
Slide 9- 1Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 9

Introduction to SQL Programming
Techniques

Slide 9- 3Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter Outline
 9.1 General Constraints as Assertions
 9.2 Views in SQL
 9.3 Database Programming
 9.4 Embedded SQL
 9.5 Functions Calls, SQL/CLI
 9.6 Stored Procedures, SQL/PSM
 9.7 Summary

Slide 9- 4Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter Objectives

 Specification of more general constraints via
assertions

 SQL facilities for defining views (virtual tables)
 Various techniques for accessing and manipulating a

database via programs in general-purpose languages

 E.g., Java, C++, etc.

Slide 9- 5Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Constraints as Assertions

 General constraints: constraints that do not fit
in the basic SQL categories (presented in chapter
8)

 Mechanism: CREAT ASSERTION

 Components include:
 a constraint name,
 followed by CHECK,
 followed by a condition

Slide 9- 6Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Assertions: An Example

 “The salary of an employee must not be
greater than the salary of the manager
of the department that the employee
works for’’

CREAT ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS (SELECT *

 FROM EMPLOYEE E, EMPLOYEE M, DEPARTMENT D

 WHERE E.SALARY > M.SALARY AND

 E.DNO=D.NUMBER AND D.MGRSSN=M.SSN))

constraint
name,

CHECK,
condition

Slide 9- 7Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Using General Assertions

 Specify a query that violates the condition;
include inside a NOT EXISTS clause

 Query result must be empty

 if the query result is not empty, the assertion has
been violated

Slide 9- 8Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

SQL Triggers

 Objective: to monitor a database and take initiate
action when a condition occurs

 Triggers are expressed in a syntax similar to
assertions and include the following:
 Event

 Such as an insert, deleted, or update operation
 Condition
 Action

 To be taken when the condition is satisfied

Slide 9- 9Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

SQL Triggers: An Example

 A trigger to compare an employee’s salary
to his/her supervisor during insert or
update operations:

CREATE TRIGGER INFORM_SUPERVISOR
BEFORE INSERT OR UPDATE OF

SALARY, SUPERVISOR_SSN ON EMPLOYEE
FOR EACH ROW

WHEN
(NEW.SALARY> (SELECT SALARY FROM EMPLOYEE

 WHERE SSN=NEW.SUPERVISOR_SSN))
INFORM_SUPERVISOR (NEW.SUPERVISOR_SSN,NEW.SSN);

Slide 9- 10Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Views in SQL

 A view is a “virtual” table that is derived from
other tables

 Allows for limited update operations

 Since the table may not physically be stored
 Allows full query operations
 A convenience for expressing certain operations

Slide 9- 11Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Specification of Views

 SQL command: CREATE VIEW

 a table (view) name
 a possible list of attribute names (for example,

when arithmetic operations are specified or when
we want the names to be different from the
attributes in the base relations)

 a query to specify the table contents

Slide 9- 12Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

SQL Views: An Example

 Specify a different WORKS_ON table

CREATE VIEW WORKS_ON_NEW AS

SELECT FNAME, LNAME, PNAME, HOURS

FROM EMPLOYEE, PROJECT, WORKS_ON

 WHERE SSN=ESSN AND PNO=PNUMBER

GROUP BY PNAME;

Slide 9- 13Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Using a Virtual Table

 We can specify SQL queries on a newly create table
(view):

SELECT FNAME, LNAME

FROM WORKS_ON_NEW

WHERE PNAME=‘Seena’;

 When no longer needed, a view can be dropped:

DROP WORKS_ON_NEW;

Slide 9- 14Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Efficient View Implementation

 Query modification:

 Present the view query in terms of a query on the
underlying base tables

 Disadvantage:

 Inefficient for views defined via complex queries
 Especially if additional queries are to be applied to

the view within a short time period

Slide 9- 15Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Efficient View Implementation

 View materialization:
 Involves physically creating and keeping a

temporary table
 Assumption:

 Other queries on the view will follow
 Concerns:

 Maintaining correspondence between the base
table and the view when the base table is updated

 Strategy:
 Incremental update

Slide 9- 16Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Update Views

 Update on a single view without aggregate
operations:

 Update may map to an update on the underlying
base table

 Views involving joins:

 An update may map to an update on the
underlying base relations

 Not always possible

Slide 9- 17Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Un-updatable Views

 Views defined using groups and aggregate functions
are not updateable

 Views defined on multiple tables using joins are
generally not updateable

 WITH CHECK OPTION: must be added to the
definition of a view if the view is to be updated
 To allow check for updatability and to plan for an

execution strategy

Slide 9- 18Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Database Programming

 Objective:

 To access a database from an application program
(as opposed to interactive interfaces)

 Why?

