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Abstract 

This paper proposes Ihe u:,c of VLSI tcchnoloSy to 

perform relational database opcralions directly in hardware. 

It is shown that relational computations, such as intcrscctiorc, 

remove-duplicates, union, join, and division, can all be 

pipelined elegantly and efficicn!ly on networks of 

prdccssors havine an array strurturc. These (systolic) 

processor arrays arc readily and COstrcffcctivcly 

implementable with prcscnl teclirrolo~,y, due to lhc .cxlrer& 

simplicity of their process&s, and the I1izl-i regularity of 

th&r intcrconncction structures. 

1. Introduction 

LSI tcclinology allows tens of thousands of dcviccs to fit 

on a single chip; VLSI technology promise: an inc,rca::c of 

this’ number by at Icast one or two orders of m.lOnitudc in 

the next decade. This paper propores one ~~~li:otl of 

exploiting this technology aclv;intc: tlic construction of 

special-purpose VLSI chips for relational ciat abase 

operations. Thr~? r.prcial-purpor.c chip?. iire to ho at tachcd 

to a conventional host computer, or used as a cotnponcnt in 

p larger spccinl-purpose syslem, I.LICII as a database 

machine. (WC suSSc.st one c~~cl~,clal~basc machine al thE-end 

of this paper.) 
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In [5] a str.ucture called a systolic array* is proposed for 

~implemcntation in VLSI. Those arrays 01 ‘processors have 

the followinS dcsirablc properties: 

I. They can be designed ancl implcrnentcd with 
only a /cw different typco of sin+ cells. 

2. ‘The array’s data and control flow is simpfc and 
rcptlar, so that cells can be connected by a 
network will1 local and rcy.ular intcrconncctions. 
Long distance or irrc~,ular c0rnmunicalion is not 
nccdod. 

3. The array uses cxtcnsivc pipcfiking and 
multiprocessint-t. Typically, scvcral data strc,~ms 
move at ‘constant velocity. over fixed paths in 
the network, interacting whcrc they meet. in 

this fashion, a large. proporlion of the 
processors in tbc array can ho kept active, so 
that the array can sustain a high rate of data 
flow. 

VLSI designs based on systolic arrays tend to bc simple (a 

consequence of property 11, modular (property 2) and of 

high performance (property 3) -- for more discussion of the 

attroctivcncsc. Of Ill0 systolic array approach, kc [3]. In 

the present paper we illustrate the USC of systolic arrays in 

performing relational database operations. 

In section 2 WC give details conccrninO the notion of 

systohc arrays, and present some concrpts and notation for 

discussing relational database operations. In sctlion 3, we 

describe lhc basic building block of several of our systolic 

arrays: a systolic processor array to compare two tuples. 

Section 4 includes a dctailrtl systolk cxamplc: an array to 

rapidly perform the intcrscction (or diflcrcncc) operation on 

two relations. In scciion 5 We use an array irlcnlical to the 

intersection/difference array, to remove duplicates from a 



collection of tuplcs, and 10 perform lhc operations of union 

and projection on relatipns. In sections C and 7 we dctail 

relational operations (join and division) that are substantially 

different from the interscc!ion-like operations, but still lend 

themsclvcs to simple implcmcnlatiorr with systolic arrays. 

Section E remarks on some implcmcnlalion and pcrformancc 

aspects of the systolic arrays proposed in this paper. 

Section 9 discusses the architectural issues of an integrated 

system capable of using many types Of systolic arrays. 

2. Systolic Arrays and Relational Dztabasc 
Co’nsidarations 

2.1 Systolic Arrays 

Regular geometric structures arc typically used in systolic 

arrays. For the present paper WC use predominantly 

orthogonally and linearly connected arrays of processors 

(both of which are shown in figure 2-11, although 

hexagonally connected arrays as in [5] would work as well 

in many instances. 

Figure 2-1: Orthogonally and linearly 
connected processor arrays. 

We find that lhesc arrays facilitale many relational database 

operations by allowing swift inlcraction among the tuplcs of 

two relations, with a set of temporary results also traveling 

through ,tho array. Typic ally, 1 hc rclat ions move 

top-to-bottom and bottom-to-top, and the temporary results 

move left-to-rip,ht. All of the data in the array moves 
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synchronously. As a piece of data passes through a 

processor, it may have ::~rne c0rr:putatj0n performed on it; 

then it is passed on to tbc next pAoc.cssor. The final results 

of the. array are son1 out a side of the array, 

2.2 Procckors 

Figure 2-2:.Orthogonal and linear processor prototypes. 

. . 
In figure 2-2 wc show lhc protolypc for the protc5sor 

used in the orlhoy,onally or linearly ~onncclcd systolic 

structure. The processor has three input tines and three 

output lines. For cnch “pulse” of the systolic array, inputs 

come in on the input’ lines, and outputs lcavc the processor 

on the output lines. In the inlcrvcnin~ time, all of the work ’ 

(computation) of the processor is performed --. the 

processor computes some simple transformation on the data 

which it has just received, in preparation for shi(iping it ‘o.ut 

at the next pulse. VLSI arrays arc greatly simplified if most 

processors in tnc array arc identical. This is lhc case for 

the arrays prcscntcd in this paper. Oivcn the orthogondity 

or linearly connected array structure, and the processor 

protolype d&cribed hcrc, it is Ihe a$orilhm actually 

executed by each procc,, ccor 11~1 dctcrmincc tile function of 

the array. Thcrcforc, to dcfinc a systolic array to perform 

a specific rclalional operation, we specify the algorithm for 

the processors in a systolic array. The sections below 

consist of such spccificalions and an explanation of how 

they actually produce the desired result. 

