
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999 3

Concurrency Control in Database Systems
Bharat Bhargava, Fellow, IEEE

Abstract—Ideas that are used in the design, development, and performance of concurrency control mechanisms have been
summarized. The locking, time-stamp, optimistic-based mechanisms are included. The ideas of validation in optimistic approach are
presented in some detail. The degree of concurrency and classes of serializability for various algorithms have been presented.
Questions that relate arrival rate of transactions with degree of concurrency and performance have been briefly presented. Finally,
several useful ideas for increasing concurrency have been summarized. They include flexible transactions, adaptability, prewrites,
multidimensional timestamps, and relaxation of two-phase locking.

Index Terms—Degree of concurrency, adaptability, time-stamp, optimistic, classes of serializability, performance, flexible
transactions.

——————————���F���——————————

1 INTRODUCTION

ATABASE systems are essential for many applications,
ranging from space station operations to automatic

teller machines. A database state represents the values of
the database objects that represent some real-world entity.
The database state is changed by the execution of a user
transaction. Individual transactions running in isolation are
assumed to be correct. When multiple users access multiple
database objects residing on multiple sites in a distributed
database system, the problem of concurrency control arises.

The database system through a scheduler must monitor,
examine, and control the concurrent accesses so that the
overall correctness of the database is maintained. There
are two criteria for defining the correctness of a database:
database integrity and serializability [5]. The database in-
tegrity is satisfied by assigning a set of constraints (predi-
cates or rules) that must be satisfied for a database to be
correct. The serializability ensures that database transitions
from one state to the other are based on a serial execution of
all transactions. For formal definitions, we refer the reader
to Appendix A.

Concurrency control in database system has been
the focus of research in the past 20 years. Concurrency
control problems and solutions have been formalized in
[24] and implemented and used in a variety of real world
applications [17].

In this paper, we present several classes of concur-
rency control approaches and present a short survey of
ideas that have been used for designing concurrency con-
trol algorithms. We have presented ideas that give an
insight in the performance of these algorithms. Finally we
present a few ideas that are useful in increasing the degree
of concurrency.

2 CONCURRENCY CONTROL APPROACHES
AND ALGORITHMS

Our main concern in designing a concurrency control algo-
rithm is to correctly process transactions that are in conflict.
Each transaction has a read set and a write set. Two trans-
actions conflict if the read set of one transaction intersects
with the write set of the other transaction and/or the write
set of one transaction conflicts with the write set of the
other transaction. We illustrate this further in Fig. 1.

If read set S(R1) and write set S(W2) have some database
entities (or items) in common, we say that the read set of T1
conflicts with the write set of T2. This is represented by the
diagonal edge in the figure. Similarly if S(R2) and S(W1)
have some database items in common, we draw the other
diagonal edge.

If S(W1) and S(W2) have some database items in com-
mon, we say that the write set of T1 conflicts with the write
set of T2. This situation is represented by the horizontal
edge at the bottom.

We do not need to worry about the conflict between the
read sets of the two transactions because read actions do
not change the values of the database entities.

It must be noted that transactions T1 and T2 can conflict
only if both are executing at the same time. If, for example,
T1 has finished before T2 was submitted to the system, even
if their read and write sets intersect, they are not considered
to be in conflict.

1041-4347/99/$10.00 © 1999 IEEE

²²²²²²²²²²²²²²²²

•� B. Bhargava is with the Department of Computer Sciences, Purdue
University, West Lafayette, IN 47907. E-mail: bb@cs.purdue.edu.

Manuscript received 7 July 1997; revised 26 Jan. 1999.
For information on obtaining reprints of this article, please send e-mail
to: tkde@computer.org, and reference IEEECS Log Number 109082.

D

Fig. 1. Types of conflicts for two transactions.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

Generic Approaches to Synchronization
There are basically three generic approaches that can be
used to design concurrency control algorithms. The syn-
chronization can be accomplished by utilizing:

•� Wait: If two transactions conflict, conflicting actions of
one transaction must wait until the actions of the
other transactions are completed.

•� Timestamp: The order in which transactions are exe-
cuted is selected based on a time stamp. Each trans-
action is assigned a unique timestamp by the system
and conflicting actions of two transactions are proc-
essed in timestamp order. The time stamp may be as-
signed in the beginning, middle or end of the execu-
tion. Version-based approaches assign time stamps to
database objects.

•� Rollback: If two transactions conflict, some actions of
a transaction are undone or rolled back or else one of
the transactions is restarted. This approach is also
called optimistic because it is expected that conflicts
are such that only a few transactions would rollback.

In the following section, we give further details of each
of these approaches and describe the concurrency control
algorithms that are based on them.

2.1 Algorithms Based on Wait Mechanism
When two transactions conflict, one solution is to make one
transaction wait until the other transaction has released the
entities common to both. To implement this, the system can
provide locks on the database entities. Transactions can get a
lock on an entity from the system, keep it as long as the
particular entity is begin operated upon, and then give the
lock back. If a transaction requests the system for a lock on
an entity, and the lock has been given to some other trans-
action, the requesting transaction must wait. To reduce the
waiting time when a transaction wants to read, there are
two types of locks that can be employed, based on whether
the transaction wants to do a read operation or a write op-
eration on an entity:

1)�Readlock: The transaction locks the entity in a shared
mode. Any other transaction waiting to read the same
entity can also obtain a readlock.

2)�Writelock: The transaction locks the entity in an exclu-
sive mode. If one transaction wants to write on an en-
tity, no other transaction may get either a readlock or
a writelock.

When we say lock, it means any of the above types
of lock. After a transaction has finished operations on an
entity, the transaction can do an unlock operation. After an
unlock operation, either type of lock is released, and the
entity is made available to other transactions that may
be waiting.

It is important to note that lock and unlock operations
can be embedded in a transaction by the user or be trans-
parent to the transaction. In the later case, the system takes
the responsibility of correctly granting and enforcing lock
and unlock operations for each transaction.

Locking an entity gives rise to two new problems:
livelock and deadlock. Livelock occurs when a transaction
repeatedly fails to obtain a lock. Deadlock occurs when
various transactions attempt locks on several entities si-
multaneously; each transaction gets a lock on a different
entity and waits for the other transactions to release the
lock on the entities that they have succeeded in securing.

The problem of deadlock can be resolved by the follow-
ing approaches, among others:

•� Each transaction locks all entities at once. If some
locks are held by some other transaction, then the
transaction releases any locks that it was able to
obtain.

•� Assign an arbitrary linear ordering to the items, and
require all transactions to request locks in this order.

Gray and Reuter [17] has described experiments in
which it was observed that deadlocks in database systems
are very rare and it may be cheaper to detect and resolve
them rather than to avoid them.

Since the correctness criterion for concurrently process-
ing several transactions is serializability, locking must be
done correctly to assure the above property. One simple
protocol that all transactions can obey to ensure seri-
alizability is called Two-phase Locking (2PL). The protocol
simply requires that in any transaction, all locks must pre-
cede all unlocks. A transaction operates in two phases: The
first phase is the locking phase, and the second phase is the
unlocking phase. The first phase can also be considered as
the growing phase, in which a transaction obtains more and
more locks without releasing any. By releasing a lock, the
transaction is considered to have entered the shrinking
phase. During the shrinking phase the transaction releases
more and more locks and is prohibited from obtaining ad-
ditional locks. When the transaction terminates, all re-
maining locks are automatically released. The instance just
before the release of the first lock is called lockpoint. The two
phases and lockpoint are illustrated in Fig. 2.

