
604 Chapter 17 Indexing Structures for Files and Physical Database Design

Index file
(<K(i), P(i)> entries)

Block anchor
primary key

value
Block

pointer

Data file
(Primary
key field)

Name

Aaron, Ed
Abbot, Diane

...

...

...

...

...

Acosta, Marc

Adams, John

Adams, Robin

Akers, Jan

Alexander, Ed

Alfred, Bob

Allen, Sam

Allen, Troy

Anders, Keith

Anderson, Rob

Anderson, Zach

Angel, Joe

Archer, Sue

Arnold, Mack

Arnold, Steven

Atkins, Timothy

Wong, James

Wood, Donald

Woods, Manny

Wright, Pam

Wyatt, Charles

Zimmer, Byron

Aaron, Ed

Adams, John

Alexander, Ed

Allen, Troy

Anderson, Zach

Arnold, Mack

Wong, James

Wright, Pam

...

...

...

. .
 .

. .
 .

Ssn Birth_date Job Salary Sex

Figure 17.1
Primary index on the ordering
key field of the file shown in
Figure 16.7.

 17.1 Types of Single-Level Ordered Indexes 607

Data file
(Clustering

field)
Dept_number

1

1

1
2

Name Ssn Birth_date SalaryJob

2

3

3
3

3

3

4
4

5

5

5
5

6
6

6
6

6

8

8
8

1

2

3

4

5

6
8

Index file
(<K(i), P(i)> entries)

Clustering
field value

Block
pointer

Figure 17.2
A clustering index on the Dept_number
ordering nonkey field of an EMPLOYEE file.

There is some similarity between Figures 17.1, 17.2, and 17.3 and Figures 16.11
and 16.12. An index is somewhat similar to dynamic hashing (described in Sec-
tion 16.8.3) and to the directory structures used for extendible hashing. Both are
searched to find a pointer to the data block containing the desired record. A main
difference is that an index search uses the values of the search field itself, whereas a
hash directory search uses the binary hash value that is calculated by applying the
hash function to the search field.

608 Chapter 17 Indexing Structures for Files and Physical Database Design

Data file

Block pointer
NULL pointer

(Clustering
field)

Dept_number
1

1
2
3
4
5
6
8

1
1

Name Ssn Birth_date SalaryJob

Block pointer

2
2

Block pointer

3

3
3
3

Block pointer

3

Block pointer

4
4

Block pointer

5
5
5
5

Block pointer

6
6
6
6

Block pointer

6

Block pointer

8

8
8

NULL pointer

NULL pointer

NULL pointer

NULL pointer

NULL pointer

NULL pointer

Index file
(<K(i), P(i)> entries)

Clustering
field value

Block
pointer

Figure 17.3
Clustering index with a
separate block cluster
for each group of
records that share the
same value for the
clustering field.

 17.2 Multilevel Indexes 613

17.2 Multilevel Indexes
The indexing schemes we have described thus far involve an ordered index file. A
binary search is applied to the index to locate pointers to a disk block or to a record
(or records) in the file having a specific index field value. A binary search requires
approximately (log2 bi) block accesses for an index with bi blocks because each step
of the algorithm reduces the part of the index file that we continue to search by a
factor of 2. This is why we take the log function to the base 2. The idea behind a
multilevel index is to reduce the part of the index that we continue to search by
bfri, the blocking factor for the index, which is larger than 2. Hence, the search
space is reduced much faster. The value bfri is called the fan-out of the multilevel
index, and we will refer to it by the symbol fo. Whereas we divide the record search
space into two halves at each step during a binary search, we divide it n-ways
(where n = the fan-out) at each search step using the multilevel index. Searching a
multilevel index requires approximately (logfo bi) block accesses, which is a sub-
stantially smaller number than for a binary search if the fan-out is larger than 2. In
most cases, the fan-out is much larger than 2. Given a blocksize of 4,096, which is
most common in today’s DBMSs, the fan-out depends on how many (key + block
pointer) entries fit within a block. With a 4-byte block pointer (which would
accommodate 232 − 1 = 4.2 *109 blocks) and a 9-byte key such as SSN, the fan-out
comes to 315.

A multilevel index considers the index file, which we will now refer to as the first
(or base) level of a multilevel index, as an ordered file with a distinct value for each

Table 17.1 Types of Indexes Based on the Properties of the Indexing Field

Index Field Used for Physical
Ordering of the File

Index Field Not Used for Physical
Ordering of the File

Indexing field is key Primary index Secondary index (Key)
Indexing field is nonkey Clustering index Secondary index (NonKey)

Table 17.2 Properties of Index Types

Type of Index

Number of (First-Level)
Index Entries

Dense or Nondense
(Sparse)

Block Anchoring
on the Data File

Primary Number of blocks in data file Nondense Yes
Clustering Number of distinct index field

values
Nondense Yes/noa

Secondary (key) Number of records in data file Dense No
Secondary (nonkey) Number of recordsb or number

of distinct index field valuesc
Dense or Nondense No

aYes if every distinct value of the ordering field starts a new block; no otherwise.
bFor option 1.
cFor options 2 and 3.

