Database schema:

Department(deptid, dname, location)
Student(snum, sname, deptid, slevel, age)
Faculty(fid, fname, deptid)

Class(cname, time, room, fid)
Enrolled(snum, cname)

SQL queries:

WN e

Get the names of faculty teaching a class in room ‘LWSN1106’.

Get the number of students in the department named ‘Physics’.

Get the student numbers and names of students who have never taken a course
with an instructor named ‘King'.

4. Getthe student numbers and names of students who have only taken classes
with an instructor named ‘King'.

5. Getthe department names and the number of students majoring in that
department, sorted in decreasing order of the number of students.

6. Retrieve names of instructors teaching computer science courses, the courses
they are teaching and the number of students enrolled in each course. For this
question, we assume that Computer Science courses are those whose names
start with ‘CS’.

7. Get student numbers, names and majors of students who do not have an ‘A’ in
any course they are enrolled in. For this question and the next, we assume that
the ENROLLED table also contains a field named ‘grade’ for each record.

8. Get student numbers and names of straight-A students (students who have an ‘A’
in all the courses they are enrolled in).

9. Get the number of the student whose name comes first among all students (i.e.
first in alphabetical order).

Solutions:

1. SELECT DISTINCT f.fname

FROM Faculty f, Class c
WHERE f.fid = c.fid AND c.room = ‘LWSN1106’

This is most basic type of query involving a join of two tables. In the ‘select’ part
of the query, we always list the fields we would like to print out. Because we
need the names of faculty in this question, we select the fname field from the
Faculty table. The “FROM” part of the query is where we specify the tables we
need to join. Because the fname field is only available in the “Faculty” table, we
include the “Faculty” table as Faculty f. In order to specify the condition that the
faculty should be teaching a class in the room ‘LWSN 1106’, we need to join the



Faculty table with the Class table, so we also include “Class c¢” in the FROM
clause. The actual joining of tables and the specification of the condition take
place in the WHERE clause. The join is simply specified by equating the common
fields in the two tables and we enforce the condition on the classroom with
croom = ‘LWSN1106’. We need both conditions to be met, so we use a
conjunction (AND) of the two conditions. We can think of the dot (.) notation as
similar to the notation in object-oriented programming languages used to get the
value of an object property, i.e. we can think of “Faculty f” as declaring an object f
of class Faculty, and “f.fid” as accessing the value of the “fid” field of that object.
The reason we include the “DISTINCT” keyword in the SELECT clause is to
eliminate duplicate tuples in the result. If we omit DISTINCT, we might get
multiple tuples with the same faculty name, because a faculty member might be
teaching more than one class in the same room.

. SELECT COUNT(s.snum)
FROM Student s, Department d
WHERE s.deptid = d.deptid AND d.dname="Physics’

This is a simple query involving the aggregate function “COUNT” which counts
the number of tuples matching a specific condition. This query is very similar to
Query 1 above, which involves a join of two tables with a condition on one of the
tables. The main difference is that we print the number of tuples here, instead of
listing all tuples in the result. The output of this query would be a single number
for the count of students in the Physics department.

. SELECT s.snum, s.sname

FROM Student s
WHERE s.snum NOT IN(SELECT e.snum
FROM Enrolled e, Class c, Faculty f
WHERE e.cname = c.cname
AND c.fid = f.fid
AND f.fname = ‘King’)

Our strategy for writing this query is the following: First, find the list of students
enrolled in classes taught by an instructor named ‘King’, then find the students
who are not in that list. The inner query in this question gives us the list of
student IDs for students enrolled in classes taught by King. We need to join the
three tables Enrolled, Class and Faculty for the inner query through their
common fields. The condition in the outer query specifies that we are only
looking for students, whose IDs are not in the list of IDs we found in the inner
query. Note that we can only use NOT IN (or IN) to compare things of the same
domain. For example, the reason we are able to use NOT IN here is that e.snum
and s.snum have the same domains, as the snum field in the Enrolled table
references the snum field in the Student table.