 An interactive interface is convenient but not
sufficient

 A majority of database operations are made thru
application programs (increasingly thru web
applications)

Slide 9- 19Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Database Programming Approaches

 Embedded commands:

 Database commands are embedded in a general-
purpose programming language

 Library of database functions:

 Available to the host language for database calls;
known as an API

 API standards for Application Program Interface
 A brand new, full-fledged language

 Minimizes impedance mismatch

Slide 9- 20Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Impedance Mismatch

 Incompatibilities between a host programming
language and the database model, e.g.,

 type mismatch and incompatibilities; requires a
new binding for each language

 set vs. record-at-a-time processing
 need special iterators to loop over query results and

manipulate individual values

Slide 9- 21Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Steps in Database Programming

1. Client program opens a connection to the database
server

2. Client program submits queries to and/or updates
the database

3. When database access is no longer needed, client
program closes (terminates) the connection

Slide 9- 22Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Embedded SQL

 Most SQL statements can be embedded in a general-
purpose host programming language such as COBOL, C,
Java

 An embedded SQL statement is distinguished from the
host language statements by enclosing it between
EXEC SQL or EXEC SQL BEGIN and a matching END-EXEC
or EXEC SQL END (or semicolon)
 Syntax may vary with language
 Shared variables (used in both languages) usually

prefixed with a colon (:) in SQL

Slide 9- 23Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example: Variable Declaration
in Language C

 Variables inside DECLARE are shared and can
appear (while prefixed by a colon) in SQL
statements

 SQLCODE is used to communicate
errors/exceptions between the database and the
program

int loop;

EXEC SQL BEGIN DECLARE SECTION;

varchar dname[16], fname[16], …;

char ssn[10], bdate[11], …;

int dno, dnumber, SQLCODE, …;

EXEC SQL END DECLARE SECTION;

Slide 9- 24Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

SQL Commands for
Connecting to a Database

 Connection (multiple connections are
possible but only one is active)
CONNECT TO server-name AS connection-name
AUTHORIZATION user-account-info;

 Change from an active connection to
another one
SET CONNECTION connection-name;

 Disconnection
DISCONNECT connection-name;

Slide 9- 25Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Embedded SQL in C
Programming Examples

loop = 1;
while (loop) {

prompt (“Enter SSN: “, ssn);
EXEC SQL

select FNAME, LNAME, ADDRESS, SALARY
into :fname, :lname, :address, :salary
from EMPLOYEE where SSN == :ssn;
if (SQLCODE == 0) printf(fname, …);
else printf(“SSN does not exist: “, ssn);
prompt(“More SSN? (1=yes, 0=no): “, loop);

END-EXEC
}

Slide 9- 26Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

 Embedded SQL in C
Programming Examples

 A cursor (iterator) is needed to process multiple
tuples

 FETCH commands move the cursor to the next tuple
 CLOSE CURSOR indicates that the processing of query

results has been completed

Slide 9- 27Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Dynamic SQL

 Objective:
 Composing and executing new (not previously compiled)

SQL statements at run-time
 a program accepts SQL statements from the keyboard at run-

time
 a point-and-click operation translates to certain SQL query

 Dynamic update is relatively simple;
dynamic query can be complex

 because the type and number of retrieved attributes are
unknown at compile time

Slide 9- 28Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Dynamic SQL: An Example

EXEC SQL BEGIN DECLARE SECTION;
varchar sqlupdatestring[256];
EXEC SQL END DECLARE SECTION;
…
prompt (“Enter update command:“, sqlupdatestring);
EXEC SQL PREPARE sqlcommand FROM :sqlupdatestring;
EXEC SQL EXECUTE sqlcommand;

Slide 9- 29Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Embedded SQL in Java

 SQLJ: a standard for embedding SQL in Java
 An SQLJ translator converts SQL statements into

Java

 These are executed thru the JDBC interface
 Certain classes have to be imported

 E.g., java.sql

Slide 9- 30Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Java Database Connectivity

 JDBC:

 SQL connection function calls for Java
programming

 A Java program with JDBC functions can access any
relational DBMS that has a JDBC driver

 JDBC allows a program to connect to several
databases (known as data sources)

Slide 9- 31Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Steps in JDBC Database Access

1. Import JDBC library (java.sql.*)
2. Load JDBC driver:

Class.forname(“oracle.jdbc.driver.OracleDriver”)
3. Define appropriate variables
4. Create a connect object (via getConnection)
5. Create a statement object from the Statement class:

 1. PreparedStatment 2. CallableStatement
6. Identify statement parameters (designated by question

marks)
7. Bound parameters to program variables
8. Execute SQL statement (referenced by an object) via

JDBC’s executeQuery
9. Process query results (returned in an object of type

ResultSet)
 ResultSet is a 2-dimentional table

Slide 9- 32Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Embedded SQL in Java:
An Example

ssn = readEntry("Enter a SSN: ");

try {

#sql{select FNAME< LNAME, ADDRESS, SALARY

into :fname, :lname, :address, :salary

from EMPLOYEE where SSN = :ssn};

}

catch (SQLException se) {

System.out.println("SSN does not exist: ",+ssn);

return;

}

System.out.println(fname + " " + lname + …);

Slide 9- 33Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Multiple Tuples in SQLJ

