Question 1 (1 point)
Problem 5.11. (a) (f) (k) (page 170 in 7th edition)
Or
Problem 3.11. (a) (f) (k) (page 80 in 6th edition)

Suppose that each of the following Update operations is applied directly to the database state shown in Figure 5.6 in 7th edition (or Figure 3.6 in 6th edition). Discuss all integrity constraints violated by each operation, if any, and the different ways of enforcing these constraints.

f. Delete the WORKS_ON tuples with Essn = ‘333445555’.

k. Modify the Hours attribute of the WORKS_ON tuple with Essn = ‘999887777’ and Pno = 10 to ‘5.0’.

Question 2 (0.50 point)
Problem 5.18. (page 170 in 7th edition)
Or
Problem 3.18. (page 80 in 6th edition)

Database design often involves decisions about the storage of attributes. For example, a Social Security number can be stored as
one attribute or split into three attributes (one for each of the three hyphen-delineated groups of numbers in a Social Security number—XXX-XX-XXXX). However, Social Security numbers are usually represented as just one attribute. The decision is based on how the database will be used. This exercise asks you to think about specific situations where dividing the SSN is useful.

Question 3 (1 point)
Problem 6.13 (page 205 in 7th edition)
Or
Problem 4.13 (page 114 in 6th edition)

6.13. Write SQL update statements to do the following on the database schema shown in Figure 1.2.
 b. Change the class of student ‘Smith’ to 2.
 d. Delete the record for the student whose name is ‘Smith’ and whose student number is 17.

Question 4 (0.50 point)
Problem 8.34. (c) (d) (page 286 in 7th edition)
Or
Problem 6.34. (c) (d) (page 192 in 6th edition)

8.34. Specify and execute the following queries in relational algebra (RA) using the RA interpreter on the COMPANY database schema in Figure 5.5.
 (c) List names of employees who are directly supervised by Franklin Wang
 (d) List names of employees who work on every project