2.3 Reprcscntation of Relations 

In the following di&ussion, WC assurnc some familiarity 

with the bar&s of relational database theory (see; for 

example, (1, 21). A relation is a set of tuplcs. Each tuple 

consists of an ordered scquencc of elements. It is these 

elements that arc fed through our systolic arriys. The 

tuples in a r&ion, howcvc’r; arc not n&s&ily brdbrcd in ,~, -, 
any particular fashion. ,+, ,‘i ’ ,; , ,i: ,‘I 

. I.- 

In a ‘relation, an element can tc of any data type: an 



integer, a boolean value, a strins, etc. WC wish to o,ive all of 

thcso a uniform rcprcscntation, in order to simplify Ihc 

design of systolic arrays to process relations. The 

assumption we make is a common one in the implcmcntation 

of rela!ional database ‘systems. WC aSSUliSC that the 

elements from any particular column- in a relation are 

sclectcd only from one underlying clo~n~in. Each member of 

the domain is uniquely and rcvcrsahly cncodcd into an 

integer. Thcsc integer cncodin, -5 arc the form in which the 

elements are stored in Ihc relations, arid llie list of 

encodings is storctl separately. Whenever necessary, the 

integers arc dccoclcd into the appropriate value; however, 

encoding and decoding arc usually only necessary for input 

or output: that is, for USC by humans. Most relational 

operations are logically the same whcthcr they operate on 

integers or, say, strings or calcridar rldtcs. Since -- for our 

purioses -- inteecr operations are more convenient, we 

assurne that relations arc stored as tuplcs of integers (and 

WC arc not concerned with cncocline and decoding). 

2.4 Union-Compatibility 

Certain relational operation: slIcl1 a5 union ZWI 

intersection can only bc performed hetwccn rrlationo that 

are uni.on-compntiblo. TWO r&iion’c arc caid to be 

union-c0mpatiblc if the following two tondilions hold: 

-‘They have the same number of columns (and 
thus tuplcs from the two rclalions have the 
same number of oitrics). 

- Corresponding columns from the two relations 
have cnlrics drawn from the same undcrlyin& 
dornain. 

This definition is an attcrnpt to capture f!ie informal notion 

that a tuple from one relation co&d lccolly bc a n~cn&r of 

the other m&ion, in that the rcspcctivc columns of the two 

relations are dcfincd on the same domains. 

2.5 Multi-rdatiohs 

A multi-rclotion is an extension Of the concept of a 

relation in which cluplicalc luplrr. arc allowed. (This is by 

analogy with the term “multi-sct,l( since a klation can be 

viewed as a set of ,tuplcs.) This is a nolion that we will find 

useful later in the paper. Multi-relations are usually 

generatccl as the, intcrmediatc results of relational 

opcrationl;. For example, suppor.c WC remove a few columns 

from a relation (which is the projection operation). The 

intermediate construit WC obtain before WC r&move 

duplicate tuples to produce the new (result) relation is a 

multi-relation. 

2.6 Notation 

We briefly summarize the notation used in the remainder 

of the paper. Relations and multi-relations arc denotetl by 

capital letters: A, 0, C. Tuptes that are mumbcrc of these 

are dcnotcd by subscripted lower-case Ictlcrs. The ith 

tuple of A is dcnotcd ‘by ai, ,or by ai{A, if we wish to 

indicate membership. In turn, elements in tuplcs are 

double-subscriptccl: aik is file kth &!llWnf Of o.~, and the 

whole tpplc can bc cxhikd as “i 7 <a. c.Jtai,2P.Bain~‘* The 

Icttcr n is usually LIVXI’IO drnolc the number of tuplcs in a 

relation (the cardinality of the rclalion;sincc a relation is a 

set): l/II = n. The letter nr usu~~lly dc5ignatcs lhc number of 

elements in P tuplc in the relation in question. 

Letter T rcprcscnts a boolcan malrix that contains results 

of logical opcralions. The (i,j+Hh entry of T, tii’ is usually 

used to dcnolc the result of a comparison between the ith 

tuple of a relation and lhc ith tuple of another. Where we 

wish to display the formation of tii over time, we use the 

notation tk for the result aflcr lh; kth time step; tfyiticrl 
and pm1 LJ 

ij denote speiific instances (the first and the lait) of 

tf, (When no confusion wiH thcrcby rcsu)l, we use the same 

Gtation Iii t0 rcfcr t0 tfjfor any k.1 ‘Finally, Ihc notation ti 

is used to dc-.ignatc! the result of somr logical operation on 

all of the members of the ith row of T, for example, the OR 

or AND of ti/~, for all k. 

3. Arrays for Tuplc Comparison 

In scvcral Of tllc? rclatibnal opcr.3tions tlescribcd below, it 

is necessary to test for cqualily hctwccn a pair of tuplcs, 

one from each of two relations. (Two tuplcs, ai’A and b,xB, 

where A and B arc union-compatible relations or 

multi-relations, arc said to be equal if and only if elcmcnt 

a& equals dcmcnt hjk for 1 r k I m.) For example, in the 

intersection operation, tho intersection of two relations, say 

A and B! consists of those tuplcs which are in both A :ind 

B..Forming this intersection, then, rcquircs ,many tests for 

equality bctwccn fuples, ni (A and 6 rB. 
J 

In this section, we 

first describe a linear syslolic array of processors capable 

of performing, one such comparisbn. We then combine many 

copies of this basic structure to form a t\rio-dimensional 

systolic array that can pipeline many tuple comparisons. 
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3.1 Linear Comparison Array for Performing Ond 
fuplt? c omparicon 

ai, 

\1 
a. r2 

J 
&T 

cl-- 
FINAL 

.-> 
&PUT 

Jf 

bJJ r r 
bj2 ’ 

T 
b 

hs 

Figure 3-l : Tuple comparison array. 

alN b OUT 
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OUT* ’ IN A (?N = blN ) 

“OUT6 ?N 

b cb 
OUT IN 

-> t OUT 

Figure 3-2: Indi,vidual comparison processor. 

A tifplc comparison can bc ddnc by Ihc linear array of 

processors in Figure 3-1. A sin& processor from the array 

is shown in more detail in Figure 3-2. One CM tee that the 

procebsor array in Figure 3-1 Is able to ComPulc the /lND of 

the comparison results from all of the individual &mcnt 

comparisons. More precisely, at each step the kth 

processor (from the left) in the array compares .thc, two 

etements a& and bjk) and oU!putS 011 itr, OutPut lint touT 

the AND of this iomparison rcr.ult with the input to the 

processoi on input lint ttN (which is the’ outpui of the 

(k-i j5t procc?sr;ot+ Thus, if the input lo the left-most 

processor is the value IRUE, then, by induction, after m 

time steps the Output at the right-most processor of the 

processor array will bc’ a bit indicatin:, whethrr the two 

tuplcs arc equal. That is, this output will hc fR(/E if and 

only if all of the comparisons of individual clcmcnts 

produced TRf./C. (Notice also that if the initial input is 

FALSE, then the output at the right side of the, array is 

guaranteed to be false. Surprisin$y, this fact will be useful 

in later sections Of the paper.) 