We now present a simple centralized algorithm that
utilizes locking in a distributed database system. For the
sake of simplicity, we may assume that all transactions
write into the database and the database is fully replicated.
In real systems it might be very inefficient to have a fully
replicated database. Moreover, the majority of the transac-
tions usually only read from the database. But since multi-
ple copies of a given entity and the write operations of
transactions are the major reason for studying concurrency
control algorithms, we focus on these issues.

2.1.1 A Sample Centralized Locking Concurrency
Control Algorithm

A brief outline of a simple centralized locking algorithm is
given below. When a transaction Ti arrives at node X, the
following steps are performed:

1)�Node X requests from the central node the locks for
all the entities referenced by the transaction.

2)�The central node checks all the requested locks. If
some entity is already locked by another transaction,
then the request is queued. There is a queue for each
entity and the request waits in one queue at a time.

BHARGAVA: CONCURRENCY CONTROL IN DATABASE SYSTEMS 5

3)�When the transaction gets all its locks, it is executed
at the central node (the execution can also take place
at node X, but that may require more messages). The
values of read set are read from the database, neces-
sary computations are carried out, and the values
of the write set are written in the database at the cen-
tral node.

4)�The values of the write set are transmitted by the
central node to all other nodes (if the database is fully
replicated).

5)�Each node receives the new write set and updates the
database; then an acknowledgment is sent back to the
central node.

6)�When the central node receives acknowledgments
from all other nodes in the system, it knows that
transaction Ti has been completed at all nodes. The
central node releases the locks and starts processing
the next transaction.

Some interesting variations of the centralized locking al-
gorithm are as follows:

•� Locking at Central Node, Execution at all Nodes. Instead
of executing the transaction at the central node, we
can only assign the locks at the central node and send
the transaction back to node X. The transaction Ti is
executed at node X. The values of the read set are
read, and the values of the write set are obtained at
node X. Node X sends the values of the write set and
obtains acknowledgments from all other nodes. It
then knows that transaction Ti has been completed.
The node X sends a message to unlock entities refer-
enced by Ti. The central node after receiving this mes-
sage releases the locks and starts assigning locks to
waiting transactions.

•� Avoid Acknowledgments, Assign Sequence Numbers. In
the centralized control algorithm, the acknowledg-
ments are needed by the central node (or node X in
the above extension) to find out if the values of the
write set have been written in the database at every

node. But it is not necessary for the central node
to wait for this to happen; it is sufficient for the
central node to guarantee that the write set values
are written at every node in the same order as they
were performed at the central node. To achieve this
the central node can assign a monotonically increas-
ing sequence number to each transaction. The sequence
number is appended to the write set of the transaction
and is used to order the update of the new values into
the database at each node.

Now the central node does not have to wait for any ac-
knowledgments, but the equivalent effect is achieved. This
can make the centralized control algorithm more efficient.

Sequence numbers may cause additional problems. Sup-
pose two transactions T5 and T6 are assigned sequence
numbers 5 and 6, respectively, by the central node. Let us
further suppose that T5 and T6 have no entities in common
and so do not conflict. If transaction T5 is very long, trans-
action T6, which arrived at the central node after T5, may
be ready to write the values of its write set, but this opera-
tion for T6 must wait at all nodes for T5. A simple solution
to this problem is to attach the sequence numbers of all
lower-numbered transactions for which a given transaction
must wait before writing in the database. This list is called
a wait-for list. In such a case, a transaction waits only for
the transactions in its wait-for list. The wait-for list is at-
tached to the write set of each transaction. In some cases the
size of the wait-for list can grow very large, but transitivity
among sequence numbers in wait-for lists can be used to
reduce it. Moreover a complement of this wait-for list is
called do not-wait-for list can also be used. Many such ideas
are discussed in [14]. The notion of wait-for list is similar to
causal ordering as discussed in [27]. In causal ordering, a
message carries information about its transitive causal
predecessors and the overheads to achieve this can be re-
duced by requiring that each message carries information
about its direct predecessor only. Causal ordering has also
been discussed in [7].

Fig. 2. Two-phase locking and lockpoint: � Obtain lock; � Release lock.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

•� Global Two-phase Locking. This is a simple variation
of the centralized locking mechanisms. Instead of
a transaction getting all locks in the beginning and
releasing all locks in the end, the policy of two-
phase locking is employed. Each transaction obtains
the necessary locks as they are needed, computes,
and then releases locks on entities that are no long-
er needed. A transaction cannot get a lock after it
has released any lock. So if more locks are needed
in the future, it should hold on to all the present locks.
The other parts of the algorithm remain the same
as before.

•� Primary Copy Locking. In this variation, instead of se-
lecting a node as the central controller, a copy of each
entity on any node is designated as the primary copy
of the entity. A transaction must obtain the lock on the
primary copy of all entities referenced by it. At any
given time the primary copy contains the most up-to-
date value for that entity.

It is important to point out that locking approaches are
in general pessimistic. For example, two-phase locking is a
sufficient condition rather than the necessary condition for
serializability. As an example, if an entity is only used by a
single transaction, it can be locked and unlocked freely. The
question is, “How can we know this?” Since this informa-
tion is not known to the individual transaction, it is usually
not utilized. Thus locking that is based on prevention of
access does not fully benefit from actual favorable condi-
tions that may exist.

2.2 Algorithms Based on Time-Stamp Mechanism
Timestamp is a mechanism in which the serialization order
is selected a priori; the transaction execution is obliged to
obey this order. In timestamp ordering, each transaction is
assigned a unique timestamp by the scheduler or concur-
rency controller. Obviously, to achieve unique timestamps
for transactions arriving at different nodes of a distributed
system, all clocks at all nodes must be synchronized or else
two identical timestamps must be resolved.

Lamport [20] has described an algorithm to synchronize
distributed clocks via message passing. If a message arrives
at a local node from a remote node with a higher time-
stamp, it is assumed that the local clock is slow or behind.
The local clock is incremented to the timestamp of the re-
cently received message. In this way all clocks are advanced
until they are synchronized. In the other scheme where two
identical timestamps must not be assigned to two transac-
tions, each node assigns a timestamp to only one transac-
tion at each tick of the clock. In addition the local clock time
is stored in higher-order bits and the node identifiers are
stored in the lower-order bits. Because node identifiers are
different, this procedure will ensure unique timestamps.

When the operations of two transactions conflict, they
are required to be processed in timestamp order. It is easy
to prove that timestamp ordering (TSO) produces serializ-
able histories. Thomas [29] has studied the correctness and im-
plementation of this approach and described it. Essentially
each node processes conflicting operations in timestamp

order, each read-write conflict relation and write-write
conflict relation is resolved by timestamp order. Conse-
quently all paths in the relation are in timestamp order and,
since all transactions have unique timestamps, it follows
that no cycles are possible in a graph representing transac-
tion histories.

2.2.1 Timestamp Ordering with Transaction Classes
In this approach, it is assumed that the read set and the
write set of every transaction is known in advance. This
information is used to group transactions into predefined
classes. A transaction class is defined by a read set and a
write set. A transaction T is a member of a class C if the
read set of T is a subset of the read set of class C and the
write set of T is a subset of the write set of class C. Class
definitions are used to provide concurrency control. This
mechanism was used in the development of a prototype
distributed database management system called SDD-1,
developed by the Computer Corporation of America [3].