4. SELECT s.snum, s.sname

FROM Student s

WHERE NOT EXISTS (SELECT *
FROM Enrolled e, Class c, Faculty f
WHERE e.cname = c.cname AND
f.fname <> ‘King’ AND
f.fid = c.fid AND
e.snum = s.snum)

AND

s.snum IN (SELECT e2.snum

FROM Enrolled e2)

The condition for this query consists of two parts: The student should not be
taking any courses with an instructor named ‘King’, but the student should be in
the list of students taking courses. We take care of the first part using the “NOT
EXISTS” function, which ensures that the inner query following it does not
return any results. For a NOT EXISTS query, we can always use * to select all
fields of the tables involved in the query. In this question, the inner query finds
the tuples with students from the outer query taking classes from an instructor
whose name is NOT King. The NOT EXISTS function right before this inner query
ensures that such tuples do not exist for the students in the main SELECT clause.
Note that the part that forms the link between the inner and outer queries here
is the “e.snum = s.snum” condition. The second condition on the outer query
ensures that the ID of this student is in the list of IDs in the Enrolled table (which
means this student is enrolled in at least one class).

5. SELECT d.dname, COUNT(s.snum) as numStudents
FROM DEPARTMENT d, STUDENT s
WHERE d.deptid = s.deptid
GROUP BY d.dname
ORDER BY numStudents DESC

This is a simple GROUP BY query, which enables grouping of query results by a
specific field, in this case, the department name. The effect of grouping by
department name can be thought of as running the query once for each
department name and combining all results. In this query, we count the number
of students in each department by using COUNT(s.snum) and storing the result
in a variable named numStudents. The result of the query will be one line for
each department, consisting of the department name followed by the number of
students in that department. The last line in the query has the effect of ordering



the query results in decreasing order of the number of students in each
department. Note the use of the numStudents variable in the order by clause. In
general, ORDER BY can be used with any field name and has the effect of
lexicographic ordering in the case of fields with string domains.

. SELECT f.fname, e.cname, COUNT(e.snum)

FROM Faculty f, CLASS c, ENROLLED e

WHERE f.fid=c.fid AND c.cname =e.cname AND c.cname LIKE ‘CS%’
GROUP BY f.fname, c.cname

This query shows the use of regular expressions for string comparison in SQL.
This is another group by query, this time grouping by two fields: name of faculty
member and a class that faculty member teaches. Grouping by these two fields
together has the effect of running the query once for each (fname, cname) pair,
which meet the conditions specified in the WHERE clause. We find the faculty
name, class name and number of students enrolled in that class for each fname,
cname pair, if cname starts with ‘CS’. The wildcard ‘%’ here matches any number
of characters.

. SELECT s.snum, s.sname, d.dname

FROM Student s, Department d
WHERE s.deptid = d.deptid AND
NOT EXISTS (SELECT *
FROM ENROLLED e
WHERE e.snum = s.snum AND e.grade = ‘A’)

This query is quite similar to query 4, where we used NOT EXISTS to ensure no
records matching the inner query exist. In this case, the inner query finds tuples
such that the student in the outer query is enrolled in a class where his/her
grade is A.

. SELECT s.snum, s.sname

FROM Student s
WHERE (SELECT COUNT(e.cname)
FROM Enrolled e
WHERE e.snum = s.snum)
(SELECT COUNT(e2.cname)
FROM Enrolled e2
WHERE e2.snum = s.snum AND e2.grade = ‘A’)

For this question, we use a different approach: We think of this query as “for
these students, the number of classes they are taking should be equal to the



number of classes in which they have the grade ‘A’”. Therefore, the condition
involves finding the number of classes this student takes (in the first inner
query) and equating it with the number of classes in which the same student
(note the use of s.snum in both inner queries) has a grade of A.

. SELECT s.snum

FROM Student s
WHERE s.sname <= ALL (SELECT s2.sname
FROM Student s2)

In this query, we use the ALL operator, which is used for comparing a field with
everything in another list. In this question, we use it to compare the name of the
student we will output with the names of all students in the university (which is

«_n

found by the inner query). Note the use of “<=", and not “<” for comparison in the

«_n

query. If we used “<”, we wouldn’t get any results, because the student whose
name we are searching for is also in the list of all students in the university.