TO mako this all work, all of the dal.1 must bc in the right 

place at the right time. This is why the inputs to the 

individual prorer.r.ors arc “!;tay,::ercct” (as thaws by the 

“ddnted” input ttrph in ficurc! 3-l) $0 thd dC!mllts a& ad 

bjk arrive at the kth &occxor &cl arc compared at the kth 

time step. Also at that time ihc IV/D of ihc results of 

previous comparisons arrives at the same processor, :o that 

it can bc ANDed with the new comparison re:.ult al Ihc 

processor. 

WC summarize the function Of the lhCiV comparison array 

shown in figure 3-l. This array compares two tuplcs 

(presumably one from each of Iwo rela!ions), and forms the 

result of the compkrison by propaSaiin:: intermediate 

versions of that rcr,ult to the right tl,rou:h the array. By 

staggering cnirics from the tuplcc one cnn.assuro that the’ 

output from the right-most proc.cr.sor of the array will be 

the result of the equality test on Ihc two tuplcs. 

3.2 Two-Dimensional Comparison Array ‘for 
.Pipcfining Many Tuple Comparisdns 

We concatenate,’ vertically, several of the linear 

comparison arrays described above, tQ form a 2-dinicnsional 

processor array; as c,hown in Fic,trrc 3..3. This ‘orthogonally 

connett6d, 2-?imcnsion.?t processor array can perform many 

.tUplc comparisons in parallel. To arcompliih.this, WC fcccl 

the relations A and B into the nrrdy, ,froni the top iind 

bottom, respec’tivcly. 

-WC feed 11% relation:; at timc5 5uch th;It thr 
nlcmcnts of any r,ivcn .tuplc, say’ oi, arc 
“sf a?,gcrcd,” so ttia! the chcn~ aik cn!crs the 
array OIIC time step bcforc the ‘clcmi!ilt ~,i k+l. 
This has the cffcct of sta:;gr:rin;:‘thc inpul’s to 
each of t,he component lincar arrays, 50 that it 
will perform exactly as Ihe single linear array 
dcscribcd above. 

- WC pipeline tuolcs. in each relation throu;:h the 
orthogonal processor array, in such a way that 
each tuplc is two steps bchincl Ihc tuplc ihnt 
prccccdcd it into the airay. This assures that 
any particular pair of tupIc:. ai,cA and b,;B will 
evdntu;?Hy cross each otl~cr. IJorc sp’cclficiilly, 
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Figure 3-3: Two-dimensional (orthoson& comparison array. 

first Qi 1 will meet bj 1 in the loft:most 
process& of tome row in’lhc processor array. 
Thcsc Iwo clcmonts will bc compared, and the 
result of this comparison will bc /lNl)cd with 
Iho initial input to that rnw, of pro(cssors 
(TRUE for. our present purposes). At the next 
time step, as Ihc tuples ripple throu~,li the 
&ray, .clemcnt ai 2 will meet b. 1.2 in the 
processor to the ribhI, in the same row. Th&y 
will be compared there, and the result of the 
comparigon will bc ANDcd with lhe output from 
the first processor to produce the output of the 
second proccs5or. Proccsr.ing coniinucs in this 
fashion, and Ihe inlcrmrdiatc boolean result of 
,thc ANDs propazalcs to the righI through that 
parlicular row of processors, until -- as 
discussed above -- the right-m05t processor 
outputs a boolean value that indicates whether 
tUplC Qi qquals tUplC bj. 

In Figure 3-4, the tij reprcsont intermediate values for 

the results of comparing ,tuplcs Oi with tuples 6i (Note that 

in the figure, the initial value for t3,3 is just about to cntcr 

the processor array.) 

3.3 Matrix .Notation 

For convenience in discussion, WC cxprcss the results 

produced by a compariron array in the form of d matrix 

” T, The elements of the matrix are dcfincd as follows: 

t ij 

1 TRiJE if tfytial=TRUE, and yk=bjk 
f6r all lck<=-nr, 

FALSE otherwise. 

b 
11 

a 
33 

r33 

b 
33 

Figure 3-4: Ma moving throu:;h Ihc compcrrison array, 

We see that it is these tij that are produced at the 

right-most column of the array described in Section 3.2. 

In the follov& sections, WC add additional processors 

which manipulale these tij’S after tliey leave Ihc comparison 

array. These ‘manipulatibns will be shown to produce the 

equivalent Of relational operations. 

4. Arrays for intarssction --‘A Datakd 
Example 

In the preceding section, we saw how’ we could use a 

systolic comparison array to quickly do pairwise 

comparisons on sets of tuples. The results of these 

comparisons (tij) are sent out from the right side of the 

array. By examining. a particular relational operation, 

namely intersection, in some dclail, we illustrate how these. 

individual results are combined in applications. 
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4.1 The Intcrscction Operation 
. 

C=AnB. 

Consibsr the operation of finding, Ihc inlerscciiorr of two 

union-compatible rclalions 

The relation C conr.ists of those tuplcs that arc in both 

relation A and relation 13. This is exactly the same a~. finding 

thosa luplc~ in A which arc also in l3. Thus WC need only 

examine the tuples in A for mcrnbcrship in B. This is the 

basis for our “intersection array.” We compare .cach tctplc 

ai<A pairwise with each tuple bj<!3. For each ni if ai 

matches sonze b. then ai is a member of the intcrscction. 
I’ 

This is where the cotiparison array described in the 

preceeding section comes in handy. 

Comparison 
Array 

AccumiMion 
Array 

ESULTS 

Figure 4-l: intcrscctioi) array, co&sling of two moclulcs: 
(2-&n) comparkon array on the left, and 
(l-dim) accumulation array on the ri$t. 
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The intersection array for p.crforming t,hc intcr:,cction 

operation consists of a (two-dimcn:ion;ll) comparkon array 

on the loft and a (linear) accumalaiion array on the right 

(see fig&e 4-l). The cpmparison array performs 

4.2 The Intersection Array 

comparisons bctwrcn ttrplcs in A and ti~plcs in B, t0 prodUce 

the matrix T, w&ear. lhc acclmrulalion array accumtllater. tij 

to form: 

ti c ORl<j<n ‘ii. (4.1) 

One can easily set ,that a tllple Ri’ A is a mrmhcr of the 

intersection, i.e. Oi matches some bJ4R, if and only if ti is 

true. 

