
An Introduction to

PL/SQL

Mehdi Azarmi

1

Introduction
• PL/SQL is Oracle's procedural language extension to

SQL, the non-procedural relational database language.
• Combines power and flexibility of SQL (4GL) with

procedural constructs of a 3GL
• Extends SQL by adding

• Variables and types
• Control Structures (conditional, loops)
• Procedures and functions
• Exception handling
• …

2

Block Definition
• Basic unit of PL/SQL is a block

• Three possible sections of a block
• Declarative section
• Executable section
• Exception handling

• A block performs a logical unit of work in the program
• Blocks can be nested

3

Block Structure
DECLARE

 /* Declarative section: variables, types, and local
subprograms. */

BEGIN

 /* Executable section: procedural and SQL statements go here.
*/

 /* This is the only section of the block that is required. */

EXCEPTION

 /* Exception handling section: error handling statements go
here. */

END;

4

Executable Section
• The only required section

• Contains constructs such as assignments, branches, loops,
procedure calls, and triggers

• SELECT, INSERT, UPDATE, DELETE are supported
• the SELECT statement has a special form in which a single tuple is placed in

variables

• Data definition statements like CREATE, DROP, or ALTER are not
allowed.

• PL/SQL is not case sensitive. C style comments (/* ... */) may be
used.

5

Variables and Types
• Declared in the declaration section
• Variables have a specific type associated with them
• Types

• One of the types used by SQL for database columns
• A generic type used in PL/SQL

• Most useful is NUMBER (can hold either an integer or a real number)
• BOOLEAN (but not supported as a type for database columns)

• Declared to be the same as the type of some database column

• It is essential that the variable have the same type as the
relation column.
• use the %TYPE operator

DECLARE

 myBeer Beers.name%TYPE;

• A variable may also have a type that is a record with several fields
 beerTuple Beers%ROWTYPE; /* (name, manufacture)*/

6

Variables - Example

DECLARE

 a NUMBER := 3;

BEGIN

 a := a + 1;

END;

.

run;

• The initial value of any variable, regardless of its type, is NULL.
• This program has no effect when run, because there are no

changes to the database.

To execute the program

7

Example
CREATE TABLE T1(

 e INTEGER,

 f INTEGER

);

DELETE FROM T1;

INSERT INTO T1 VALUES(1, 3);

INSERT INTO T1 VALUES(2, 4);

/* Above is plain SQL; below is the PL/SQL
program. */

DECLARE

 a NUMBER;

 b NUMBER;

BEGIN

 SELECT e,f INTO a,b FROM T1 WHERE e>1;

 INSERT INTO T1 VALUES(b,a);

END;

.

run;

• There is only one tuple of T1 that has
first component greater than 1, (2,4).
Therefore, INSERT statement inserts
(4,2) into T1.

• The SELECT statement in PL/SQL
only works if the result of the query
contains a single tuple

• If the query returns more than one
tuple, you need to use a cursor

8

Control flow in
PL/SQL

9

IF Statement
• An IF statement looks like:

IF <condition>

THEN <statement_list>

ELSE <statement_list>

END IF;

• The ELSE part is optional
• If you want a multiway branch, use:

IF <condition_1> THEN …

ELSIF <condition_2> THEN …

...

ELSIF <condition_n> THEN …

ELSE …

END IF;

10

IF - Example
DECLARE

 a NUMBER;

 b NUMBER;

BEGIN

 SELECT e,f INTO a,b FROM T1 WHERE e>1;

 IF b=1 THEN

 INSERT INTO T1 VALUES(b,a);

 ELSE

 INSERT INTO T1 VALUES(b+10,a+10);

 END IF;

END;

.

run;

11

IF - Example 2

DECLARE

 TotalStudents NUMBER;

BEGIN

 SELECT COUNT(*)

 INTO TotalStudents

 FROM students;

 … �

IF TotalStudents = 0 THEN

 INSERT INTO temp_table (char_col)

 VALUES ('There are no students
registered');

 ELSIF TotalStudents < 5 THEN

 INSERT INTO temp_table (char_col)

