
Purdue University
Computer Science Department
CS 448: Introduction to Database Systems()
Prof: Bharat Bhargava

CS 448 – Homework #3 Due 03/07/2014
Reference : Fundamentals of Database Systems by Elmasri & Navathe, 6th Edition

Q0) Write your “homework sn” as seen on blackboard on the top of the first page of your

submission. it has the format XXPX

Q1) 17.7 on page 625
Q2) 17.20 on page 626
Q3)17.25 on page 626
Q4)18.12 on page 671
Q5)18.24 on page 673
Q6) 19.13 on page 724 Do the work for Q1 (page 100) and Q1A (page 101) and do part b)of the question.
Q7)Question 15.2 on page 537
Q8)Question 15.5 on page 537
Q9)Question 15.24 on page 538

Review Questions 625

Hashing provides very fast access to an arbitrary record of a file, given the value of
its hash key. The most suitable method for external hashing is the bucket technique,
with one or more contiguous blocks corresponding to each bucket. Collisions caus-
ing bucket overflow are handled by chaining. Access on any nonhash field is slow,
and so is ordered access of the records on any field. We discussed three hashing tech-
niques for files that grow and shrink in the number of records dynamically:
extendible, dynamic, and linear hashing. The first two use the higher-order bits of
the hash address to organize a directory. Linear hashing is geared to keep the load
factor of the file within a given range and adds new buckets linearly.

We briefly discussed other possibilities for primary file organizations, such as B-
trees, and files of mixed records, which implement relationships among records of
different types physically as part of the storage structure. We reviewed the recent
advances in disk technology represented by RAID (Redundant Arrays of
Inexpensive (or Independent) Disks), which has become a standard technique in
large enterprises to provide better reliability and fault tolerance features in storage.
Finally, we reviewed three currently popular options in enterprise storage systems:
storage area networks (SANs), network-attached storage (NAS), and iSCSI storage
systems.

Review Questions
17.1. What is the difference between primary and secondary storage?

17.2. Why are disks, not tapes, used to store online database files?

17.3. Define the following terms: disk, disk pack, track, block, cylinder, sector,
interblock gap, read/write head.

17.4. Discuss the process of disk initialization.

17.5. Discuss the mechanism used to read data from or write data to the disk.

17.6. What are the components of a disk block address?

17.7. Why is accessing a disk block expensive? Discuss the time components
involved in accessing a disk block.

17.8. How does double buffering improve block access time?

17.9. What are the reasons for having variable-length records? What types of sep-
arator characters are needed for each?

17.10. Discuss the techniques for allocating file blocks on disk.

17.11. What is the difference between a file organization and an access method?

17.12. What is the difference between static and dynamic files?

17.13. What are the typical record-at-a-time operations for accessing a file? Which
of these depend on the current file record?

17.14. Discuss the techniques for record deletion.

626 Chapter 17 Disk Storage, Basic File Structures, and Hashing

17.15. Discuss the advantages and disadvantages of using (a) an unordered file, (b)
an ordered file, and (c) a static hash file with buckets and chaining. Which
operations can be performed efficiently on each of these organizations, and
which operations are expensive?

17.16. Discuss the techniques for allowing a hash file to expand and shrink dynam-
ically. What are the advantages and disadvantages of each?

17.17. What is the difference between the directories of extendible and dynamic
hashing?

17.18. What are mixed files used for? What are other types of primary file organiza-
tions?

17.19. Describe the mismatch between processor and disk technologies.

17.20. What are the main goals of the RAID technology? How does it achieve them?

17.21. How does disk mirroring help improve reliability? Give a quantitative
example.

17.22. What characterizes the levels in RAID organization?

17.23. What are the highlights of the popular RAID levels 0, 1, and 5?

17.24. What are storage area networks? What flexibility and advantages do they
offer?

17.25. Describe the main features of network-attached storage as an enterprise
storage solution.

17.26. How have new iSCSI systems improved the applicability of storage area net-
works?

Exercises
17.27. Consider a disk with the following characteristics (these are not parameters

of any particular disk unit): block size B = 512 bytes; interblock gap size G =
128 bytes; number of blocks per track = 20; number of tracks per surface =
400. A disk pack consists of 15 double-sided disks.
a. What is the total capacity of a track, and what is its useful capacity

(excluding interblock gaps)?
b. How many cylinders are there?
c. What are the total capacity and the useful capacity of a cylinder?
d. What are the total capacity and the useful capacity of a disk pack?
e. Suppose that the disk drive rotates the disk pack at a speed of 2400 rpm

(revolutions per minute); what are the transfer rate (tr) in bytes/msec and
the block transfer time (btt) in msec? What is the average rotational delay
(rd) in msec? What is the bulk transfer rate? (See Appendix B.)

f. Suppose that the average seek time is 30 msec. How much time does it
take (on the average) in msec to locate and transfer a single block, given
its block address?