Figure 4-1 ilturlralcs how Ihc intcrcrrtion array ,. 

computes the intersection Of IWO 3 x 3 relations. 

Processors in the aCCUrrilllatiOi~ arr.ly arc CdliXl aCciimulation 

processors; thr?ir function is as fdllows. At c.1c.h time step, 

an accumulation processor takes ilr. left itlpui (some tij from 

the comparison array), OR’s that with lhc tcp input (some 

ii), and passes on ihc rcsull as its output (thr ~rptiidccl Ii) 10 

the processor below. More spccificilliy, a ti is fortiicd in the 

accumulation array’ in the following manner. First ti 1 
, 

reaches an accumulation processdr from the comparison 

array on the left. At the next time slcp, this value is scnl to 

the accumiilation processor below. Durin?7, lhc same tirnc 

Step, ti,2 1.. ‘c scnl into that accuiiulation processor iroln :hc 

left, and is ORctl with tl,l. Sitnil;:rly, at the next time stop, 

the rCsUlt of tlli*. OR is sent tlow ow procc:,zor, and is 

ORcd wrih ii 3, which is jllst arrivin:l, from’ the left. In an 

implcmcntatidn, the first XCWddtiO~l processor can be 

identical in function IO thr other*:, pro~.kk~d WC initiali7c the 

value moving=, tl0wrr tliroit;h ilic acc~mitil.3tion array as F&SE 

(Lc., li initinL - f&SE; in tlic fi$ikrc, t :‘. i!; ahout to ctitcr the 

array wilh its inilial value). Thk v;~l~r: is. 5ucccs!.i\.+/ ORed 

with all of the Ii,:, for all k, nncl wiicn it leaves the boltoli> of 

the accumUlation.array, it takes on the value ti, spccificd in 

equation (4.1). This ti dcsignatcs whelhcr ai is a member of 

the. intersection C, and it ipI then a sirriplc matter to.use the 

tj’s t0 generate C from A. 

At any time step, accumulation procczsors that aren’t 

busy (i.e. that have 110 tij comin:: in from tllc kit) simply 

pa5s Otl IhC Ii tll;11 IIWY IlklVr:. II I.ll:~S IF.5 illrlll lhc liN~,lh 

of the accumulation array to product: a t‘, but diikrcnt ti 

arc produced in diffcrcnt r.uh-.lrr,lyr.. 

4.3 Rcnmrk 
” 

We have ilhlstr~lr~cl the 1ic.i: of t)lc so-called nrrumulntion 

array ‘at the right Of thr! c0lnpMkon array to iiilplclilcnt a 

dcsircd relalional operation, llaIiir:ly, ! he inirrscct’ion 

operation. In r.cnc?ral, 35 shown in tlbr rc5t of the’ pap’cr, 

only simple chnnccs in Ihc accunrul,tlion array or in the 

input data arc required to ill:cr t!icb OUtpUt Of Ihe array to 

produce other uscfcrl IUnctions. Tllc n\Gi “hardware” -- the 

comparison array -- is sufficiently gcncral thaT it need not 



be chanecd at al,l. 

As an illu~tralion, wc see thdl ilftcr a slight modification 

the intcrscction array can bc trsrd to perform tllc d(/~e~cnc~ 

operation on two relations. l-lx! di/fcrmc, c, of two 

union-compatible relations A and B, rlcnotcd C = A - B, 

consists of th0r.c tuplcs that 3rc mcriilmx of A, but arc tlot 

mcmbcrs of 0. When wc compulr! Ihc intcizcction with Ihc 

intcrscction array, wc notice tl1#11 Ii i5 7X/K for any tuplo 

ai that kin both A and 13 (i.e., A n E?). WC can al*:0 SCP Ihat 

ti is F-/ILSE for any ni lh;lt was in A, lrul /lot in I?, which is 

precisely the condition for cii bcine in the di//c:,ozcc. 

Thercforc, to form A - B, WE CM usu 1110 inlcr:.cctiorr array, 

wilh the modification that the tuplcs in the rcsulling rrlnlion 

correspond to tllo5o ti’s whith Rrc F/l/SE, instc.d of TN/E. 

(Alternatively, WC COLIM just put an invcrtcr on the output 

tine of the ac.cumulation array.) 

5. Arrays for Rcmovn! of Duplicate Tup!w 

The opcrnlion rcr,rouc-dtcp’ical~~r . . transforms a 

multLrclation (drfincd in section 2.!i), A, into a rrlation, A’, 

which contains all of the tuplcs in A, crccpt that no tuplc is 

duplicated in A’. The systolic array u+rd for inirrscction in 

the last section ran 211~0 be u:..cd for the operation 

renrove-rlrlplicafcs. Inr.tc,id of rolllp;lrin$ rt:latioli A to 

relation r3, WI? tomparr: rcIAtion A to it.wlj; lay IiVilin;, ii into 

both the top and botlom of the array. (Notr that A is 

union-compatible wilh itself.) I.$ c!oilV:, 7.0, we product a 

matrix, T, whose clcmcnts arc: 

1 Tli’lIC 
I 

tij r 1 

1 F/lLSC otlicrwisc. 

Our strategy for rliminatin :; d~iplicatc tuplrs frbri A is to 

rcmovc all tuph that ilrc prc:ct~:rl~rd hy wnoth:r Iupk Ihat 

equals it. For cramplc if tuptcr. 05, nfo, and o.73 arc all 

equal, then in proclucin~ A’, wc Liish to rcmovc ti,p and n13 

from A, Icaving o5 iv A’ (no! ncrcY.arily as 12; bccAur.c, for 

example,’ a3 mir,lrt cqilal a.,). In our Matrix nolalion, the 

problem is tlrr:li tl1;1t of rct,lovin:; any’ tl.lrJc al, vtl~cro tl;crc 

exists a Jij=TNl/K, for jci. Thk i,; rc!uiv;drnt to r..3yinz, tht 

WC wish to rc<tnove any ti~plc rorrrrpordih:, to d co::’ in the 

matrix T which contains a “TI{f./C” in lhc l~wci trian~lc (Icft 

of the main Cfiilf,Oll~l). Wc could find the appr+ri;tk ni 1~) 

O&g across CHC~ row of T, a:, far 8:; (but not iiicludiny.) the 

main dia::onal. Alt~:rnafivcly, wc (o111d *.r>t NIX! m;lin tli;l::ol;al 

and tlic upper tri;lnglc all to I-/1/..5r, m’ flwn td.c tlic OR 

across the whole row. Thir. sr:t~~~d <CIIcllii: ic. :vl~nt WC will 

do. 

