database correctness. Our claim that all goals 1 through
6 are really related in one dimension—that of the database
correctness—is based on the following approach: more recent
correct database state is "more correct" than any previous
correct database state.

DATABASE SYSTEM CRASH CATEGORIES

For our purposes we distinguish the following crash cate­
gories:

1. soft crashes, i.e. crashes which do not damage the data­
base contents,3-5

2. hard crashes, i.e. crashes damaging database contents,3,5

which may be divided into
a. overt hard crashes, i.e. crashes that are caused by

instantaneously detectable errors or faults, and in­
stantaneously detected after they occur, and

b. hidden hard crashes, i.e. crashes that are caused by
errors detected only some time after these errors oc­
curred. For example, if an erroneous data item is
written into a database, this crash can remain hidden
for a long time before it is recognized through the
detection of the original error or its consequences.

Feature Analysis of Database Recovery Techniques 545

In real-life situations, very few crashes are hard.5 However
hard crash recovery is very time consuming once it happens.
Clearly, hidden crashes are the most dangerous; as long as
underlying errors are not detected, their effects continue to
contaminate a database.

DATABASE RECOVERY GOAL
AS A FUNCTION OF CRASH CATEGORY

Protecting against all possible types of crashes is in most cases
impractical.3 This implies the importance of a function

recovery goal=/(crash category)

We understand this shorthand notation in the following
way. Given a crash category against which we want to protect
the database, we aim to achieve the best attainable goal for
this crash category. For example, for soft crashes goal 1, which
is the best, can obviously be reached. For hidden hard crashes
only goal 3 can be reached; more precisely, we will show in
this report how to attain the goal 3 and we do not know how
to attain better goals, namely 1 or 2, for this crash category.
In this sense a crash category implies a recovery goal.

Recovery goal 1, the current (after crash) database state, is
attainable for soft crashes. The generic "technique" is just
null.

Recovery goal 2, the immediate before-crash database
state, is attainable only for overt hard crashes. For crashes of
this category we record the database state (e.g., just the old
item value) before each update. If the crash happens during
the update, we simply restore the old item value. This
achieves the required database recovery goal, as a crash is
discovered instantaneously. Specialized techniques for re­
covery goal 2 are not investigated here.

Recovery goal 3, the actual past database state, is attainable
for the much broader category of hidden hard crashes. The
generic recovery technique and its most prominent imple­
mentation approaches are discussed in the next section.

Recovery goal 4, the potential past database state, is not
considered here. It seems to be of value in a multi-division
database, whereas we assume below only a single-division
database.

Recovery goal 5, valid database state, and especially goal 6,
invalid database state, are of no practical value—they leave
the database seriously damaged and completely destroyed,
respectively. Because the proposed mechanism allows us to
maintain at least potential past database state, the valid and
invalid database states should be seen merely as a closure for
the theoretical classification of the database recovery goal
hierarchy.

TECHNIQUES FOR RECOVERY FROM
HIDDEN HARD CRASHES

Generic Technique for Recovery from Hidden Hard Crashes

For the hidden hard crashes, the database is being con­
taminated, from the moment an underlying error occurs to the

Database"
Correct

o /

.
•

A C } ' 1

Aci ' 1

•
•
•

A

A C * ' 2

Aci'2

•
•
•

T

>T1

T.
l

AT

ifH

i-th transaction,

acceptance test of a
transaction,

AC,-'"' - k-th acceptance check
within the j-th alter­
native of T.

i
Figure 2—Database access by a sequence of transactions—"unsafe'

system approach

moment it is detected, through an uncontrolled propagation
of incorrect database entries.

