Basics

- Data warehouse is an integrated repository derived from multiple distributed source databases.
- Created by replicating or transforming source data to new representation.
- Some data can be web-database or regular databases (relational, files, etc.).
- Warehouse creation involves reading, cleaning, aggregating, and storing data.
- Warehouse data is used for strategic analysis, decision making, market research types of applications.
- Open access to third party users.
Examples:

• Human genome databases.

• Drug-drug interactions database created by thousands of doctors in hundreds of hospitals.

• Stock prices, analyst research.

• Teaching material (slides, exercises, exams, examples).

• Census data or similar statistics collected by government.
Ideas for Security

• Replication
• Aggregation and Generalization
• Exaggeration and Mutilation
• Anonymity
• User Profiles, Access Permissions
Anonymity

One can divulge information to a third party without revealing where it came from and without necessarily revealing the system has done so.

- User privacy and warehouse data privacy.
- User does not know the source of data.
- Warehouse system does not store the results and even the access path for the query.
- Separation of storage system and audit query system*.
- Non-intrusive auditing and monitoring.
- Distribution of query processing, logs, auditing activity.
- Secure multi-party computation.
- Mental poker (card distribution).

* Research project of Atallah and Prabhakar at Purdue.
• Witness (Permission Inference)
 User can execute query Q if there is an equivalent query Q′ for which the user has permission. Security is on result and not computation.

• Create views over mutually suspicious organizations by filtering out sensitive data.
Similarity Depends on Application

• Two objects might be similar to a K-12 student, but not a scientist.
• 1999 and 1995 annual reports of the CS department might be similar to a graduate school applicant, but not to a faculty applicant.

Goal: Use ideas of replication to provide security by using a variety of similarity criterion

Goal: Different QoS to match different classes of users.
Similarity Based Replication

SOME DEFINITIONS:

• **Distinct functions** used to determine how similar two objects are (Distinct Preserving Transformations).

• **Precision**: fraction of retrieved data as needed (relevant) for the user query.

• **False Positive**: object retrieved that is similar to the data needed by query, but it is not.

• **False Negative**: object is needed by the query, but not retrieved.

* Bhargava/Annamalia, Defining Data Equivalence, IDPT, 1996
Access Permission*

• Information permission (system-wide)
 – (employee salary is releasable to payroll clerks and cost analyst).

• Physical permission (local)
 – (cost analysts are allowed to run queries on the warehouse).

Cooperation Instead of Autonomy in Warehouse*

• In UK, the Audit Commission estimated losses of the order of $2 billion.

• Japanese Yakuza made a profit of $7 billion.

• A secure organization needs to secure data, as well as it’s interpretation.
 (Integrity of data OK, but the benefit rules were interpreted wrong and misapplied.)
 \[\implies\text{Interpretation Integrity}\]

Extensions to the SQL Grant/Revoke Security Model*

- Limitation is a generalization of revoke.
- Limitation Predicates should apply to only paths (reduces chance of inadvertent & malicious denial of service).
- One can add either limitation or reactivation, or both.
- Limitation respects lines of authority.
- Flexibility can be provided to limitation.

Aggregation and Generalization

• Summaries, Statistics
 – (over large or small set of records)
 – (various levels of granularity)
• Graphical image with numerical data.
• Reduce the resolution of images.
• Approximate answers
 – (real-time vs. delayed quotes, blood analysis results)
• Inherit access to related data.
Dynamic

• Authenticate users dynamically and provides access privileges.
 – Mobile agent interacts with the user and provides authentication and personalized views based on analysis and verification.

• Rule-based interaction session.

• Analysis of the user input.

• Determination of the user’s validity and creating a session id for the user and assignment of access permission.
Exaggeration and Misleading

- Give low or high range of normal values. Initially (semantically normal).
- Partially incorrect or difficult to verify data. Quality improves if security is assured.
- Give old data, check damage done, give better data.
- Projected values than actual values.
User Profile

- User profiles are used for providing different levels of security.
- Each user can have a profile stored at the web server or at third party server.
- User can change profile attributes at run-time.
- User behavior is taken into account based on past record.
- Mobile agent accesses the web page on behalf of the user and tries to negotiate with web server for the security level.
User Profile

• Personal category
 – personal identifications; name, dob, ss, etc.
• Data category
 – document content; keywords
 – document structure; audio/video, links
 – source of data
• Delivery data – web views, e-mail
• Secure data category
Static

• Predefined set of user names, domain names, and access restrictions for each
 – (restricted & inflexible)
• Virtual view, Materialized view, Query driven
• Build user profiles and represent them
 – past behavior
 – feedback
 – earlier queries
 – type, content and duration