For those tii on the maili cliay.onal and in the upper 

triangle (i<j), w; set tlVitial 
LJ 

to I-AI.SE. This implir:~:, that tij 

will bc F/lLSE for i::j, Gncc Ihc comp;lri:.on array work:. by 

ANDing each individual conlparison result with tlrc current 

value of tij. The accumulation processors in the 

renrovc-cluplicatcs array act iclcntically to those in the 

intersection array. They forni the! OR of each row of the 

matrix T. To proclucc A’, WC climinalc from A any row whcrc 

the rcsultinp, ti is TRUE, and keep the rest. (This is fhe 

opposite of tl~o intcrscctiori opcralion, where WC keep those 

rows with TRUE tile 

Our rol~ovc-dlrplicnfcs array can br? usc’cl to implcincnt the 

followin& relational opcralions: 

Union 

The union C 5 A u 0 of two lrlriorl-colllpa!iblc relations, A 

and B, is the rel,ltion containin?, all tuplcs in ~G~/(IY A or B, 

without tluplicalcs. It is strai::l~tforwar.(l lo form A U iI3 by 

wpbiw Ill0 rcmouc-clrr fJli’!“lt..~ opCrk\tioii to the 

cOncatnn;ltiOn A II3 of A and D: 

C 7: rcnlor/c-c/~cplicatc?s(A t l3). 

In practice, this rncans that wc fir*;t form the concatenation 

of A and B a:. WC retricvc thcrn. We Ihar put tllc 

concatenation throup,h both r:idc. 3 Of the rtn:ouc-dtrplicafes 

array, and what comes out is a bit-c.trin:, indkatin~, which 

tuplc5 of the coricatcnation shoi~ld bc in thr! trnion. 

Projection 

Tf~c prbjcction opcralion is r.ilni!arly c~r.y, with our 

fcnlol/c-drcplicatcs 0pcr;:tion. V/c :.pc2k Of the projection Of 

a relation A over a column, or lic.1 01 colun,lns, J (Ll~l:ally, f 

is of tljc form “1irr.t COlUIIin, :.c*iOntl Cdul~ill, fiftll COlUhMl,” or 

“name coltii8in, snl;lry column, 6 thi’til Cn cOlllh~n.“) l'hc 

projccliorl i:; produtcd hy fir-t findin;: for @XII tl.@c oi<A, 

the corrcspondin~ (tmallcr) tuplr: fii,p which contains only 

those col.umn9 from ai tlkit I~ilvc~ 1k’c.n 5pccificd in / - Ihi:. 

can bc done convcnioltly cluritl:: !llc time when the OriGinsI 

tuplcs arc . rctriovrtf from stOl,il”L’. LI The cd (if -- a 

multi-rc:lation in gcncr;ll -- -of lhr: rc5illling 5tikallcr tiJpli5 is 

thcb transformed in10 a relation ’ by rcmovin~ Chpkatc 

tupk?s. Tllis it; plcciscly Ihc funclioci pcrforlncd by our 

rcnlovc.-r/rf,plict,?Irs arriiy. (Duplic alt*l: my Occur in ,A/ sike 

w’c: arc t;,kiny. tl~c pl ojc*c tion Of ic c’cl:ktiOn whirl, ni.;)’ contain 

tuplcs illat differ only in colulnn~. thlt srr! nOt in J) 
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6. Arrays for Join 

6.1 The Join Operation 

We itiustratc the join operation by describing a special 

case; tho join over a single column. 111~ more general ca:,e 

is sketched later in this scclian. The join, C, of Iwo 

relations, A and B, over columns CA and CD rcsprctivcly, is 

written C = A JrC,,C,3i B. The join, C, is the set of luplcs, 

Ck, such that Ck ., a: 1 b ., 
‘ jC,J. i J 

VJ~C~Q a;,~* = bj,CB’ for 

a$A and bJdB. (For the jdm 9 o be well-ticfined, columns CA 

and Cc must be drawn from ihc sarnc unc!crlying dornaiii.) 

The orator “I~cA,c.l ” is defined to be the concatenation 

of its two arguments, with the cxccption that only one of 

aiecA and b SC 
Js B 

is included in the cor\calcnation.i! 

Intuitively, WC check all pairs of tliplrr., ni and bp taken 

from relation A and B, r,cspcctivcly. Whcrc Ihoy match in 

the columns spccifiod by CA and CD, we concatcn.Itc the 

Iwo tuplcs. After removine one of the Iwo matchino, columns 

(to eliminate redundancy), we add the concatenation to the 

join, relation C. 

6.2 The Join Array 

We can formuiatc the resulfs of a join again ir, lcrrns of a 

matrix. Let the matrix T bc defined as 

1 TRUE if 0.C I, 
t = I 

A = bj,cB 

ij 
1 FALSE otherwise. 

That is, ‘ii is true if and only if (1~ and bj tnatch in the 

specified columns. 

If we havo th& matrix T, it is ~.lrai~l~lforwarcl lo ecncratc 

the relation C. For each tij that 11.1~ tliu val~o TN/E (and for 

only those tij), WC simply rclricvc “i and bp ai;d 

concatenate Iheni, rcmoying Ihe redundant colunm. The size 

of the join, ICI, mip.ht be as IarSc acJ the product IA&3[. (This 

happens in the degenerate cake whcrc all tuplcr. in A matih 

all tuplcs in 13 in the spccificd tolmnr~~.) tlowcvcr, for most 

applicati&ns the number of TRUC ti/s in T is far ICSS than 

this product. Thercforc, we can usually gcncratc C fast, 

provided we can produce T quickly. A fast way of 

producing T is the concern of this r.cction. 

t 
31 

t 32 t 
21 

t 
22 

t 
II 

t 
12 

t 
23 

t 13 

Figuro 6-I : .loin array. 