One means of error detection is the use of acceptance
checks (AC). Each transaction can include a number of ac­
ceptance checks. Acceptance checks are predicates on values
of database items and values of variables of the transaction. It
is important to discriminate between acceptance checks (AC)
and the acceptance tests (AT) of a recovery block; the former
can be placed anywhere in the body of the transaction, the
latter are placed only at the exit from the recovery block
implementing this transaction. Acceptance checks are special­
ized error-detection mechanisms (looking for only some types
of errors) that can be used to decrease the time interval be­
tween the error occurrence and the error detection. Accep­
tance tests should be able to detect all kinds of errors, but they
allow errors to remain undetected until the very end of the
currently executed transaction alternative. In general, accep­
tance checks guarding against more specific types of errors
have more diagnostic power. This fact is really not exploited
in our preliminary mode.

546 National Computer Conference, 1981

Database
Correct

DBRB!

DBRB

error-

batabase

<• > access by transaction

•<v ^ access by IA Verifier

DBRB.-th database recovery block
3

IA - integrity assertions on
database

Figure 3—Database access by a sequence of transactions—"safe"
system approach

(process) TV Let the first alternate of Ti include two accep­
tance checks (AC,1'1 and AC2

U) on the database, which give
positive validation of its contents. At some moment the trans­
action Tj starts. The first two acceptance checks positively
validate the database. But the third one (AC/1) finds out that
the database is severely damaged.

The diagnosis is generally impossible. Each acceptance
check verifies database integrity only partially. So the fact that
AC/ 1 answered positively gives us no help—maybe AC/ 1 did
not at all check the integrity constraints that AC/ 1 did. We
know only that a hidden crash has happened, caused by an
error that occurred after the moment Ti has started and be­
fore the moment AC/ 1 of Ti has detected the error. It is
important to point out that even if there are backup copies of
the database in the system, in the case of a hidden hard crash
we have no guarantee that any of these copies is correct.
Therefore we cannot use them for recovery.

The only recovery possible in this case is the total system
abortion, followed by the restart from the point where T, has
started initially. The chances that the crash will not happen
again are based on the chance that the underlying error is
transient or that the transactions are implemented as recovery
blocks.

Let us now present a pessimistic scenario of the "safe"
system operation. We propose a mechanism confining the
database contamination so that a faster recovery is possible
than for the "unsafe" system operation (see Figure 3). The
assumption of crash transience or implementation of trans­
actions according to a recovery block scheme is still essential
here. (Note that not only acceptance checks but also accep­
tance tests are generally not completely effective; the trans­
action results could pass their acceptance test and still be a
source of errors.)

The system components T and AC are as described above,
but new system components have been added. A Database
Recovery Block (DBRB), defined dynamically by time inter­
val, encompasses a number of transactions. A DBRB is cre­
ated in such a way that we are assured of a correct database
state at the entry to this block. Before entering a DBRB other
than the first one, where integrity assertions are true anyway,
the integrity of the database is verified by means of Integrity
Assertion (IA) Verifier. (The efficient organization of the IA
verification is a problem in itself. What one needs is min­
imization of the number of database accesses for purposes of
the verification. We plan to investigate this subject later.)

After the positive IA verification a database logical snap­
shot is made and the new, zth DBRB is initiated. (In the case
of a negative IA verification, the previous snapshot is restored
and processing restarts from that point.) Suppose that AC/ 1

in Tj, which in turn belongs to DBRBZ, discovers that the
database is invalid. Diagnosis is immediate; a hidden crash
has happened, caused by errors that ocurred during the exe­
cution of the current DBRB, i.e. DBRBZ. The following steps
are taken to resume processing:

Let us present two scenarios of database system operation.
We start with a pessimistic scenario for the "unsafe" system
operation (see Figure 2). By definition, the database is initial­
ly in a correct state. The processing starts with the transaction

1. Transactions are not allowed to query the database. All
incoming transactions are queued.

2. The transactions, which are implemented as recovery
blocks, are reconfigured; some permutation of their al­
ternatives is scheduled for execution. This permutation

Feature Analysis of Database Recovery Techniques 547

is different from that of the ones that are marked so far
as trouble-makers and are placed on a suspicion list.
(The suspicion list can be used for an off-line diagnosis
and repair of transactions. The repaired transactions are
removed from the list.)