 17.2 Multilevel Indexes 615

Data file

Primary
key field

Second (top)
level

Two-level index

2
5

8
12

15
21

24
29

35
36

39
41

44
46

51
52

55
58

63
66

71
78

80
82

85
89

2

35

55

85

First (base)
level

2

8

15

24

35

39

44

51

55

63

71

80

85

Figure 17.6
A two-level primary index resembling ISAM (indexed sequential access method) organization.

618 Chapter 17 Indexing Structures for Files and Physical Database Design

higher-capacity indexes. In the DBMSs prevalent in the market today, the common
structure used for indexing is B+-trees.

17.3.1 Search Trees and B-Trees
A search tree is a special type of tree that is used to guide the search for a record,
given the value of one of the record’s fields. The multilevel indexes discussed in Sec-
tion 17.2 can be thought of as a variation of a search tree; each node in the multi-
level index can have as many as fo pointers and fo key values, where fo is the index
fan-out. The index field values in each node guide us to the next node, until we
reach the data file block that contains the required records. By following a pointer,
we restrict our search at each level to a subtree of the search tree and ignore all
nodes not in this subtree.

Search Trees. A search tree is slightly different from a multilevel index. A
search tree of order p is a tree such that each node contains at most p − 1 search
values and p pointers in the order <P1, K1, P2, K2, … , Pq−1, Kq−1, Pq>, where q ≤ p.
Each Pi is a pointer to a child node (or a NULL pointer), and each Ki is a search
value from some ordered set of values. All search values are assumed to be
unique.8 Figure 17.8 illustrates a node in a search tree. Two constraints must hold
at all times on the search tree:

 1. Within each node, K1 < K2 < … < Kq−1.
 2. For all values X in the subtree pointed at by Pi, we have Ki−1 < X < Ki for

1 < i < q; X < Ki for i = 1; and Ki−1 < X for i = q (see Figure 17.8).

Whenever we search for a value X, we follow the appropriate pointer Pi according
to the formulas in condition 2 above. Figure 17.9 illustrates a search tree of order
p = 3 and integer search values. Notice that some of the pointers Pi in a node may be
NULL pointers.

We can use a search tree as a mechanism to search for records stored in a disk file.
The values in the tree can be the values of one of the fields of the file, called the

8This restriction can be relaxed. If the index is on a nonkey field, duplicate search values may exist and
the node structure and the navigation rules for the tree may be modified.

P1

P1

K1 Ki–1

Kq–1 < X

X

Ki–1 < X < Ki

X

X < K1

X

Pi Ki Kq–1 Pq.Figure 17.8
A node in a search
tree with pointers to
subtrees below it.

search field (which is the same as the index field if a multilevel index guides the
search). Each key value in the tree is associated with a pointer to the record in the
data file having that value. Alternatively, the pointer could be to the disk block con-
taining that record. The search tree itself can be stored on disk by assigning each
tree node to a disk block. When a new record is inserted in the file, we must update
the search tree by inserting an entry in the tree containing the search field value of
the new record and a pointer to the new record.

Algorithms are necessary for inserting and deleting search values into and from the
search tree while maintaining the preceding two constraints. In general, these algo-
rithms do not guarantee that a search tree is balanced, meaning that all of its leaf
nodes are at the same level.9 The tree in Figure 17.7 is not balanced because it has
leaf nodes at levels 1, 2, and 3. The goals for balancing a search tree are as follows:

 ■ To guarantee that nodes are evenly distributed, so that the depth of the tree
is minimized for the given set of keys and that the tree does not get skewed
with some nodes being at very deep levels

 ■ To make the search speed uniform, so that the average time to find any ran-
dom key is roughly the same

Minimizing the number of levels in the tree is one goal, another implicit goal is to
make sure that the index tree does not need too much restructuring as records are
inserted into and deleted from the main file. Thus we want the nodes to be as full as
possible and do not want any nodes to be empty if there are too many deletions.
Record deletion may leave some nodes in the tree nearly empty, thus wasting stor-
age space and increasing the number of levels. The B-tree addresses both of these
problems by specifying additional constraints on the search tree.

B-Trees. The B-tree has additional constraints that ensure that the tree is always
balanced and that the space wasted by deletion, if any, never becomes excessive.
The algorithms for insertion and deletion, though, become more complex in order
to maintain these constraints. Nonetheless, most insertions and deletions are sim-
ple processes; they become complicated only under special circumstances—namely,
whenever we attempt an insertion into a node that is already full or a deletion from

5

3

Tree node pointer

Null tree pointer

6 9

7 8 121

Figure 17.9
A search tree of
order p = 3.

9The definition of balanced is different for binary trees. Balanced binary trees are known as AVL trees.

 17.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees 619