2.2.2 Distributed Voting Algorithm
This algorithm uses distributed control to decide which
transaction can be accepted and executed. The nodes of the
distributed database system communicate among them-
selves and vote on each transaction. If a transaction gets a
majority of OK votes, it is accepted for execution and com-
pletion. A transaction may also receive a reject vote, in
which case it must be restarted. In addition to voting OK
and reject, nodes can also defer or postpone voting on a
particular transaction.

This approach is a result of the work of Thomas [29]. The
timestamps are maintained for the database entities. A
timestamp on an entity represents the time when this entity
was last updated.

2.3 Algorithms Based on Rollback Mechanisms
As we have seen in the last two sections, timestamp algo-
rithms are a major departure from the locking or the wait
mechanisms. In this section, a family of nonlocking or
optimistic concurrency control algorithms [19] are presented.
In this approach, the idea is to validate a transaction against
a set of previously committed transactions. If the validation
fails, the read set of the transaction is updated and the
transaction repeats its computation and again tries for vali-
dation. The validation phase will use conflicts among the
read sets and the write sets along with certain timestamp
information. The validation procedure starts when a trans-
action has completed its execution under the optimistic
assumption that other transactions would not conflict with
it. The optimistic approach maximizes the utilization of
syntactic information and attempts to make use of some
semantic information about each transaction. If no a priori
information about an incoming transaction is available to
the concurrency controller, it cannot preanalyze the trans-
action and try to guess potential effects on database entities.
On the other hand, maximum information is available
when a transaction has completed its processing. A concur-
rency controller can make decisions about which transac-
tion must abort while other transactions may proceed. This

BHARGAVA: CONCURRENCY CONTROL IN DATABASE SYSTEMS 7

decision can be made at the time of arrival of a transaction,
during the execution of a transaction, or the decision can be
made at the end of processing. Decisions made at arrival
time will tend to be pessimistic and decisions made at the
end may invalidate the transaction processing and require
rollback. If the transactions’ effects are kept in a private
space and are not made known to other transactions until
the concurrency controller ensures their correctness, one
can design concurrency control mechanisms that employ
maximum information at the cost of restarting some trans-
actions. The extent of this restart will be proportional to the
degree of conflict among concurrent transactions. A similar
approach was suggested in [19] for a centralized hierarchi-
cal database system and was studied further in [4], [8].

There are four phases in the execution of a transaction in
the optimistic concurrency control approach:

1)�Read: Since reading a value of an entity cannot cause a
loss of integrity, reads are completely unrestricted. A
transaction reads the values of a set of entities (called
read set) and assigns them to a set of local variables.
The names of local variables have one-to-one corre-
spondence to the names of entities in the databases,
but the values of local variables are an instance of a
past state of the database and are only known to the
transaction. Of course since a value read by a transac-
tion could be changed by a write of another transac-
tion, making the read value incorrect, the read set is
subject to validation. The read set is assigned a time-
stamp denoted by P(Ri).

2)�Compute: The transaction computes a set of values for
data entities called the write set. These values are as-
signed to a set of corresponding local variables. Thus
all writes after computation take place on a transac-
tion’s copy of the entities of the database.

3)�Validate: The transaction’s local read set and write set
are validated against a set of committed transactions.
Details of this phase constitute a main part of this al-
gorithm and are given in the next section.

4)�Commit and Write (called write for short): If the trans-
action succeeds in validation, it is considered com-
mitted in the system and is assigned a timestamp de-
noted by P(Wi). Otherwise the transaction is rolled
back or restarted at either the compute phase or the
read phase. If a transaction succeeds in the validation
phase, its write set is made global and the values of
the write set become values of entities in the database
at each node.

All four phases of concurrently processing transactions
can be interleaved, but the read phase should precede the
computation and validation phase.

2.3.1 The Validation Phase
The concurrency controller can utilize syntactic infor-
mation, semantic information, or a combination of the two.
Here we discuss the use of syntactic information in the
context of a validation at one node only. For use of semantic
information, we refer the reader to [5].

Kung and Papadimitriou [18] have shown that when
only the syntactic information is available to the concurren-
cy controller, serializability is the best achievable correct-
ness criterion. We now describe the validation phase.

A transaction enters the validation phase only after
completing its computation phase. The transaction that en-
ters the validation phase before any other transaction is
automatically validated and committed. This is because
initially the set of committed transactions is empty. This
transaction writes updated values in the database. Since
this transaction may be required to validate against future
transactions, a copy of its read and write sets is kept by the
system. Any transaction that enters the validation phase
validates against the set of committed transactions that
were concurrent with it. As an extension the validation pro-
cedure could include validation against other transactions
currently in the validation phase.

Consider two transactions Ti and Tj. Let S(Ri) and S(Rj)
be the read sets and S(Wi) and S(Wj) be the write sets of Ti

and Tj, respectively. Let P(Ri) and P(Rj) denote the time
when the last item of the read set S(Ri) and S(Rj) were read
from the database and let P(Wi) and P(Wj) denote the time
when the first item of the write set S(Wi) and S(Wj) will be
or were written in the database.

Assume Ti arrives in the system before Tj. Let Tj be a
committed transaction when the transaction Ti arrives for
validation. Now there are four possibilities:

1)� If Ti and Tj do not conflict, Ti is successful in the vali-
dation phase and can either proceed or follow Tj.

2)� If S(Ri) > S(Wj) ¡ Ø and S(Rj) > S(Wi) ¡ Ø, Ti fails in
the validation phase and restarts.

3)� If S(Ri) > S(Wj) ¡ Ø and S(Rj) > S(Wi) = Ø, Ti is suc-
cessful in validation. Ti must proceed Tj in any serial
history since P(Ri) < P(Wj). This possibility is illus-
trated as follows:

The edge between S(Wi) and S(Wj) does not matter
because if S(Wi) intersects with S(Wj), then S(Wi)
can be replaced by S(Wi) - [S(Wi) > S(Wj)]. In other
words, Ti will write values for only those entities
that are not common with the write set of Tj. If we
do so, we get the equivalent effect as if Ti were writ-
ten before Tj.

4) If S(Ri) > S(Wj) = Ø and S(Rj) > S(Wi) ¡ Ø, Ti is suc-
cessful in validation. Ti must follow Tj in any serial
history since P(Wi) > P(Rj). This possibility is illus-
trated as follows:

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

For a set of concurrent transactions we proceed as fol-
lows: For each transaction that is validated and enters the
list of committed transactions, we draw a directed edge
according to the following rules:

•� If Ti and Tj do not conflict, do not draw any edge.
•� If Ti must precede Tj, draw an edge from Ti to Tj,

Ti � Tj.
•� If Ti must follow Tj, draw an edge from Tj to Ti,

Ti � Tj.

Thus, a directed graph is created for all committed
transactions with transactions as nodes and edges as ex-
plained above.

When a new transaction Ti arrives for validation, it is
checked against each committed transaction to check if Ti

should precede or follow, or if the order does not matter.

Condition for Validation: There is never a cycle in the
graph of committed transactions because they are serializ-
able. If the validating transaction creates a cycle in the graph,
it must restart or rollback. Otherwise, it is included in the
set of committed transactions. We assume the validation of
a transaction to be in the critical section so that the set of
committed transactions does not change while a transaction
is actively validating.