3. The most recent database snapshot is restored.
4. All transactions that

a. were active at the moment of crash, x»r
b. were completed during the current DBRB before the

moment of crash,
are processed again. All these transactions are notified
of the recovery if necessary.

5. Incoming transactions which were stored during re­
covery are processed.

In the case that errors that happened during a DBRB are not
detected by Integrity Assertion Verifier at the end of this
DBRB, a mechanism to restore earlier snapshots must be
given. The mechanism is not a simple one by any means. If an
error is detected for the ith time on end in the same DBRB
during an attempted recovery, we can

1. try to run the DBRB one more time, assuming error
transience or using one more permutation of transaction
alternatives, or

2. back up to the previous snapshot and thus to the earlier
DBRB.

With / growing, obviously the probability of the latter decision
grows. But optimization of the decision is not easy.

We assume that the extent, the precision, and thus the cost
of IA verification are much higher than those of any accep­
tance check. This relatively high cost is the reason that one
cannot afford IA verification too often. Thus acceptance
checks are still useful as means of earlier, specialized error
detection. The costs of IA verification are nothing extrava­
gant. T. Gibbons advises "It is wise to run a series of checlr
programs on the database, to find all the errors before at­
tempting a restart."4

Comparison of the performances of the "unsafe" and
"safe" approaches under pessimistic circumstances shows the
advantages of the latter. From now on we discuss the "safe"
approach exclusively.

Assumptions for the Analysis of the Generic Technique for
Database Recovery

We analyze the generic database recovery technique under
the following assumptions:

Al. The database functions in a real-time environment.
A2. The database has a single division.
A3. Transactions are implemented accordingly to the re­

covery block scheme.
A4. Database recovery from the hidden hard crashes is

considered.
A5. Integrity Assertion Verifier is completely effective

(i.e. detects all errors). (At first sight this assumption

seems to collide with our view of recovery-block ac­
ceptance tests as not completely effective. But there
are important differences between the two:
1. Integrity assertion verification is performed less of­

ten than acceptance test execution of any trans­
action. Thus integrity assertions can be more de­
tailed and comprehensive with the comparable
overhead.

2. Integrity assertions are for general use, while ac­
ceptance tests are transaction-specific. Thus in­
tegrity assertions can be more thoroughly tested.
Note that the assumption A5 could be discarded by
a modification of our model as proposed above,
namely by including a mechanism for the restora­
tion of earlier snapshots when needed.)

A6. "Recovery" software is completely reliable. (Unlike
the software of transactions, the "recovery" software,
as a standard^ackage, can be thoroughly tested and
made quite reliable.)

Description of Database Recovery Techniques

The generic database recovery technique can be imple­
mented in many ways. Our candidates are:911

1. Complete Database Dump—Before entry to each
DBRB, the whole database is dumped (copied).

2. Incremental Dump—An initial or periodic database
dump creates a basis. Before entering the next DBRB,
all blocks/files updated in the previous DBRB are
copied, i.e. incremental dump is created. This permits
the restoration of the last snapshot, using the complete
database dump, if necessary, and using the results re­
corded on incremental dumps. (Note that incremental
dumps alone would not ensure recovery; blocks/files of
the database rrorcharrged at an"are not recorded on any
incremental dump.)

3. Audit Trail—An audit trail (a log) records sequences of
actions performed by transactions on files/blocks inside
a given DBRB. It can be used to restore the latest snap­
shot. It can also be used to back up particular trans­
actions, which is important when one needs to allow for
abortion of a single transaction.

4. Differential Files—The main file (the frozen database)
stores the latest snapshot, and the differential file is a log
recording all later updates, executed inside of a DBRB.
The merge of the differential file with the main file is
done only after positive verification of the logical data­
base made up by the main and differentiaT files (i.e.
before entering the next DBRB).

5. Backup/Current Versions—Copies blocks/files just be­
fore they are updated for the first time inside a DBRB.
From then on only this copy of block/file is accessed. The
"original" is a backup version used, if necessary, for
database recovery. Using the latest backup copies for
each block/file, the latest snapshot can be reconstructed.

