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Name

Aaron, Ed

Abbott, Diane

Block 1

Acosta, Marc

Ssn Birth_date

...

Job Salary Sex

...

Adams, John

Adams, Robin

Block 2

Akers, Jan

...

Alexander, Ed

Alfred, Bob

Block 3

Allen, Sam

...

Allen, Troy

Anders, Keith

Block 4

Anderson, Rob

...

Anderson, Zach

Angeli, Joe

Block 5

Archer, Sue

...

Arnold, Mack

Arnold, Steven

Block 6

Atkins, Timothy

Wong, James

Wood, Donald

Block n–1

Woods, Manny

...

Wright, Pam

Wyatt, Charles

Block n

Zimmer, Byron

...

Figure 16.7 
Some blocks of an ordered (sequential) file of EMPLOYEE records with 
Name as the ordering key field.
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Noninteger hash field values can be transformed into integers before the mod func-
tion is applied. For character strings, the numeric (ASCII) codes associated with 
characters can be used in the transformation—for example, by multiplying those 
code values. For a hash field whose data type is a string of 20 characters, Algo-
rithm 16.2(a) can be used to calculate the hash address. We assume that the code 
function returns the numeric code of a character and that we are given a hash field 
value K of type K: array [1..20] of char (in Pascal) or char K[20] (in C).
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Figure 16.8 
Internal hashing data structures. (a) Array  
of M positions for use in internal hashing.  
(b) Collision resolution by chaining records.
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Figure 16.9 
Matching bucket numbers to disk 
block addresses.
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Figure 16.10 
Handling overflow for buckets 
by chaining.
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directory is also split into two locations, both of which have the same pointer value 
as did the original location.

The main advantage of extendible hashing that makes it attractive is that the perfor-
mance of the file does not degrade as the file grows, as opposed to static external 
hashing, where collisions increase and the corresponding chaining effectively 
increases the average number of accesses per key. Additionally, no space is allocated 
in extendible hashing for future growth, but additional buckets can be allocated 
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Figure 16.11 
Structure of the 
extendible hashing 
scheme.
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based on hi will hash to either bucket 0 or bucket M based on hi+1; this is necessary 
for linear hashing to work.

As further collisions lead to overflow records, additional buckets are split in the 
linear order 1, 2, 3, … . If enough overflows occur, all the original file buckets 0, 1, 
… , M − 1 will have been split, so the file now has 2M instead of M buckets, and all 
buckets use the hash function hi+1. Hence, the records in overflow are eventually 
redistributed into regular buckets, using the function hi+1 via a delayed split of their 
buckets. There is no directory; only a value n—which is initially set to 0 and is 
incremented by 1 whenever a split occurs—is needed to determine which buckets 
have been split. To retrieve a record with hash key value K, first apply the function 
hi to K; if hi(K) < n, then apply the function hi+1 on K because the bucket is already 
split. Initially, n = 0, indicating that the function hi applies to all buckets; n grows 
linearly as buckets are split.

Data File Buckets

Bucket for records
whose hash values
start with 000

Bucket for records
whose hash values
start with 001

Bucket for records
whose hash values
start with 01

Bucket for records
whose hash values
start with 10

Bucket for records
whose hash values
start with 110

Bucket for records
whose hash values
start with 111

Directory
0

1

0

1

0

1

0

1

0

1

internal directory node

leaf directory node

Figure 16.12 
Structure of the dynamic hashing scheme.
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disks using parity or some other error-correction code, reliability can be improved. 
In Sections 16.10.1 and 16.10.2, we discuss how RAID achieves the two important 
objectives of improved reliability and higher performance. Section 16.10.3 discusses 
RAID organizations and levels.

16.10.1 Improving Reliability with RAID
For an array of n disks, the likelihood of failure is n times as much as that for one 
disk. Hence, if the MTBF (mean time between failures) of a disk drive is assumed to 
be 200,000 hours or about 22.8 years (for the disk drive in Table 16.1 called Seagate 
Enterprise Performance 10K HDD, it is 1.4 million hours), the MTBF for a bank of 
100 disk drives becomes only 2,000 hours or 83.3 days (for a bank of 1,000 Seagate 
Enterprise Performance 10K HDD disks it would be 1,400 hours or 58.33 days). 
Keeping a single copy of data in such an array of disks will cause a significant loss of 
reliability. An obvious solution is to employ redundancy of data so that disk failures 
can be tolerated. The disadvantages are many: additional I/O operations for write, 
extra computation to maintain redundancy and to do recovery from errors, and 
additional disk capacity to store redundant information.

One technique for introducing redundancy is called mirroring or shadowing. 
Data is written redundantly to two identical physical disks that are treated as one 
logical disk. When data is read, it can be retrieved from the disk with shorter 
queuing, seek, and rotational delays. If a disk fails, the other disk is used until the 
first is repaired. Suppose the mean time to repair is 24 hours; then the mean time 
to data loss of a mirrored disk system using 100 disks with MTBF of 200,000 
hours each is (200,000)2/(2 * 24) = 8.33 * 108 hours, which is 95,028 years.18 Disk 
mirroring also doubles the rate at which read requests are handled, since a read 
can go to either disk. The transfer rate of each read, however, remains the same as 
that for a single disk.
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Figure 16.13 
Striping of data 
across multiple disks. 
(a) Bit-level striping 
across four disks.  
(b) Block-level striping 
across four disks.

18The formulas for MTBF calculations appear in Chen et al. (1994).