In case a transaction fails in validation, the concurrency
controller can restart the transaction from the beginning
of the read phase. This is because the failure in the valida-
tion makes the read set of the failed transaction incorrect.
The read set of such a transaction becomes incorrect be-
cause of some write sets of the committed transactions.
Since the write sets of the committed transactions meet the
read set of the failed transaction (during validation), it may
be possible to update the values of the read set of the trans-
action at the time of validation. If this is possible, the failed
transaction can start at the beginning of the compute phase
rather than at the beginning of the read phase. This will
save the I/O access required to update the read set of the
failed transaction.

2.3.2 Implementation Issues
Let Ti be the validating transaction and let Tj be a member
of a set of committed transactions.

The read sets and write sets of the committed transac-
tions are kept in the system. The transaction is validated
against the committed transactions. The committed trans-
actions are selected in the order of their commitment. The
read set is updated by the conflicting write set at the time of
each validation. If none of the transactions conflict with the
validating transaction, it is considered to have succeeded in
the validation and hence to have committed.

This obviously requires updating a given entity of the
read set many times and thus is inefficient. But one nice
property of this procedure is that the transaction does not
have to restart from the beginning and does not have to
read the database on secondary storage.

A practical question is whether the read sets and write
sets can be stored in memory. The transactions Tj that must
be stored in memory must satisfy the following condition:
If Tj is a committed transaction, store Tj for future valida-
tion if Ti · set of committed transaction such that:

{P(Ri) < P(Wj)} AND {S(Ri) > S(Wj) ¡ f}

It has been shown that the set of transactions to be
stored for future validation will usually be small [4]. In
general, a maximum size of the number of committed
transactions that can be stored in the memory can be de-
termined at design time. In case the number of committed
transactions exceed this limit, the earliest committed trans-
action Tj can be deleted from this list. But care should be
taken to restart (or invalidate) all active transactions Ti for
which P(Ri) < P(Wj) before Tj is deleted.

A DETAILED EXAMPLE. This example illustrates a variety of
ideas of optimistic approach and its advantages over
locking. We assume that a history is presented to a
scheduler (concurrency controller). The scheduler ei-
ther accepts or rejects the history. It does so by trying
conflict preserving exchanges on the input history to
check if it can be serializable.

In this example, we use Ri and Wi to represent the read
action (as well as the read set) and the write action (as well
as the write set) of a transaction Ti.

Let h be an input history of n transactions to the sched-
uler as follows:

h = R1R2W2R3W3 LLL RnWnW1

Here transaction T1 executes the read actions, followed by
the read/write action of T2, T3, ¤, Tn, followed by the write
actions of T1.

Suppose R1 and W2 conflict as represented by an edge
as follows:

The history h is not allowed in the locking protocols be-
cause W2 is blocked by R1. If T1 is a long transaction and T2
is a small transaction, the response time for T2 will suffer. In
general T1 can block T2, T2 can block T3 (if T2 and T3 have a
conflict) and so on.

Let us consider several cases in optimistic approach.

Case 1: For the history h, in the optimistic approach of
Kung and Robinson [19], Ti (i = 2, ¤, n) can commit. Write
sets (Wi s) of committed transactions are saved to validate
against the read set of T1. Basically the conflict preserving

BHARGAVA: CONCURRENCY CONTROL IN DATABASE SYSTEMS 9

exchange (switch) as follows is attempted so that R1 can be
brought next to W1.

Case 2: An extension of this idea is to try the either ex-
change (switch) as follows:

The resulting histories can be either

R1W1R2W2 LLL RnWn

or

R2W2 LLL RnWnR1W1.

For switching W1, we would need to save not only the
write sets of committed transactions, but also the read sets
of committed transactions. This will allow more histories to
be acceptable to the scheduler.

Case 3: A further extension of this idea is to try switching
R1 toward W1 and W1 toward R1 if conflict preserving ex-
changes are possible.

Consider the conflict as follows:

Consider the history h = R1R2W2 L RK-1Wk-1RKWK L
RnWnW1. Because of a conflict edge between R1 and WK, R1

can be scheduled only before WK. Similarly due to the con-
flict edge RK-1 and W1, W1 can be scheduled only after RK-1.
Switching R1 and W1, the scheduler can get a serializable
history R2W2 L RK-1WK-1R1W1RKWK L RnWn. Using the
switching of R1 or W1 alone would not have allowed this
history to be acceptable to a scheduler.

Finally we consider the case where both R1 and W1 are
stuck due to conflicts. Consider the history:

R1 can switch up to T3 and W1 can switch up to TK due to
conflicts (say R1W3 and W1WK).

The scheduler can try to move the subhistory R1R3W3 to
the right and RKWKW1 to the left as shown next:

We can get a history as follows.

R2W2RKWKR1W1R3W3 LLL RnWn

which is serializable.

2.3.3 Implementation of Validations
Let us now illustrate how these ideas for optimistic can be
implemented. Consider n transactions. Assume T1 starts
before T2, but finishes after Tn. Let T2T3 L Tn finish in order.

Since T2 is the first transaction to validate, it is commit-
ted automatically. So we have a conflict graph with a node
for T2 as follows:

T2

When T3 arrives for validation, the read set of T3 is
validated against write set of T2. If they conflict, the edge
T3 � T2 is drawn. Next, the write set of T3 is validated
against the read set of T2 leading to the edge T2 � T3. Since
this causes a cycle, T3 is aborted. Otherwise, T3 is serialized
with T2. So we have a conflict graph say as follows:

T2 � T3

For a transaction T4 the edges are checked as follows:
Check the edge T4 � T2. If it exists, check the edge

T2 � T4. Abort if both edges exist. If only T4 � T2 exists, do
not check the edge T4 � T3, but check the edge T3 � T4

only. This requires checking only three edges as follows:

If edge T4 � T2 does not exist, there is no need to check
T2 � T4. In this case check the edge T4 � T3 and T3 � T4.
Once again only three edges are checked as follows:

So, in general, for every new transaction that comes for
validation, only n edges are checked if there are n - 1 com-
mitted transactions. This may be more efficient implemen-
tation than checking for a cycle for the conflict graph of n
transactions for each validation.

Now we present a theorem that relates the rollback of
optimistic with deadlock of locking approach:

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

THEOREM 1 [8]. In a two step transaction model (all reads for a
transaction precede all writes) whenever there is a transac-
tion rollback in the optimistic approach due to a failure in
the validation, there will be a deadlock in the locking ap-
proach (unless deadlocks are not allowed to occur) and will
cause a transaction rollback.

PROOF. For deadlock detection, the system can produce a
wait-for digraph in which the vertices represent the
transactions active in the system. An edge between
two transactions in the wait-for graph is drawn if and
only if one transaction holds a read-lock or a write-
lock and the other transaction is requesting a write-
lock on the same item. This will happen when the
read-set or the write-set of the first transaction con-
flicts (intersects) with the write-set of the second
transaction. An edge in the dynamic conflict graph
exists in exactly the same case.