6. Multiple Copies—More than one copy of each block/file
is stored. The different copies are identical except during

548 National Computer Conference, 1981

an update. There are two variants of this technique. The
first uses an odd number of copies and applies "majority
voting" to select the correct data value. Fewer than half
of the copies are ever updated at a time. The other
variant uses only two copies, but each has an "update-in-
progress" flag. A flag set indicates that the associated
copy is under update and thus possibly in an inconsistent
state. Only one copy at a time can be updated. Copies
not under update at a moment of crash are consistent, if
there are no hidden crashes.

7. Careful Replacement—The principle of this technique is
the avoidance of updates "in place." Altered data are
put in a copy of the original. The original is deleted only
after the alteration is complete and has been certified.
Note that two copies exist only during update.

Database Recovery Techniques—
A Qualitative Analysis of Usefulness

Analyzing the potential usefulness of the presented data­
base recovery techniques, we have found out that two of the
techniques, multiple copies and careful replacement, can not
be used for recovery from the hidden hard crashes. The mul­
tiple copies technique can be successfully used to recover from
overt hard crashes or even, using majority voting, for error
detection. But when hidden hard crashes occur, all copies
could be equally contaminated and useless. The careful re­
placement technique deletes the original as soon as the new
copy is certified. By definition, errors causing overt hard
crashes are detected instantaneously and the technique can
protect against them. But if hidden hard crashes occur and the
IA verification is not completely effective (does not detect all
integrity violations), the errors may be detected only some
time after this verification. By then there is no way to restore
the original, which has been deleted immediately after the IA
verification.

Thus for the further analysis we are left with the following
five database recovery techniques: complete database dump,
incremental dump, audit trail, differential files, and backup/
current versions.

Let us now try to answer the question: Which database
recovery techniques could be used in the cases that (1)
DBRB's are relatively short, (2) DBRB's are relatively long?

In the first case, clearly, we can afford undoing the results
of database updates to back up to the most recent snapshot,
so we do not need to prepare extensive physical database
snapshots at the entry to a DBRB. Just logging the updated
item values would suffice. Thus the audit trail technique
seems suitable here.

In the second case, undoing the results of database updates
would take too long. We must record database state (remem­
ber that we assume single-division database) at each DBRB
entrance. The techniques that can be used here include

• complete database dump,
• incremental dump with an initial or periodic complete

database dumps,
• differential files,
• backup/current versions.

Primitives for Database Recovery Techniques

We claim that it is both feasible and useful to present the
database recovery techniques in terms of certain primitive
actions, which we want to consider as atomic elements of the
selected database recovery techniques. The feasibility is
proved by the presentation of the set of these primitives,
which follows.

Our long-term goal is the time-cost comparison of the data­
base recovery techniques. Instead of analyzing each technique
separately, we will analyze each primitive. As each recovery
technique is a sequence of these primitives, the resulting re­
covery technique cost can be easily obtained. This is one of the
aspects of the usefulness of the primitives. Others, we hope,
will include the increased clarity of the description of these
techniques.

Below we define the primitives and later we show how to
construct the selected database recovery techniques out of
these primitives.

In the definitions the notion of a, set of "corresponding"
pages, or of a "generic" page, is used: whenever page B of file
Y was initialized as the copy of page A of file X, we say that
these pages are corresponding or that both pages map into the
same generic page, even if the content of page B, due to its
updates, no longer is identical to the content of page A. In a
sense, a generic page is the generalization, beyond a single
file, of a page version. The function "pg" (as "page"), used in
the figures for the next section, maps any file into the set of
its generic pages. The function "gp[F]" maps a set of generic
pages into the corresponding pages of a file F. (Note that the
inverse of pg is not a function.)

The primitives are as follows:

C/DUMP(X)—Make complete database dump, and call it
X.