Consider the linear array of proccsrors in fisurc 6-1. We 

use this array to produce the II\aIrix’T. The column CA of 

relation A (tolumn 3 in the cxamplc in lhc pichrrcf ir input 

to the processor array from ils tpp, and moves down. 

Similarly, the column CB Of !3 (colrlrnn 1 ‘in the ‘example) is 

sent through the array from I~OttOlX to top. As the two 

columns “pa%% through” each olhcr, cac.h Q’,C will meet 

each b J, u C B. (WC send the columns throu$ thi a;?rsy in such 

a way that c,ach elcmcnt follows its prcdcccssor aflcr two 

time steps SO that all pairs Of 0’~ 
‘1 A 

and “j,Cc, meet.) When 

Qi,CA meets 1~ .C 
JP 0’ 

a simple colnparisoi>, suffices to dctcrmine 

the value al ‘ii.. T~CVZ tij are cbllccted at the right of the 

array. (In the fieurc, the ‘ii arc shown coming out from the 

array.) Unlike some of the operations discussed earlier, 

here Lo are i&crcslcd in the. tij individual!y, and do not 

perform further accumulation operations on them. 



6.3 General Case 7. Arrays far Division 

6.3.1 Join Over More Than One Column 

In the fgzncral cast, CA and Cg specify n)orc than one 

column. Their specifications are constrained in the following 

way: 

- the number of columns specified by CA mur,t be 
the same as fhat spccificd by Co, and 

- the respective columns in lhc specifications 
must bc b,lscd on the same underlying domains 
(up to a permutation, which can easily be 
handled). 

Given this, ck (= ai1 
F&RI J 

6 ,I c C only if a,+-+ = bj,CB, 

which means thal tuplc ai must malch tuple bi in’& of the 

columns specified by CA and CP; The -concatenation 

0pcl;ator “1 
(CAJ$ 

is defined analogously: the 

concatenation J’ inclu es only one copy of the columns over 

whidh A and B are being joined. 

The c.orrcsponding modification to the prockor array in 

figure G-1 is timplc. Inr.lcac! Of havine 0w colunin Of 

processors in the array, wc have 5e.vcral columns: one for 

each relational colutn~r over which A and l3 are to be joined. 

Each processor cohlmn is rcsponSible for comparing ni and 

bj in come particular column pair, and the rcsult tij is 

propagalcd to the right, in csscniially the baiiic w.iy as in 

the intcrscction array. When Ihey rcnch Ihc right side of 

the prbcessor array, fhc tijs arc used directly, wilhout an 

i,ntcrvening accumulation array. 

6.3.2 Non-Equi-Join 

ihe join operation we have been considering so far in 

this section is usually referred to a% the wp.+joitt, since the 

‘join is pcrformcd on tuplcs for which Ihr values in.columns 

CA equal those in columns CD This notion can be 

generalized to allow any sorl of binaiy comparison (e.::. -c, >, 

etc.) io be clone between the r&van! columns of the two 

tuples. 

The processor array lo pcrforln such an operation is easy 

to .construct. ‘For greater-than-join, say, processors in fhe 

array would simply perform that comparison between CA’ 

and CB The particular operation, lo bc pcrformcd k&t be 

encoded in a few bile, and passed along with thr (1.. and 1. 0 
Or, it might be prkondcd info the array of process& This 

illustrates that some dccrcc of pro~ramnbilily can often be 

piovidod to’ a fkkessor array at Iho expense of additional 

IO&. 

Division .io en operation bctwccn two relations ,(the 

dividend and the divisor) which produces another relation 

(the quotient) as its result. The notation 

“C - * -f JC&CB) 9” me& that C is the result of dividing A 

by B over the columns CA of A and CB of B. 

We thpw how to perform Ihc division operation by a 

processor array for a reslriclcd case of division: A is a 

binary relation and B is a unary relation. Furlhcr, CA and 

CB specify only single columns, The exlcnrion from this to 

the general cast is straightforward (as in the preceding 

section on the join). 

Let the dividend A have columns At and /lz and let the 

divisor B have column B~,‘nnd Ict /l2 and I31 be dcfipd on 

the same underlying domain (which makes their elements 

comparable). Then the divide operation C = A f +A31 B 

produces a quotient C, having column Cl defined on the 

same domain as Al; a value z will appear in Cl if and only if 

-the pair (s,y) appears in A for cvcr$ value y appearing in 81 

[23. An example of the division operation is shown in figure 

7-1. 

A C 

Figure 7-1: Example of relational division 

Cl -- 
i 
Ii 

Ovr systolic array for performins relational division 

consists of two modules: a dividend array and a divisor 

array. Figure 7-2 illustrates how lhc division array works 

on the cxamplc given in figure 7-l. The left-hand column of 

the two columns of processors in the dividend array stores 

(disiinct) clcmcnts appearing in column Iii, one clcmcnt lo a 

processor. (These 6lcmcnts -- ii, j, k) for Ihis example -- 

can be identified by the rer,Iovc-dtcplicnfcs array.) Similarly, 

elcmcnts appcarinp, in the divkor RI are prcloadcd into 

each row of ‘proccs:,ors in the divkor array. In the figure, 

circled clcmcnte rcprcscnl those olcmcnk which are stored 
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DIVIDEND ARRAY DIVISOR ARRAY 

j b 

f f 
i C 

. I‘ 
. C 

(elements in A,) l 

l 

(etcmcnts in AZ) 

Figure 7-2: Division array (in opcratiorr). 

at processors. 

The dividend array comptltcs for each clcmcnt I 

appearine in Al the set of ‘y such lhat (r,y)cA. It works as 

foltows. We take each pair (r,yPA, and pass it into the 

dividend array .from the’bottom; the z into the left column 

and y into the right column. At each time step, the .z wilt be 

in the same processor as some prcloadrd ctcmcnt J, and the 

y will bc’followiny, one step behind it, in the column to the 

right. We compare 2 ,to z, and if they match, WC output a 

TRUE from the rip,ht..side of the proccwor; Okvrisc, vJ1,c 

produce a fALSE. This boolean viltU<! I arrivcas at the 

processor in the right column, just a:. the nssociatcd y 

arrives there. If t is true, thcn,y is output from the right 

side of the processor. Olhcrwisc, some null value is otrtput. 