Thus a wait-for graph has the same vertices (i.e.,
the set of all active transactions) as the dynamic con-
flict graph and the edges in the wait-for graph corre-
spond one to one with the edges in the dynamic con-
flict graph. Hence the wait-for graph is identical to
the dynamic conflict graph and a cycle in the wait-for
graph occurs whenever there is a cycle in the dynamic
conflict graph. A deadlock occurs when there is a cy-
cle in the wait-for graph and to resolve the deadlock,
some transaction must be rolled back. Since validation
of a transaction fails and a rollback happens when
there is a cycle in the dynamic conflict graph, the as-
sertion of the theorem is concluded. o

3 PERFORMANCE EVALUATION OF CONCURRENCY
CONTROL ALGORITHM

There are two main criteria for evaluating the performance
of core control algorithms. We discuss them in some detail
as follows:

3.1 Degree of Concurrency
This is the set of histories that are acceptable to a sched-
uler. For example a serial history has the lowest degree of
concurrency. 2PL and optimistic approaches provide a
higher degree of concurrency. The concurrency control al-
gorithms have been classified in various classes based on
the degree of concurrency provided by them in [24]. The
concurrency control algorithms for distributed database
processing have been classified in [7]. We specifically point
out the classes of global two-phase locking (G2PL) and local
two-phase locking (L2PL). All histories in class G2PL are
characterized by global lock points. Since each node is ca-
pable of independent processing, the global history can be
serializable if each node maintains the same order of lock
points for all conflicting transactions locally. The class L2PL
contains the class G2PL and provides a higher degree of
concurrency [7]. In a history for the class DSTO (distributed
serializable in the time stamp order), the transactions are
guaranteed to follow in the final equivalent serial history,
the same order as the transaction’s initial access or event a.
a, w events are discussed in Appendix A.

In contrast, the class DSS (distributed strict serializabil-
ity) the histories retain the completion order of transactions
based on the event w. The class DSTO is contained in class
DSS. Finally, the class DCP (distributed conflict preserving)
is based on the notion the a read or write action is freely
rearranged as long as the order of conflicting accesses is
preserved. The serializability is guaranteed by maintaining
a acyclic conflict graph that is constructed for each history.

3.1.1 The Hierarchy
All the classes G2PL, L2PL, DCP, DSTO, and DSS are seri-
alizable and form a hierarchy based on the degree of
concurrency. Fig. 3 depicts the hierarchy, where SR is the set
of all serializable histories.

In Fig. 3, each possible intersection of these classes is
marked by ‘.i’ where i is from 1 to 11, and the exemplary
history for area ‘.1’ is denoted as ‘h.i’. Some of the histories
are composite (formed by concatenating two histories). The
transaction set and conflict information are given below.

Let there be two nodes represented by N = {1, 2}, and
seven transactions denoted by T = {a, b, c, d, e, f, g}.

The atomic operations for each transaction are as shown
below:

Trans. ‘a’ = R x W y W ya a a
1 1 2, , ;> C

Trans. ‘b’ = R w W y W yb b b
1 1 2, , ;> C

Trans. ‘c’ = R u W v W vc c c
2 1 2, , ;> C

Trans. ‘d’ = R v W v W vd d d
2 1 2, , ;> C

Trans. ‘e’ = R w W v W ve e e
1 1 2, , ;> C

Trans. ‘f’ = R t W w W wf f f
2 1 2, , ;J L

Trans. ‘g’ = R w W y W yg g g
2 1 2, , ;J L

Basically, each transaction reads an entity and broadcasts
the update to both nodes.

The hierarchical relation among the classes DCP, DSS,
and G2PL is similar to that in [24]. However, the classes
L2PL and DSTO and their relationships with other classes is
different. Note that, unlike the class 2PL in the centralized
database system, the class L2PL which also uses two-phase
locking but with local freedom of choosing the lock points
is not contained in DSS.

h.1: R w W y R u W v W v W yb b c c c b
1 2 2 1 2 1[] [] [] [] [] []

h.2: R w R x W y W y W y W yb a a a b b
1 1 2 1 1 2[] [] [] [] [] []

h.3: R x R w W y W y W y W ya b a b a b
1 1 1 1 2 2[] [] [] [] [] []

h.4: h.2 + h.3

h.5: R x R w R t W w W y W w W y

W y W y

a b f f a f a

b b

1 1 2 1 1 2 2

2 1

[] [] [] [] [] [] []

[] []

h.6: h.2 + h.5

h.7: R w R t W w W w R v W v W v

W v W v

e f f f d d d

e e

1 2 1 2 2 2 1

2 1

[] [] [] [] [] [] []

[] []

BHARGAVA: CONCURRENCY CONTROL IN DATABASE SYSTEMS 11

h.8: R u R w W v W v R v W v W v

W v W v

c e e e d c c

d d

2 1 1 2 2 1 2

1 2

[] [] [] [] [] [] []

[] []

h.9: R t W w R w W y R w W y W v

W v W w

f f g g e g e

e f

2 2 2 2 1 1 2

1 1

[] [] [] [] [] [] []

[] []

h.10: h.6 + h.8

h.11: h.7 + h.10

3.2 System Behavior
One can evaluate the performance of a concurrency con-
trol algorithms by studying the response time for transac-
tions, throughput of transactions per second, rollback or
blocking of transactions, etc. Such measures are system de-
pendent and change as technology changes. Several re-
search papers have done simulation, analytical, and ex-
perimental study of a wide range of algorithms. These
studies tend to identify the conditions under which a spe-
cific approach will perform better. For example, in [4], we
have shown after detailed simulations that the optimistic
approach performs better than locking when there is a mix
of large and small transactions. This is contrary to the wis-
dom that optimistic performs better when there are few
conflicts. We found that in the case of low conflicts, in op-
timistic approach there are fewer aborts, but in locking
there is less blocking. Similarly, if a lot of conflicts occur,
both locking and optimistic algorithms suffer. Thus, one
could conclude that if the cost of rollback and validation is
not considerably high, in both locking and optimistic, the
transactions will either suffer or succeed.

In many applications, it has been found that conflicts are
rare [12], [16], [17]. We present another strawman analysis.
Assume that the database size is M and the read set and
write set size is B. CB

M represents the number of combina-
tions for choosing B objects from a set of M objects.

The probability that two transactions do not share a data
object is given by the following term:

C C

C C
B
M

B
M B

B
M

B
M

∗

∗

−()

This term is equal to

M B
M

M B
M

M B
M B

−�
��

�
�� ∗

− −
−

�
��

�
�� ∗ ∗

− +
− +

�
��

�
��

1
1

2 1
1L

Lower bound on this term

=
− +
− +

�
��

�
��

M B
M B

B2 1
1 .

Maximum probability that two transactions will share a
data object is given by

1
2 1

1−
− +
− +

�
��

�
��

M B
M B

B

.

By plugging some sample values for B and M, we get
the following:

B M Probability of Conflict P(C)
 5 100 0.0576
10 500 0.0025
20 1,000 0.1130

The probability of a cyclic conflict is order (P(C))2 which
is quite small.

We have conducted a simulation study [4] that illustrates
the issues of arrival rate, relates multiprogramming level,
frequency of cycles in a database environment. In Fig. 4, we
show that the degree of multiprogramming is low for a va-
riety of transaction arrival rates in a sample database.

Fig. 3. The hierarchy of the classes SR, DCP, L2PL, G2PL, DSTO, and DSS.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

In Fig. 5, we show that the probability of a cycle is quite
low for low degrees of multiprogramming.

In Fig. 6, we found that optimistic performs better than
locking for very low arrival rates. Details of this study can
be found in [4].