 SQLJ supports two types of iterators:

 named iterator: associated with a query result
 positional iterator: lists only attribute types in a

query result
 A FETCH operation retrieves the next tuple in a

query result:

fetch iterator-variable into program-variable

Slide 9- 34Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Database Programming with Functional
Calls

 Embedded SQL provides static database programming
 API: Dynamic database programming with a library of

functions

 Advantage:
 No preprocessor needed (thus more flexible)

 Disadvantage:
 SQL syntax checks to be done at run-time

Slide 9- 35Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

SQL Call Level Interface

 A part of the SQL standard
 Provides easy access to several databases within

the same program

 Certain libraries (e.g., sqlcli.h for C) have
to be installed and available

 SQL statements are dynamically created and passed
as string parameters in the calls

Slide 9- 36Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Components of SQL/CLI

 Environment record:

 Keeps track of database connections
 Connection record:

 Keep tracks of info needed for a particular
connection

 Statement record:

 Keeps track of info needed for one SQL statement
 Description record:

 Keeps track of tuples

Slide 9- 37Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Steps in C and SQL/CLI Programming

1. Load SQL/CLI libraries
2. Declare record handle variables for the above

components (called: SQLHSTMT, SQLHDBC, SQLHENV,
SQLHDEC)

3. Set up an environment record using SQLAllocHandle
4. Set up a connection record using SQLAllocHandle
5. Set up a statement record using SQLAllocHandle
6. Prepare a statement using SQL/CLI function

SQLPrepare
7. Bound parameters to program variables
8. Execute SQL statement via SQLExecute
9. Bound query columns to a C variable via

SQLBindCol
10. Use SQLFetch to retrieve column values into C

variables

Slide 9- 38Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Database Stored Procedures

 Persistent procedures/functions (modules)
are stored locally and executed by the
database server

 As opposed to execution by clients
 Advantages:

 If the procedure is needed by many applications, it can be
invoked by any of them (thus reduce duplications)

 Execution by the server reduces communication costs
 Enhance the modeling power of views

 Disadvantages:
 Every DBMS has its own syntax and this can make the system

less portable

Slide 9- 39Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Stored Procedure Constructs

 A stored procedure

CREATE PROCEDURE procedure-name (params)

local-declarations

procedure-body;

 A stored function

CREATE FUNCTION fun-name (params) RETRUNS return-type

local-declarations

function-body;

 Calling a procedure or function

CALL procedure-name/fun-name (arguments);

Slide 9- 40Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

SQL Persistent Stored Modules

 SQL/PSM:

 Part of the SQL standard for writing persistent
stored modules

 SQL + stored procedures/functions + additional
programming constructs

 E.g., branching and looping statements
 Enhance the power of SQL

Slide 9- 41Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

SQL/PSM: An Example

CREATE FUNCTION DEPT_SIZE (IN deptno INTEGER)

RETURNS VARCHAR[7]

DECLARE TOT_EMPS INTEGER;

SELECT COUNT (*) INTO TOT_EMPS

FROM SELECT EMPLOYEE WHERE DNO = deptno;

IF TOT_EMPS > 100 THEN RETURN “HUGE”

ELSEIF TOT_EMPS > 50 THEN RETURN “LARGE”

ELSEIF TOT_EMPS > 30 THEN RETURN “MEDIUM”

ELSE RETURN “SMALL”

ENDIF;

Slide 9- 42Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Summary

 Assertions provide a means to specify additional
constraints

 Triggers are assertions that define actions to
be automatically taken when certain conditions
occur

 Views create temporary (virtual) tables
 A database may be accessed in an interactive

mode
 Most often, however, data in a database is

manipulate via application programs
 Several methods of database programming:

 Embedded SQL
 Dynamic SQL
 Stored procedure and function

	PowerPoint Presentation
	Chapter 9
	Chapter Outline
	Chapter Objectives
	Constraints as Assertions
	Assertions: An Example
	Using General Assertions
	SQL Triggers
	SQL Triggers: An Example
	Views in SQL
	Specification of Views
	SQL Views: An Example
	Using a Virtual Table
	Efficient View Implementation
	Slide 15
	Update Views
	Un-updatable Views
	Database Programming
	Database Programming Approaches
	Impedance Mismatch
	Steps in Database Programming
	Embedded SQL
	Example: Variable Declaration in Language C
	SQL Commands for Connecting to a Database
	Embedded SQL in C Programming Examples
	Embedded SQL in C Programming Examples
	Dynamic SQL
	Dynamic SQL: An Example
	Embedded SQL in Java
	Java Database Connectivity
	Steps in JDBC Database Access
	Embedded SQL in Java: An Example
	Multiple Tuples in SQLJ
	Database Programming with Functional Calls
	SQL Call Level Interface
	Components of SQL/CLI
	Steps in C and SQL/CLI Programming
	Database Stored Procedures
	Stored Procedure Constructs
	SQL Persistent Stored Modules
	SQL/PSM: An Example
	Summary