 VALUES ('There are only a few students
registered');

 ELSIF TotalStudents < 10 THEN

 INSERT INTO temp_table (char_col)

 VALUES ('There are a little more
students registered');

 ELSE

 INSERT INTO temp_table (char_col)

 VALUES ('There are many students
registered');

 END IF;

END;

/

12

IF and UPDATE - Example
DECLARE

 NewMajor VARCHAR2(10) := ’CS';

 FirstName VARCHAR2(10) := ’Mehdi';

 LastName VARCHAR2(10) := ’Azarmi';

BEGIN

 UPDATE students

 SET major = NewMajor

 WHERE first_name = FirstName

 AND last_name = LastName;

 IF SQL%NOTFOUND THEN

 INSERT INTO students (ID, first_name, last_name, major)

 VALUES (student_sequence.NEXTVAL, FirstName, LastName, NewMajor);

 END IF;

END;

/

13

Loops
• A loop allows execution of a set of statements repeatedly
• Types of loops

• Simple loop
• Numeric For loop
• While loop

• Loops are created with the following:
LOOP

 <loop_body> /* A list of statements. */

END LOOP;

• At least one of the statements in <loop_body> should be
an EXIT statement of the form

• EXIT WHEN <condition>;

14

LOOP - Example

DECLARE

 i NUMBER := 1;

BEGIN

 LOOP

 INSERT INTO T1 VALUES(i,i);

 i := i+1;

 EXIT WHEN i>100;

 END LOOP;

END;

.

run;

15

FOR and WHILE Loops
• A WHILE loop can be formed with

 WHILE <condition> LOOP

 <loop_body>

 END LOOP;
• A simple FOR loop can be formed with:

 FOR <var> IN <start>..<finish> LOOP

 <loop_body>

 END LOOP;
• Here, <var> can be any variable; it is local to the for-loop

and need not be declared. Also, <start> and <finish> are
constants.

16

FOR - Example

BEGIN

 FOR LoopCounter IN 1..50 LOOP

 INSERT INTO temp_table (num_col)

 VALUES (LoopCounter);

 END LOOP;

END;

/

17

Cursors
• the SELECT statement in PL/SQL only works if the result

of the query contains a single tuple
• If the query returns more than one tuple, or you want to

manipulate a relation with more than one row, you need to
use a cursor

• A cursor creates a named context area as a result of
executing an associated SQL statement

• Permits the program to step through the multiple rows
displayed by an SQL statement

18

 1) DECLARE

 /* Output variables to hold the result of the query: */

 2) a T1.e%TYPE;

 3) b T1.f%TYPE;

 /* Cursor declaration: */

 4) CURSOR T1Cursor IS

 5) SELECT e, f

 6) FROM T1

 7) WHERE e < f

 8) FOR UPDATE;

 9) BEGIN

10) OPEN T1Cursor;

 … � Next page

19

CURSOR – Example part1

CURSOR– Example part2

20

11) LOOP

 /* Retrieve each row of the result of the above query

 into PL/SQL variables: */

12) FETCH T1Cursor INTO a, b;

 /* If there are no more rows to fetch, exit the loop: */

13) EXIT WHEN T1Cursor%NOTFOUND;

 /* Delete the current tuple: */

14) DELETE FROM T1 WHERE CURRENT OF T1Cursor;

 /* Insert the reverse tuple: */

15) INSERT INTO T1 VALUES(b, a);

16) END LOOP;

 /* Free cursor used by the query. */

17) CLOSE T1Cursor;

18) END;

19) .

20) run;

Procedure
• PROCEDURE and FUNCTIONS
• Parameters

• Mode of operation:
• IN (read-only)
• OUT (write-only)
• INOUT (read and write)

• Type

• the type specifier in a parameter declaration must be
unconstrained.
• Example: CHAR(10) and VARCHAR(20) are illegal
• CHAR or VARCHAR should be used instead.