4 MORE IDEAS FOR INCREASING CONCURRENCY

4.1 Multidimensional Time Stamps
There are several variations of timestamp ordering. For ex-
ample, multiple versions [25] of item values have been used
to increase the degree of concurrency. The conventional
time stamp ordering tends to prematurely determine the
serializability order, which may not fit in with the subse-
quent history, forcing some transactions to abort. The mul-
tidimensional time stamp protocol [21] provides a higher
degree of concurrency than single time stamp algorithms.
This protocol allows the transaction to have a time stamp
vector of up to k elements. The maximum value of k is lim-
ited by twice the maximum number of operations in a sin-
gle transaction. Each operation may set up a new depend-
ency relationship between two transactions. The relation-
ship (or order) is encoded by making one vector less than
another. A single time stamp element is used to bear this
information. Earlier assigned elements are more significant
in the sense that subsequent dependency relationships can-
not conflict with previously encoded relationships. Thus
the scheduler can decide to accept or abort an operation
based on the dependency information derived from all pro-
ceeding operations. In other words, the scheduler can use
the approach of dynamic timestamp vector generations for
each transaction and dynamic validation of conflicting one

can use the approach of dynamic timestamp vector genera-
tions for each transaction and dynamic validation of con-
flicting transactions to increase the degree of concurrency.
The class of multidimensional time stamp vectors intersects
with the class SSR and 2PL and is contained in the class
DSR. Classes 2PL, SSR, and DSR are defined as in [24].

4.2 Relaxations of Two-Phase Locking
In [22], we have provided a clarification of the definition of
two-phase blocking. A restricted non two-phase locking
(RN2PL) class that contains the class of 2PL has been for-
mally defined. An interesting interpretation of the RN2PL is
given as follows.

A transaction (a leaser) may release a lock (rent out a
lock token) before it may still request some more locks. If a
later transaction (a leasee) subsequently obtains such a re-
leased lock (rents the lock token), it cannot release this lock
(sublease the lock token) until ALL its leasers will not re-
quest any more locks. (Now the leasers are ready to transfer
all their lock tokens to leasees. So, each of their leasees can
be a new leaser.)

This scenario enforces acyclic leaser-leasee relation-
ships, and thus produces only serializable histories. Fur-
ther, the locking sequence may not be two-phased. It is not
appropriate to claim that either protocol is superior to the
other because many conditions need to be considered for
such a comparison. Since two-phase locking is a special
case of restricted-non-two-phase locking, it gives the flexi-
bility for some transactions to be non-two-phase locked. In
some cases, it would be desirable to allow long-lived trans-
actions to be non-two-phase locked to increase the avail-
ability of data items.

Fig. 4. Database size = 100, I/O cost = 0.025, CPU cost = 0.0001.

BHARGAVA: CONCURRENCY CONTROL IN DATABASE SYSTEMS 13

4.3 System Defined Prewrites

In [23], we have introduced a prewrite operation before an
actual write operation is performed on database files. A
prewrite operation announces the value that a transaction
intends to write in future. A prewrite operation does not
change the state of the data object. Once all the prewrites
of a transaction are announced, the transaction executes a

precommit operation. After the precommit, another read
transaction is permitted to read the announced prewrite
values even before the other transaction has finally updated
the data objects and committed. The eventual updating on
stable storage may take a long time. This allows nonstrict
executions and increases the potential concurrency as com-
pared to the algorithms that permit only read and write
operations on the database files. A user does not explicitly

Fig. 5. Database size = 500, transaction size = 5, 10, 15, 20, 25.

Fig. 6. Database size = 200, no. of nodes = 3, communication delay = 0.10, I/O cost = 0.025, transaction size = 5 (time in seconds).

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

mention a prewrite operation but the system introduces a
prewrite operation before every write.

Short duration transactions can read the value of a data
item produced but not yet released by a long transaction
before its commit. Therefore, using prewrites, one can bal-
ance a system consisting of short and long transactions
without causing delay for short duration transactions.

4.4 Flexible Transactions
The flexible transaction model [32] supports flexible exe-
cution control flow by specifying two types of depen-
dencies among the subtransactions of a global distrib-
uted transaction:

1)� execution ordering dependencies between two subtrans-
actions, and

2)�alternative dependencies between two subsets of sub-
transactions.

A flexible transaction allows for the specification of multi-
ple alternate subsets of subtransactions to be executed and
results in the successful execution and commitment of the
subtransactions in one of those alternate subsets, the execu-
tion of a flexible transaction can proceed in several different
ways. The subtransaction in different alternate subsets may
be attempted simultaneously, as long as any attempted
subtransactions not in the committed subset of subtransac-
tions can either be aborted or have their effects undone. The
flexible transaction model increases the failure resilience of
global transactions. In [32], we have defined a weaker form
of atomicity, termed semiatomicity, that is applicable to
flexible transactions. Semiatomicity allows a flexible trans-
action to commit as long as a subset of its subtransactions
that can represent the execution of the entire flexible trans-
action commit. Semiatomicity enlarges the class of executa-
ble global transactions in a heterogeneous distributed data-
base system.

4.5 Adaptable Concurrency Control
Existing database systems can be interconnected resulting
in a heterogeneous distributed database system. Each site in
such a system could use a different strategy for concurrency
control. For example, one site could be using the two-phase
locking concurrency control method while another could be
running the optimistic method. Since it may not be possible
to convert such different systems and algorithms to a ho-
mogeneous system, solutions must be found to deal with
such heterogeneity. Already research has been done toward
the designing of algorithms for performing concurrent up-
dates in a heterogeneous environment [31]. The issues of
global serializability and deadlock resolution have been
solved. The approach in [11] is a variation of the optimistic
concurrency control for global transactions while allowing
individual sites to maintain their autonomy.

Another concept that has been studied in the Reliable,
Adaptable, Interoperable Distributed (RAID) database sys-
tem [10] involves facilities to switch concurrency control
methods. A formal model for an adaptable concurrency con-
trol [11] suggested three approaches for dealing with vari-
ous system and transaction’s states: generic state, convert-
ing state, and suffix sufficient state. The generic state

method requires the development of a common data
structure for all the ways to implement a particular concur-
rency controller (called sequencer). The converting state
method works by invoking a conversion routine to change
the state information as required by a different method. The
suffix sufficient method requires switching from one
method to another by overlapping the execution of both
methods until certain termination conditions are satisfied.

5 CONCLUSIONS

Concurrency Control is a problem that arises when multi-
ple processes are involved in any part of the system. Earlier
ideas of notions of serializability and the concept of two-
phase locking were discussed in [13]. The ideas of time
stamps were introduced by [29]. The optimistic approach
was proposed by [19]. The classes of serializability and the
formalism for concurrency control was presented in [24].
Several books that detail these subjects have been published
[6], [25], [2], in addition to survey papers [1], [5]. The per-
formance evaluation was studied in [14]. In most commer-
cial systems, the most popular mechanism for concurrency
control is two-phase locking [17]. The ideas of adaptable
concurrency control were published in [11] and were im-
plemented in the RAID system [10]. It has been commented
by system experts that concurrency control only contributes
5 percent to the response time of a transaction and so even a
simple two-phase locking protocol should suffice. How-
ever, due to the many interesting ideas that came into play
in distributed database systems in the context of replication
and reliability, research in concurrency control is continu-
ing. Some studies are being done for object-oriented sys-
tems while others are dealing with semantics of transac-
tions and weaker form of consistency. Over a hundred
Ph.D. thesis that study some aspect of concurrency control
have been produced.