Thus for each I appearin?, in “1, the non-null values, 

output from the dividend array at, the row whose left 

processor has x stored, arc those y’s such thal (x,y)lA. We 

see that if these y’s include all the elonlcnts Tin Bl, then y 

belongs to Cl. This is checked by the correspondins row bf 

processors, in the divisor ‘array, which takes the y’s as 

inputs. More prcciscly, each processor of the row check; if 

the clement it is.sloring match 05 any Of Ihc y’s passin: from 

left to right alon Ihc row. If every pro&or of the row 

finds at Icast one such match (which is chr~kcd hy cloin~ an 

AND across tllc row after Ihc dividend passes throu~,h 1ll.e 

array), then the y’s contain a, b, c, and d, and thus z bc4on~s 

to Cl. This is the essential idea hchind the division array. 

One can already see that the clivisiorr array provides the 

same kind of rapid computations (rlrin:; simple and re,o.ular 

structures) as other arrays discu-.scd carhcr. 

, 

8. Remarks on fmplmx?ntation and 
Performance 

During the past year, we have dcrigncd prototypes of 

several special-purpose chips al CMIJ. Thusc incluclc a 

pattern-maich chip [3], an imp:,,c-prorccsinL>, chip [e], and a 

tree processor for database applications [9]. The 

pattern-match chip can be viowrd a: ‘a scaled-down version 

of the comparic.on array in Section 3. (This chip has been 

fabric.atcd, t&cd, an? found to work.) The. following 

comments and projections arc based portly on our 

experience with the pattern-rnaicll chip. 

Iti s~tnc of the schemes prescntrd in this p+er, it is the 

case ihat only half of the processors in a systotic array are 

busy at any one lime. This inefficiency can bc avoided in 

the following implcmcntation: rallier lhan marchine two 

relations against each ot:ier along ~IIR systolic, array, we let 

only one relation imve while the other remains fixed. Alsc, 

for simplicity, we have so far a:.sumctl that processors in 

systolic arrays op&alc on words.‘ In implcmcntation, each 

word processor can bc parlitioncd into bit processors to 

achieve modularity at the I~i~4cv.4. A trar~sformation of a 

design from word-love1 !O bit-lcvcl is tlcmorr~fr,~tccl in [3]. 

In gcncrat, many variations on the r.ysiolic Gray., T ,,c, .5 ‘. CL,pr*p.tCd 

are possible. All of thcsc arc cquivalcnl, and cliffcr only in 

implcmcntalion dctailr.. 
,I 

Below, we give fiz+ures for a rt!ar.onahle array size for 

imptcmcntation. White MJCh an array would ho tnrl!c CnOU$ 

for many applicalions, il is also possih!c to u5c the array t0 

solve problems that will not fit cnlircly 0.n it, This calls for 
/ 

the techniqud of dccomposin:: problems. Tl!c trchniquc is 

best illustralcd by a simplr! e~amplc. In the intcrscclion 

problem, consiclcr tile malrix, T, of rctult’r. For {I, ‘t,ar,$ ,’ 
problem, one c.an simply ‘.. partition this .matrix into 

sub-‘problcmr, small enough to fit 011 tiic? array; CX.~ of the%? 
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sub-problems would gcneratc a piccc of the matrix. 

lnterscction is one of Ihc most compulationally demanding 

relational operations, since it rcquirt>s fit11 tuplc cOmparis0ns 

between nlf possible pairs of tuples. VJr cxaminc the speed 

with which systolic arrays can perform intcrscction. 

We make Ihc following assumptions conc.crniny, the kc of 

a typical relation: 

- A tuplc is of size 1500 bits (or about 200 
characters). 

- A relation is of size 10’ tuplcs. 

The following (conscrvativc) cstirnatcs arc typical of results 

that have been achicvcd wilh present NMOS tcchnoiopy: 
. 

- A bit-comparator, lhc? fund;rmcntal workhorse 
unit of our arrays, if. about 24041 x 150~ in 
arca. The comparison is performed (very 
conscrvali\ely!) in about 3’30~, including lime 
for on-chip and Off-chip d&a transfer. 

- With present technolo::y, chips are about 
6000~ x 6000/1 in arca. DiviG0n gives us about 
1000 bit-compara,tors per cllip. (Notice that 
this calc~rlation is realktic only if the cfc~.i~,n is 
rcpctitivcly regular, which is the &EC for our 
systolic arrays.) WC can a:.:.ttrIIc that nonr ‘of 
the comparators on a cllip inc’urs d&y fic~c to 
pin limitaiion~; since the time ior a compdrkon 

is large rclalivc lo Off-cl+ tran:,fcr lime 
(:30rrs), WC can multiple;; about JO bits on a pin 
during a sin:,lc comparison. 

- It is praclical to construct dcviccs involvin& a 
few thousand chips. WC acm~iic 1000 rhips. 
This,p,ivcs UT. tho capability of pcrforminc 106 
comparisons in parallel. 

Based on thcsc assumptions, WC citn inskc Ihr? following 

performa& predictions for inlcrscction. The intcrscction 

rcquircr a total Of 1.5 x lO’l IJil colnparisons, since WC 

need 1500 bit-comparisons for each of the (lO”$ tuplc 

comparisons. The time to perform il;tcrsrction, thcreforo, is: 

(1.5 x lOI ‘comparkons) x (35Ons / lO‘cor~~p~~ri~.o~~s), 

which is ahout 50,rrs. WC brlirvc 111;11 this c5!imtf: is 

extrcmcCy ConScrvativc, even with c:tislin:: lcthnolo~,y. If 

WC assume inslcad, for cxamplc, 2OOf1.:/tollll.,ariscjn, and 

3000 chips, we derive a fisurc of db0ul IOm:. 

The proccsGi2 spk~l ob!;~in;lMc from thc:.r: systolic 

arrays can keep up wilh the c!a!n r;i!r.‘actlit.S, ‘-‘I ~hlc yith Ihe 

fast ma5r. sioragc tlcviccs nv,siM,lr in prcscnl Irchnology. 