21

PROCEDURE - Template
CREATE OR REPLACE PROCEDURE PROCNAME(PARAMETERS) AS

<local_var_declarations>

BEGIN

 <procedure_body>

END;

.

run;

• The run at the end runs the statement that creates the procedure; it does not
execute the procedure.

• To execute the procedure, use another PL/SQL statement, in which the
procedure is invoked as an executable statement.
• For example:

BEGIN addtuple1(99); END;

.

Run;

22

PROCEDURE – Example 1
CREATE TABLE T2 (

 a INTEGER,

 b CHAR(10)

);

CREATE PROCEDURE addtuple2(

 x IN T2.a%TYPE,

 y IN T2.b%TYPE)

AS

BEGIN

 INSERT INTO T2(a, b)

 VALUES(x, y);

END addtuple2;

.

run;

• Now, to add a tuple (10, 'abc') to T2:
BEGIN

 addtuple2(10, 'abc');

END;

.

run;

23

PROCEDURE – Example 2
CREATE TABLE T3 (

 a INTEGER,

 b INTEGER

);

CREATE PROCEDURE addtuple3(a NUMBER, b OUT NUMBER)

AS

BEGIN

 b := 4;

 INSERT INTO T3 VALUES(a, b);

END;

.

Run;

DECLARE

 v NUMBER;

BEGIN

 addtuple3(10, v); /* second parameter should be an lvalue*/

END;

.

run;

24

PROCEDURE – Final Notes
• We can also write functions instead of procedures. In a function

declaration, we follow the parameter list by RETURN and the type of
the return value:
• CREATE FUNCTION <func_name>(<param_list>) RETURN
<return_type> AS ...

• In the body of the function definition, "RETURN <expression>;" exits from the
function and returns the value of <expression>.

• To find out what procedures and functions you have created, use the
following SQL query:
select object_type, object_name

from user_objects

where object_type = 'PROCEDURE’ or object_type = 'FUNCTION’;

• To drop a stored procedure/function:
drop procedure <procedure_name>;

drop function <function_name>;

25

Printing
• Always use the following line (setting output buffer) at the

beginning of your SQL file:
 set serveroutput on size 32000

• Printing a line:
 dbms_output.put_line(VAR1|| '. ' || VAR2);

• You may declare and use a bind variable to print a local variable
VARIABLE x NUMBER

BEGIN

:x := 1;

END;

.

run;

PRINT :x;

26

Debugging
• PL/SQL does not always tell you about compilation errors.

Instead, it gives you a cryptic message such as:
 "procedure created with compilation errors".

• If you don't see what is wrong immediately, try issuing the
command
 show errors procedure <procedure_name>;

• Alternatively, you can type, SHO ERR (short for SHOW
ERRORS) to see the most recent compilation error.

• Note that the location of the error given as part of the
error message is not always accurate!

27

Performance of PL/SQL
• SQL results in many network trips, one for each SQL

statement
• PL/SQL permits several SQL statements to be bundled

into a single block
• Results in fewer calls to database

• Less network traffic
• faster response time

28

References
• http://infolab.stanford.edu/~ullman/fcdb/oracle/or-

plsql.html
• Oracle PL/SQL Programming: Covers Versions Through

Oracle Database 11g Release 2, by Steven Feuerstein
and Bill Pribyl (Oct 1, 2009)

29

http://infolab.stanford.edu/~ullman/fcdb/oracle/or-plsql.html
http://infolab.stanford.edu/~ullman/fcdb/oracle/or-plsql.html

	Slide 1
	Introduction
	Block Definition
	Block Structure
	Executable Section
	Variables and Types
	Variables - Example
	Example
	Slide 9
	IF Statement
	IF - Example
	IF - Example 2
	IF and UPDATE - Example
	Loops
	LOOP - Example
	FOR and WHILE Loops
	FOR - Example
	Cursors
	CURSOR – Example part1
	CURSOR– Example part2
	Procedure
	PROCEDURE - Template
	PROCEDURE – Example 1
	PROCEDURE – Example 2
	PROCEDURE – Final Notes
	Printing
	Debugging
	Performance of PL/SQL
	References