We continue to learn of new ideas such as flexible
transactions, value-dates, prewrites, degrees of commit-
ment and view serializability [9]. In large scale systems, it is
difficult to block access to database objects for transactions.
If a system has to perform 10,000 transactions per second,
the locking as we know today will not be a solution. We
suggest readers to learn from variety of books that are
available on both theory and implementation of concur-
rency control mechanisms.

APPENDIX A
BASIC TERMINOLOGY

A distributed database management system (DDBMS) is a data-
base system distributed among a set of nodes N connected
by communication links. Each node has its own independ-
ent computing resources.

The database is modeled by a set of logical database enti-
ties which may have one or more physical copies of data value.
The database entities are accessed by unique names; how
this naming is maintained is insignificant to this paper. The
database may be either completely or partially replicated,
or it may be partitioned on different nodes.

BHARGAVA: CONCURRENCY CONTROL IN DATABASE SYSTEMS 15

A distributed database is consistent if it satisfies some
predefined assertions about the intrinsic characteristics of
the data values. For a replicated distributed database, it is
necessary for the physical copies of the same database en-
tity on different nodes to remain identical.

The user actions on a distributed database consists of a
sequence of atomic operations. An atomic operation is repre-
sented by σ i i

jA x= [] , where i is a unique identification for a
transaction, j is a unique identification for a node, A is ei-
ther R or W representing read or write operation, and x is
one or more logical database entities. As far as the DDBMS
is concerned, these read/write operations constitute indi-
visible (or atomic) operations to the database. The atomic
operations are grouped into logical units called transactions
that will preserve the database consistency if executed
alone. A transaction can be viewed as a quantum change for
the database from one consistent state to another; however,
the consistency assertions may be temporarily violated
during the execution of a transaction but must be satisfied
when there are no incomplete transactions or the system is
quiescent. The purpose of the concurrency control is to
guarantee that the concurrent execution of a set of transac-
tions does not result in an inconsistent database state.

The transaction set T represents all user transactions, and
the atomic operation set. A transaction has to read only one
copy of a replicated data entity but has to update all copies.

Two atomic operations si, sj conflict if:

1)� they belong to different transactions;
2)�both access the same database entity at the same

node;
3)�at least one of them is a write operation.

In particular, conflicting atomic operations si and sj have:

1)�WR-conflict if si is a write operation and sj is a read
operation;

2)�RW-conflict if si is a read operation and sj is a write
operation;

3)�WW-conflict if both si and sj are write operations.

There are two special atomic operations in a transaction
that are important. The last new atomic operation wi of trans-
action i is its last atomic operation such that the access is to
a new database entity or the access is at a higher level1 than
before for a previously accessed entity. Every atomic opera-
tion after wi either accesses some used entity or repeats a
lower level access. The earliest new atomic operation ai for a
transaction i is the first atomic operation which starts ac-
cessing new entities. Since each atomic operation accesses
some database entities, ai is simply the first atomic opera-
tion in a transaction.

For example, wi of the following transaction

R x W y W z W y W zi i i i i
1 2 2 3 3[] [] [] [] []

is W zi
2[] since z is the last new entity being accessed. The

omegai of the following transaction

1. For the transaction model used here, the read operation is considered a
lower level access when compared to the write operation.

R x W y W z W y W z W x R z R xi i i i i i i i
1 2 2 3 3 1 2 1[] [] [] [] [] [] [] []

is W xi
1[] since it is the latest higher level access to any entity

(x in this case).
The concurrent activities of a distributed database sys-

tem can be modeled as a sequence of all atomic opera-
tions. This sequence is called the history of the system, and
is represented by a quadruple h = < D, T, S, p >, where D
is a distributed database, T is the transaction set, S is
the atomic operation set, and p is a permutation function
which gives the permutation indices for atomic opera-
tions s in h(s ¶ S). For example, if a history h is the fol-
lowing sequence

abg L w

then p(a) = 1, p(b) = 2, ¤, p(w) = |S|. A serial history is one
in which each transaction runs to completion before the
next one starts. In other words in a serial history the atomic
operations of different transactions are not interleaved.

Although the system’s activities can be modeled as a
string of atomic operations, the activity at one node is
potentially independent of those at other nodes. Each node
records its own history. To capture this notion of local
activities, the node projection hj = <h, Sj, pj> of a history h is
defined as the subsequence of h containing only those op-
erations pertaining to node j where Sj = {s|s ¶ S and s is
performed at node j} is a subset of S, and pj is the permuta-
tion function for hj, i.e., pj(s1) < pj(s2) iff p(s1) < p(s2)
for s1, s2 ¶ Sj. The order of the atomic operations in h is
retained in pj.

The activities of a transaction in a distributed database
system can be modeled by a sequence of operations on the
database related to this transaction. This sequence is called
the transaction projection hi = <h, Si, pi>, where Si = {s|s ¶ S
and s belongs to transaction i} is a subset of S, and pi is the
permutation function for hi, i.e., pi(s1) < pi(s2) iff p(s1) <
p(s2) for every s1, s2 ¶ Si.

From the above definitions, it is clear that a serial history
h has the form

h h h hi i i it1 2 3
L for ik ¶ T, k = 1, ¤, t

where t = |T| and i1i2i3 L it is a permutation of transaction

id’s (hi1
, say, is the transaction projection for transaction i1

from the serial history h). Note that each node projection of
a serial history is essentially a sequential execution of trans-

actions following the same permutation order i1i2 L it of the
serial history.

Each operation in a history transforms one database state
into another one. Two histories are equivalent or indistin-
guishable if they transform a given initial state to the same
final database state. The notation ¢ denotes the equivalence
relation between histories. A history h is serializable iff there
exists a serial history g such that hj ¢ gj for every node j.

If every transaction when executed alone preserves the
database consistency then each node projection of a seri-
alizable history will also preserve the consistency. Since
a serial history produces node projections with the same
serial transaction order, a serializable history necessarily

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

generates a consistent database. An algorithm is considered
correct if all its allowed histories are serializable.

The use of serializability as a correctness criterion is
popular among researchers. Although nonserializable his-
tories can be consistent when semantic information is avail-
able. we still consider serializability to be the correctness
criterion. It has been shown in [18] that concurrency control
algorithms with only syntactic information can at best pro-
duce serializable histories.

ACKNOWLEDGMENTS

I have learned a lot from the research of Professors Gray,
Bernstein/Goodman, Papadimitriou, Kung/Robinson, Stone-
braker, and systems such as Ingres, System R, SDD-1,
and RAID (Reliable, Adaptable, Interoperable Distributed)
database system. I thank the designers of these systems
for giving us an interesting perspective. In 1982, Professor
C.V. Ramamoorthy gave me encouragement and many
ideas, at the early stages of my research in concurrency
control. I thank Professor Farokh Bastani, editor-in-chief
of IEEE Transactions on Knowledge and Data Engineering, for
encouraging me to write this paper for the special issue
in honor of Professor C.V. Ramamoorthy.

REFERENCES

[1]� P.A. Bernstein and N. Goodman, “Concurrency Control in Dis-
tributed Database Systems,” Computing Surveys, vol. 13, no. 2,
pp. 185-221, 1981.

[2]� P.A. Bernstein, N. Goodman, and V. Hadzilacos, Concurrency Con-
trol and Recovery in Database Systems, Addison-Wesley, Reading,
Mass., 1986.