COPY(Y,DB,X)— Copy all distinguished, i.e. with their
IDs in X, pages of the database into the file Y (if a page has
two versions in Y—delete the old one).

ERASE(X)— Erase block/file X.
HALT—Halt normal database processing after trans­

actions currently writing into database write their results com­
pletely. This primitive ends a DBRB.

IAITEST—Test original database consistency, using IA
Verifier.

IIHALT—Halt normal database processing immediately
upon detection of an error by an acceptance check. This prim­
itive initiates restart of the current DBRB unconditionally, so
we need not wait for writing transactions as in HALT.

LOGIIAITEST(X)—Test, using the IA Verifier, the consis­
tency of the current logical database. The current logical data­
base consists of the most current values of database items that
are stored in the database or in the block/file X. This corre­
sponds to a logical merge of X with the database followed by
IA/TEST.

MERGEIparameter(DB,X)—There are two variants:
1. MERGEIB(DB,X)— Merge the database with the log X

backwards (i.e. use the oldest recorded values of data of
X to restore the correct database)*.

2. MERGE/F(DB,X)-~Merge the database with the log X

Feature Analysis of Database Recovery Techniques 549

f PREPARATION J

OPEN (CT)

OPEN (AT)

START

UPDATE (DB)

REC/MOD(AT)

f RESTART J

I/HALT MERGE/B(DB,AT)

RESTART

TRANSHIFT

ERASE (CT)

ERASE (AT)

RESTART

PREPARATION

ERASE (CT)

ERASE (AT)

CT - completed transaction log

AT - audit trail file (a log)

DB - the database

Figure 4—Audit trail in terms of primitives

forward (i.e. use the newest recorded values of data of X
to build the correct database).

OPEN(X)— Open file X.
OVERWRITE(X,Y,Z)— Replace (e.g., by pointer switch­

ing) pages of X specified by page identifiers stored in Z with
the corresponding pages of Y. If Z is omitted—each page of
Y replaces the corresponding page of X.

RECIID(X)—Record in X identifiers of database pages to
be modified.

RECIMOD(X)— Record data (e.g., a 4-tuple: transaction
ID, item ID, old item value, new item value) about mod­
ifications on a log X.

START—Start normal database processing. This primitive
initiates a new DBRB.

TRANSHIFT—Shift into system input queue:
a) all transactions recorded on "completed transaction

log", i.e. finished but not saved transactions,

b) all other transactions present in the system, i.e. un­
finished transactions,

and sort transactions of system input queue in the arrival time
order.

UPDATE(X)—Write an update in the file X. This prim­
itive specifies which file should be updated when more than
one file includes the same generic page that is to be updated.

The Selected Database Recovery Techniques
in Terms of Primitives

Using the primitives defined above, we have built the fol­
lowing selected recovery techniques:

1. audit trail (see Figure 4),
2. complete database dump (see Figure 5),

550 National Computer Conference, 1981

(PREPARATION J

OPEN(CT) <S INITIALIZATION

START V
C/DUMP (CD)

V

PREPARATION

I/HALT

UPDATE(DB)
RESTART

(RESTART J

OVERWRITE(DB,CD)

HALT
TRANSHIFT

ERASE (CT)

RESTART
PREPARATION

ERASE(CT)

C/DUMP(CD)

CD - complete database dump

CT - completed transaction log

DB - the database

Figure 5—Complete database dump in terms of primitives

3. incremental dump (see Figure 6),
4. differential files (see Figure 7),
5. backup/current version (see Figure 8).

The flowcharts of these recovery techniques combined with
the definitions of the primitives should be self-explanatory
(you may wish to consult short description of the techniques
in the section "Description of Database Recovery Tech­
niques.") The completed transaction log, referred to in the
above-mentioned figures, records all transactions that are
completed (their results are already written into the data­
base), but with updates not saved yet, that is, the end of the
DBRB in which transaction finished its execution has not
been reached. This allows it to reexecute completed trans­
actions, if necessary.

