
CS44800 Project 1 (Feedback)

Disk vs In-Memory vs Database

Fall 2019

Grading

The total number of points for this project is 3 points, the breakdown is as follows:

- 0.5 point for submitting a Project1.java file that compiles without errors.

- 2.25 points for passing automated testcases:

• Part 1 (Disk Storage), has 4 test cases, each one with a weight between .15 to .20

(.75 overall) to test the select operation.

• Part 2 (In-Memory Storage) and Part 3 (Embedded Database), both have 5 test

cases, 0.15 points each, to test the loading and select operation.

• Partial points are given when appropriate.

- 0.25 point for indicating which backend was faster loading data and selecting data.

Coding Feedback

Most of you have done a perfectly fine job on the coding part of this project and passed the grading

scripts successfully. Here are some of the minor coding mistakes that we observed but they did not

penalize your scores:

- Spacing issues: Leading and trailing spaces or tab character in the String returned by the

select operation.

- Separator character. Using a separator char other than a TAB (\t) character.

- Unnecessary info in the Output. Adding extra info in the output, besides the fields (e.g., a

label before the results, response time of the query, key used for retrieving, etc).

We also have observed more severe coding issues that affected the final scores:

- Modifying the signature of methods (e.g., removing the column_names argument in the

select method). As stated in Piazza, you were not allowed to modify the signature of the

methods since this can cause compilation errors in the grading script.

- Modifying the java version in the pom.xml. As stated in Piazza, you were not allowed to

modify the pom.xml.

- Submitting code that does not compile. It is essential to ensure your submitted code is free

of compile-time errors.

- Loading into the wrong data structure. For example, for main-memory load, data is being

loaded into MapDB. Attention to details is a critical coding skill. Make sure to analyze and

test your code carefully before submitting your assignment.

- Making assumptions about the input data can lead to costly mistakes. For example, you

cannot assume that the data is sorted, or assume that the column names will be always in

the same order. Such an assumption needs to be verified by asking the TAs before

committing to such assumptions in your submitted solutions.

https://piazza.com/class/jyw0kgmjx1d3a1?cid=66
https://piazza.com/class/jyw0kgmjx1d3a1?cid=13

Overall Feedback

(a) What have you observed to be the fastest Load operation?

 [X] Main-memory Load. [] MapDB Load

(b) Why?

MapDB uses a disk file to store the loaded data on disk to provide persistence and durability. The

disk access is much slower than main-memory access, which contributes negatively to the

performance of MapDB.

Even though that there is an overhead due to MapDB internal call, this is cost negligible compared

to the overhead of performing I/O operations. Recall that MapDB uses the file system to store the

database (data.db). MapDB uses most of the loading process to set the required metadata in the

data.db file.

(c) What have you observed to be the fastest Select operation?

[] File Select [X] Main-memory Select. [] MapDB Select

For this question, we consider the time taken by the select operation only (and disregard the load

times).

(d) Why?

For the most part, it is the same reason as (b). Since a disk file is used to store the actual data in

MapDB, it can be slower than the main-memory data structure in many cases, but it can have many

benefits as the answer to (e) illustrates. The File Select method operates directly on the input data

file. While MapDB Select and File Select both access the disk to return the results, MapDB utilizes

internal indexes that are built during the load operation to speed up data retrievals. Besides, the

performance of the File Select is affected by the location of the target tuple in the data set (e.g.,

the desired tuple could be near the end of the file) – since we are doing a sequential search under

the assumption that the file is not sorted.

Furthermore, Main-memory Select does not have any I/O overhead due to disk access. Memory

access is orders of magnitude faster than disk access, as we saw in Chapter 16. Besides, the hash

map data structure is particularly optimized to guarantee constant time on reads in contrast to linear

time performance bounded on the File Select.

Finally, as you saw in Project 2 where you implemented the BufferManager, if the data being

queried is already in the buffer pool, the DB system can avoid costly disk I/O operations.

(e) What are the benefits of using the embedded database as backend compare to the in-

memory storage?

There are many benefits out of the box for database-backed applications, including:

1. More powerful querying capabilities (e.g., SQL). Although, MapDB did not provide

such capabilities other embedded databases such as SQLite provide this feature.

2. Flexibility for handling and retrieving data. This benefit was not observed in this

project, but Database in general can provided a lot of flexibility while handling the data.

For this project, all the select operation were by using the key of the record. However, the

database gives us the flexibility to do requests using other fields or criteria. If we wanted

to have a similar support in In-Memory or File System-based backends, it will require a

more elaborated implementation.

3. Persistence and Durability. Since embedded databases use secondary storage, the

application can terminate safely without losing the stored data. MapDB also supports main-

memory storage, and we encourage you to explore that and compare performance results

with the main-memory solution you examined in this project.

4. Overcoming the main-memory restrictions. Main-memory tend to have much smaller

capacities than secondary storage (Hard Disks and SSDs). Although current main-memory

can go up to 100s of gigabytes of RAM, storing terabytes of data with today’s storage

technologies still require secondary storage.

Note that the loading of the 30MB file, exhausted the heap space because of the runtime parameter

(-Xmx128m) used limits the amount of main memory that is available for running the Java

application. In contrast, using MapDB to store your data allows utilizing the disk which has a much

larger capacity (but it is still finite).

