
Buffer Management
Project #2

Slides based on “Database Management Systems” book by Johannes
Gehrke and Raghu Ramakrishnan

Buffer Management in a DBMS

• Data must be in memory for
DBMS to operate on it

• Table of <frame#, pageid>

pair is maintained.

• Bookkeeping information
(per frame):
• pin count

• dirty bit

• Choice of the frame is
dictated by replacement
policy.

When a Page is requested …

• If requested page is not in pool and the pool is full:
• Choose a frame for replacement.

• If frame is dirty, write it to disk.

• Read requested page into chosen frame.

• Pin the page and return its address.

• If request can be predicted (e.g., sequential scans), pages can
be pre-fetched (several pages at the same time)

More on Buffer Management

• Requestor of page must unpin it and indicate whether
page has been modified:
• dirty bit is used for this

• Page in pool may be requested many times:

•A pin count is used.

•A page is candidate for replacement

iff pin count == 0.

• CC & Recovery may entail additional I/O when frame is
chosen for replacement (Write-Ahead Log Protocol).

Buffer Replacement Policy

• Frame is chosen for replacement by a replacement
policy:
 FIFO, Least-Recently-Used (LRU), Clock, MRU, etc.

• Policy can have a big impact on # of I/O’s; depends on
the access pattern.

• Sequential Flooding. Nasty situation caused by LRU +
repeated sequential scans.
 # buffer frames < # pages in file

means each page request causes an I/O. MRU much better
in this situation (but not in all situations, of course).

DBMS vs OS File System

• Differences in OS support: portability issues

• Some limitations, e.g., files can't span disks.

• Buffer management in DBMS requires ability to:

• pin a page in buffer pool, force a page to disk (important for
implementing CC & recovery),

• adjust replacement policy, and prefetch pages based on
access patterns in typical DB operations.

OS does disk space & buffer management:
why not let OS manage these tasks?

Project #2

Project #2

** Buffer Pool after requesting 3 pages.

Methods to Implement

• void pinPage

Attempts to pin the requested page.

• void unpinPage

Attempts to unpin the requested page.

• PageId newPage

Attempts to allocate ‘x’ pages in memory.

• void freePage

Attempts to the case when we need to remove a page
completely from disk.