Fo; exatiiplc, a mc,ving-hcxacl 4c.k. rplalcs at aboul 3600 

r.p.m., or aboilt nncc cvcry 17rn.t As+:lliiic that wc ciin rccrd 

an cntirc cyl,intlcr in 0nc’ rrvolution, a*. in :mOlliC of the 

.propor.f!d cl,ilitha~.c mnclGnr<. (for a survey of these 

machines, GCC [4J). This is a rnlc Of Bout 500,000 I>;Gcs in 

17ms. In a comparable pc?i-iod of tikc, our systolic array 

can process (for examptc, can intcrsecl) two rclalions, each 

of about 2 million bytes. 

9. Remarks on the Or~anktion of an 
Integrated Systolic System 

Systolic arrays inlroducccl in preccec!iirg sections are 

capable of rapid’proccs5ing of individual rclation;ll dats!)azc 

OperalionS. To process ali of fhc operations rcquircd in: a 

single transaction or a set of transactions, an ihtcr,rated 

system containinK several systolic arrays is nccdcd. Many 

strategies are possible for tlic interconnection of the 

systolic dcvic.cs. TO dccidc which intcrronncclion slratcsy 

to choose, One must consider the sy:,tum rcquircmcnts: 

- I~lit-& capacity for data transfer. As dcscribcd in 
the last section, it is fcar.ihlc lhnt a r:ystolic 

array my process huntlrcds of thousands of 
bytes per milliscconcl. 

- ‘Flcxibilily and f.cncrality. .Thc rvccution order 
Of s)istOtic rlcvicf5 vat ic*s grc.llly Iroil, one 
transaction i0 anolhcr irzn~;aclion. Rrlatiota; 
may have lo hc doccrmpo*.cd lo fil lhc (fiucd) 
tiZIqs of . syr.lolic array:.. lk%lllr. IlTwli 

subrelations must bc storrd outsitlc tiic systolic 
arrays before Ihcy Xc finil!ly cornl)inccl. 

01x organiiation thit scctijr. to watch the. bptcnl 

rcquircmcntc. is the crossbar switch in!crc0n~~cttia~~,cl~pictctl 

in Figure 9-1. Typically, lhc syr.tc~n works I?:: follows. 

Initially, the relevant relalions are read froni diqkr. it30 

memories. (Disks with “lo!:ic-per-track” capabililics [S] can 

of ,courso bc incorporalckl into the r.ystcrn, ~0 thnt sonic 

simple queries ncvcr have to IX! proccssc>tl 0utGd0 the 

disks.) Then the crossbar swilrh is confi:,urc4 T.O kt the 

relevant mcmorics arc conncclcd lo llic :;y:;tolic iirrily that 

will perform the first operation of the Ir.lnsaclion in 

question. Thr: cl;114 is pipclinrd froin Ilk: mciliol ir5 throui,h 

the switch and through thr: prcccr.r,or array. The output of 

the array ir, pipclincd back into anoihrr mumory. This is 

repeat& for each t+l~~tional opc~ration .iii thr trni&tion. 

Du0 to ttrc crossbar siructurc, r:cvcral opcr.~lion!. may be 

run concurrently. The final rc:,ult!; ar0 cventu.+IIy rcturncd 

to the dish (or a u%cr?. trrmin~il, or prinlo, clc.) from :hc 

memory in which they reside. 

In ‘the future, WC plan lo perform a dclailrd analysis and 

comparkan of the crossliar schcinr: and of 0ther altkrnative 

struclurcs. 
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Figure 9-t : Systotl. .Ji ‘: system 
using crossbar switch. 

References 

[II 

123 

D3 

141 

[53 

Codd, E.F. 
A Relational Model of Data ior Large Shared Data 

Banks. 

Comm~o~icatioris of the ACM 13(6h377-387, June, 
1970. 

Date, C.J. 
An Inrroduction to Databnsc Syslons. 
Addison-Wcslcy, Rcadmg, Mass., 1977. 

Foster, M. J. and Kung, ti.7’. 
The Design of Special-qurposc VLSI Chips. 
Computer Macazine 13( I)PG-40, J.wtary, 19SO. 
*An early version of the papc’r, cntilled “Design of 

..Special-Purpose VLSI Chips: Example and 
Opinions”, is lo appear in Procccdines o/t/z 7th 
Intcnrotiokl Sympositm on Compulo 
Rrclzlfcctrtrc, La Baulr, Frantc, May 1980. 

Hsiao, D.K. 
Dst’abase Computers. 
In Yovits, M.C., editor, Admnccs in Comptctcrs, Vol. 

19. Academic Press, New York, 19sO. 
To appear. 

Kung, H.T. and Leincrson, C.2. 
Systolic Arrays (for VLSI). 

163 Kur$,, H.T. and Sonet SW. 
A Systolic Array Chip for the C.orwolution Operator in 

imap proaf3sinp 
Technic al Report VLSl Documcht VO46, 

Carncgic-t&lion University, Ocpartmcnt of 
Computer Scicncc, 1980. 

c73 Kung, H.T. 
Let’s Design Algorithms for VLSI Systems. 
In Froc. Co~fcrcncc on Very Larp Scnlc Itltcpation: 

Architcc~urc, Dcsigtr. Fnhrication, papp 65-90. 
California Instilulc of Technology, January, 1979. 

Also available as a CMU Computer Sticntc 
Dcpartmcnt technical rcporl, Scptcmbcr 1979. 

193 

In Duff, I. S. and Sk-wart, G. W., editor, Spar;c /,fotrix 
Procccdinp 1974 pap Xt-2Ei2. Society for 
hdusfrisl and Applied Mathelwlits, 1979. 

A sligldty different vcrsiou appcxs in Introduction 

to VLSI Systems by C. A. t&ad and L. A. Conway, 
Adtlir.on-Wwlcy, I9I;O, Scciion 8.3; 

Slotnick, U.L. 
Logic per Track Dcviccs. 
In Tou, J., editor, /lrlvnnccs in Contputcrs. Vol. JO, 

pages 291-296. Academic Press, P!ew York, 
1970. 

Song, S.W. 
A Database Akchinc with No:4 Spncc Allocation 

Algorithms. 
Technical Report VLSI Docu~r~cnl VO4?, 

Carnqic-Mellon UnivcrGty, Dopartmcnt of 
Computer Scicnrc, 1920. 

116 