For comparison we present in Figure 9 the list of the prim­
itives used by the selected database recovery techniques. This
demonstrates how much in common the techniques have.

FUTURE RESEARCH AND EXTENSIONS

It is our intention to compare the performance of the above
database recovery techniques for hidden hard crashes. We
plan to base the analysis of the recovery techniques on the
analysis of the primitives constituting them, which is to be
made first.

The database recovery cost considerations will be limited to
the time-cost analysis, as the storage cost does not seem to be
essential in the real-time environment. Time costs can be

Feature Analysis of Database Recovery Techniques 551

(PREPARATIONJ

•3

OPEN(CT)

OPEN (X)

START

iUPDATE (DB)

PEC/ID (XT 6 *"*

ERASE(CT)

ik_j_

COPY (INCR,.DB,X)

OVERWRITE (CD,INCR)

ERASE(INCR)

OPEN(INCR)

ERASE(X)

I/HALT

RESTART

RESTART

(INITILIZATION

C/DUMP(CD)

OPEN(INCR)

±
PREPARATION

(RESTART J

OVERWRITE(DB,CD/
gp[DB] (pg(CD)\pg
(INCR)))

JL
OVERWRITE {DB, INCR^

TRANSHIFT

ERASE(CT)

PREPARATION

CD - complete database dump

INCR - incremental dump file

CT - completed transactions
log

X - temporary file

DB - the database

Figure 6—Incremental dump in terms of primitives

552 National Computer Conference, 1981

(PREPARATION)

OPEN(CT)

OPEN(DIFI)

START

REC/MOD(DIFI&
_

I/HALT

RESTART

RESTART

f RESTART)

N'
ERASE(DIFI)

>f

TRANSHIFT

V
ERASE(CT)

>'
PREPARATION

ERASE(CT)

MERGE/F(DB,DIFI)

ERASE(DIFI)

CT - completed transaction
log

DIFI - differential file (a
log)

DB - the database
Figure 7—Differential files in terms of primitives

classified as fixed and variable costs.2 Fixed time costs, inde­
pendent of the number of errors detected, cover all prepara­
tory actions necessary for restart when an error is detected.
Variable time costs, incurred only if an error is detected, cover
all restart actions. The fixed time costs, as completely predict­
able, can be more easily incorporated within real-time con­
straints of the system operation during system design. But the
variable time costs are the threat to real-time constraints of
the system operation (these constraints could be defined as
the maximum time the system can be left nonoperational
without grave consequences). Thus in our opinion only the
time-cost analysis is essential and the variable time cost is the

main criterion of the cost analysis for a recovery technique in
our environment.

A designer or a database administrator defines Database
Recovery Blocks by specifying the intervals of regular data­
base processing between consecutive recovery preparation
phases. Long DBRB will increase chances that the restart will
be time consuming, involving the reexecution of many trans­
actions and keeping the system nonoperational too long.
Short DBRB will increase the costs of the preparatory actions
(snapshots, etc.), increasing the chances of breaking the real­
time requirements. Thus a compromise is clearly needed. This
compromise will affect operational costs of a given database

Feature Analysis of Database Recovery Techniques 553

fPREPARATION J

OPEN(CT)

OPEN(CURR)

START

ERASE(X)

UPDATE(CURR)

IZE
COPY(CURR,DB,gp
[DB](pg(x)Spg
.(CPRRlU

REC/ID(X)

OPEN(X)
*—

ERASE(CT)

JUL.

OVERWRITE(DB,CURR!