[3]� P.A. Bernstein, D.W. Shipman, and J.B. Rothnie Jr., “Concurrency
Control in a System for Distributed Databases (SDD-1),” Trans.
Database Systems, vol. 5, no. 1, pp. 18-51, ACM, 1980.

[4]� B. Bhargava, “Performance Evaluation of the Optimistic Concurren-
cy Control Approach to Distributed Database Systems and Its
Comparison with Locking,” Proc. IEEE Int’l Conf. Distributed Com-
puting Systems, pp. 508-517, Miami, 1982.

[5]� B. Bhargava, “Concurrency Control and Reliability in Distributed
Database System,” Software Eng. Handbook, Van Nostrand Rein-
hold, pp. 331-358, 1983.

[6]� “Concurrency Control and Reliability in Distributed Systems,”
B. Bhargava, ed., Van Nostrand and Reinhold, 1987.

[7]� B. Bhargava and C. Hua, “A Causal Model for Analyzing Distrib-
uted Concurrency Control Algorithms,” IEEE Trans. Software Eng.,
vol. 9, pp. 470-486, 1983.

[8]� B. Bhargava, “Resilient Concurrency Control in Distributed Data-
base Systems,” IEEE Trans. Reliability, vol. 31, no. 5, pp. 437-
443, 1984.

[9]� B. Bhargava, “Transaction Processing and Consistency Control of
Replicated Copies During Failures,” J. Management Information
Systems, vol. 4, no. 2, pp. 93-112, 1987.

[10]� B. Bhargava and J. Riedl, “RAID Distributed Database System,”
IEEE Trans. Software Eng., vol. 15, no. 6, pp. 726-736, 1989.

[11]� B. Bhargava and J. Riedl, “A Formal Model for Adaptable Systems
for Transaction Processing,” IEEE Trans. Knowledge and Data Eng.,
vol. 4, no. 1, pp. 433-449, 1989.

[12]� S.B. Davidson, “Optimism and Consistency in Partitioned Dis-
tributed Database Systems,” Trans. Database Systems, vol. 17, no. 3,
pp. 456-481, ACM, Sept. 1984.

[13]� K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger, “The Notions
of Consistency and Predicate Locks in a Relational Database Sys-
tem,” Comm. ACM, vol. 8, no. 11, pp. 624-633, 1976.

[14]� H. Garcia-Molina, “Performance of Update Algorithms for Repli-
cated Data in a Distributed Database,” PhD thesis, Dept. of Com-
puter Science, Stanford Univ., 1979.

[15]� J.N. Gray, “Notes on Database Operating Systems” Operating
Systems: An Advanced Course, R. Bayer, R.M. Graham, and G.
Seegmuller, eds., Lecture Notes in Computer Science 60, Springer-
Verlag, Heidelberg, Germany, 1978.

[16]� J.N. Gray, “The Transaction Concept: Virtues and Limitations,”
Proc. VLDB Conf., Cannes, France, Sept. 1981.

[17]� J.N. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques, Morgan Kaufmann, San Mateo, Calif., 1993.

[18]� H.T. Kung and C.H. Papadimitriou, “An Optimality Theory of
Database Concurrency Control,” Acta Informatica, vol. 19, no. 1,
pp. 1-13, 1984.

[19]� H.T. Kung and J.T. Robinson, “On Optimistic Methods for
Concurrency Control,” Trans. Database Systems, vol. 6, no. 2,
pp. 213-226, ACM, 1981.

[20]� L. Lamport, “Time Clocks and the Ordering of Events in a Dis-
tributed System,” Comm. ACM, vol. 21, no. 2, 1979.

[21]� P. Leu and B. Bhargava, “Multidimensional Timestamp Protocols
for Concurrency Control,” IEEE Trans. Software Eng., vol. 13,
no. 12, pp. 1,238-1,253, 1987.

[22]� P. Leu and B. Bhargava, “Clarification of Two Phase Locking in
Concurrent Transaction Processing,” IEEE Trans. Software Eng.,
vol. 14, no. 1, pp. 120-123, 1988.

[23]� S.K. Madria and B. Bhargava, “System Defined Prewrites to In-
crease Concurrency in Databases,” Proc. First East European Symp.
Advances in Databases and Information Systems, St. Petersburg, Rus-
sia, ACM-SIGMOD, Sept. 1997.

[24]� C.H. Papadimitriou, “The Serializability of Concurrent Database
Updates,” J. ACM, vol. 26, no. 4, pp. 631-653, 1979.

[25]� C.H. Papadimitriou, The Theory of Database Concurrency Control,
Computer Science Press, 1986.

[26]� E. Pitoura and B. Bhargava, “Maintaining Consistency of Data in
Mobile Distributed Environments” Proc. 15th IEEE Int’l Conf. Dis-
tributed Computing Systems, pp. 404-413, May 1995.+

[27]� R. Prakash, M. Raynal, and M. Singhal, “An Adaptive Causal
Ordering Algorithm Suited to Mobile Computing Environments,”
J. Parallel and Distributed Computing, pp. 190–204, Mar. 1997.

[28]� A. Silberschatz and Z. Kedem, “Consistency in Hierarchical Data-
base Systems,” J. ACM, vol. 27, no. 1, pp. 72-80, 1979.

[29]� R.H. Thomas, “A Majority Consensus Approach to Concurren-
cy Control for Multiple Copy Systems,” Trans. Database Systems,
vol. 4, no. 2, pp. 180-209, ACM, 1979.

[30]� J.D. Ullman, Principles of Database Systems, second ed., Computer
Science Press, Potomac, Md., 1982.

[31]� A. Zhang and A. Elmagarmid, “A Theory of Global Concurrency
Control in Multidatabase Systems,” VLDB J., vol. 2, no. 3, pp. 331-
359, July 1993.

[32]� A. Zhang, M. Nordine, B. Bhargava, and O. Bukhres, “Ensuring
Semi-Atomicity for Flexible Transactions in Multi-Database
System,” Proc. SIGMOD Conf., pp. 67-78, Minneapolis, ACM,
May 1994.

Bharat Bhargava graduated from the Indian In-
stitute of Science and Purdue University in elec-
trical and computer engineering. He is now a pro-
fessor in the Department of Computer Science at
Purdue. His research involves both theoretical and
experimental studies in distributed systems. His re-
search group has implemented a robust and adapt-
able distributed database system called RAID (for
Reliable, Adaptable, Interoperable Distributed) to
conduct experiments in replication control, check-
pointing, and communications. He has conducted

experiments in large-scale distributed systems, communications, and
overheads in implementing object support on top of the relational
model. He developed an adaptable video conferencing system using
the NV system from Xerox PARC. He is currently conducting experi-
ments with research issues in large-scale communication networks to
support emerging applications, such as digital libraries and multimedia
databases. He was chair of the IEEE Symposium on Reliable Distrib-
uted Systems, held at Purdue in October 1998. He is on the editorial
board of three international journals. He and John Riedl received the
Best Paper Award for their work, ”A Model for Adaptable Systems for
Transaction Processing,” at the 1988 IEEE Data Engineering Confer-
ence. He received the Outstanding Instructor Award from the Purdue
chapter of the ACM in 1996 and 1998. He is fellow of the IEEE and the
Institute of Electronic and Telecommunication Engineering, and is a
member of the ACM. He was named to the IEEE Computer Society
Golden Core for distinguished service, and he has received the IEEE
Computer Society’s Meritorious Service Award.