I/HALT

RESTART

RESTART

(RESTART J

TRANSHIFT

jfc
ERASE(CT)

ERASE(CURR)

PREPARATION

ERASE(CURR)

CT - completed transaction log

CURR - current version

DB - the database

X - temporary file
Figure 8—Backup/current version in terms of primitives

recovery technique. We want to find the minimum cost sched- crashes have been discussed. These techniques can obviously
ule for all of the above techniques. cope with the overt hard crashes too, but they are much more

Only the database recovery techniques for hidden hard expensive than specialized recovery techniques. The tech-

554 National Computer Conference, 1981

"*—^RECOVERY

P R I M I T I v E " ^ ^

C/DUMP(X)

C0PY(Y7DB,X)

ERASE(X)

HALT

IA/TEST

I/HALT

LOG/IA/TEST(X)

MERGE/par(DB,X)

OPEN(X)

OVERWRITE(X,Y,Z)

REC/ID(X)

REC/MOD(X)

START

TRANSHIFT

UPDATE(X)

AT

-

-

PR

P

P

P

-

R

P

-

-

P

P

R

P

CD

IP

-

PR

P

P

P

-

—

P

R

-

-

P

R

P .

ID

I

P

PR

P

P

P

-

_

IP

PR

P

-

P

R

P

DF

-

-

PR

P

-

P

P

P

P

-

-

P

P

R

-

BC

-

P

PR

P

-

P

P

_

P

P

P

_

P

R

P

AT - Audit Trail
CD - Complete Database Dump
ID - Incremental Dump
DF - Differential Files
BC - Backup/Current Versions
i - Primitive used in initializa­

tion phase
P- Primitive used in preparation

phase
R - Primitive used in restart

phase
X,Y - File names
DB - The da tabase

Figure 9—Use of the primitives by the selected database recovery techniques

niques for database recovery from overt hard crashes will be
investigated later, using the analogous approach.

There are a number of possible extensions to our work:

1. increasing the concurrency of normal database pro­
cessing by exploitation of elements of a recovery
mechanism';

2. concurrent execution of recovery actions and normal
database processing, for example, dumping concurrent
with regular processing4,6;

3. concurrent execution of a few recovery actions, such as
checking database files concurrent with dumping of
these files4 or processing several logs (or log sections) in
parallel (e.g., the Audit Trail Tag File method4);

4. creating single transaction backup facilities by use of
deferred commit4,7 or use of transaction save points;6

5. independent dumping of sections of a database, es­
pecially when these sections have varying level of activity
or the database is large (compare the noncontemporary
file dumps method4);

6. investigation of special database recovery imple­
mentation methods, for example the duplexing of logs
and files4,7 or the use of multiprocessor systems; and

7. investigation of after-implementation tunability of re­
covery methods.

In the refinement of our approach we will include some of
these ideas.

ACKNOWLEDGMENT

We would like to thank Ms. Beverly Hill for the preparation
of the figures.

REFERENCES

1. Bayer, R., H. Heller, and A. Reiser, "Parallelism and Recovery in Data­
base Systems," ACM Trans, on Database Systems, June 1980.

2. Chandy, K.M., J.C. Browne, C.W. Dissly, and W.R. Uhrig, "Analytic
Models for Rollback and Recovery Strategies in Data Base Systems," IEEE
Trans, on Software Engineering, March 1975.

3. Garcia-Molina, H. Reliability Issues for Completely Replicated Distributed
Databases. Princeton University, Dept. of EECS, Technical Report #266,
1980.

4. Gibbons, T. Integrity and Recovery. Hayden Book Company, 1976.
5. Giordano, N.J., and M.S. Schwartz, "Data Base Recovery at CMIC," 1976

SIGMOD International Conference on Management of Data.
6. Gray, J., P. McJones, M. Blasgen, et. al. The Recovery Manager of a Data

Management System. IBM Technical Report RJ 2623.
7. Gray, J. A Transaction Model. IBM Technical Report, February 1980.
8. Randell, B., "System Structure for Software Fault Tolerance," IEEE

Trans, on Software Engineering, June 1975.
9. Sayani, H.H., "Restart and Recovery in a Transaction-Oriented Informa­

tion Processing System," ACM SIGMOD Workshop on Data Description,
Access and Control, 1974.

10. Sibley, E.H., "The Development of Data-Base Technology," Comp. Surv.,
March 1976.

11. Verhofstad, J.S.M., "Recovery Techniques for Database Systems," Comp.
Surv., June 1978.