Review Questions 671

We introduced the concept of a logical index and compared it with the physical
indexes we described before. They allow an additional level of indirection in index-
ing in order to permit greater freedom for movement of actual record locations on
disk. We also reviewed some general issues related to indexing, and commented on
column-based storage of relations, which has particular advantages for read-only
databases. Finally, we discussed how combinations of the above organizations can
be used. For example, secondary indexes are often used with mixed files, as well as
with unordered and ordered files.

Review Questions
18.1. Define the following terms: indexing field, primary key field, clustering field,

secondary key field, block anchor, dense index, and nondense (sparse) index.

18.2. What are the differences among primary, secondary, and clustering indexes?
How do these differences affect the ways in which these indexes are imple-
mented? Which of the indexes are dense, and which are not?

18.3. Why can we have at most one primary or clustering index on a file, but sev-
eral secondary indexes?

18.4. How does multilevel indexing improve the efficiency of searching an index
file?

18.5. What is the order p of a B-tree? Describe the structure of B-tree nodes.

18.6. What is the order p of a B+-tree? Describe the structure of both internal and
leaf nodes of a B+-tree.

18.7. How does a B-tree differ from a B+-tree? Why is a B+-tree usually preferred
as an access structure to a data file?

18.8. Explain what alternative choices exist for accessing a file based on multiple
search keys.

18.9. What is partitioned hashing? How does it work? What are its limitations?

18.10. What is a grid file? What are its advantages and disadvantages?

18.11. Show an example of constructing a grid array on two attributes on some file.

18.12. What is a fully inverted file? What is an indexed sequential file?

18.13. How can hashing be used to construct an index?

18.14. What is bitmap indexing? Create a relation with two columns and sixteen
tuples and show an example of a bitmap index on one or both.

18.15. What is the concept of function-based indexing? What additional purpose
does it serve?

18.16. What is the difference between a logical index and a physical index?

18.17. What is column-based storage of a relational database?

672 Chapter 18 Indexing Structures for Files

Exercises
18.18. Consider a disk with block size B = 512 bytes. A block pointer is P = 6 bytes

long, and a record pointer is PR = 7 bytes long. A file has r = 30,000
EMPLOYEE records of fixed length. Each record has the following fields: Name
(30 bytes), Ssn (9 bytes), Department_code (9 bytes), Address (40 bytes),
Phone (10 bytes), Birth_date (8 bytes), Sex (1 byte), Job_code (4 bytes), and
Salary (4 bytes, real number). An additional byte is used as a deletion marker.

a. Calculate the record size R in bytes.

b. Calculate the blocking factor bfr and the number of file blocks b, assum-
ing an unspanned organization.

c. Suppose that the file is ordered by the key field Ssn and we want to con-
struct a primary index on Ssn. Calculate (i) the index blocking factor bfri
(which is also the index fan-out fo); (ii) the number of first-level index
entries and the number of first-level index blocks; (iii) the number of lev-
els needed if we make it into a multilevel index; (iv) the total number of
blocks required by the multilevel index; and (v) the number of block
accesses needed to search for and retrieve a record from the file—given its
Ssn value—using the primary index.

d. Suppose that the file is not ordered by the key field Ssn and we want to
construct a secondary index on Ssn. Repeat the previous exercise (part c)
for the secondary index and compare with the primary index.

e. Suppose that the file is not ordered by the nonkey field Department_code
and we want to construct a secondary index on Department_code, using
option 3 of Section 18.1.3, with an extra level of indirection that stores
record pointers. Assume there are 1,000 distinct values of
Department_code and that the EMPLOYEE records are evenly distributed
among these values. Calculate (i) the index blocking factor bfri (which is
also the index fan-out fo); (ii) the number of blocks needed by the level of
indirection that stores record pointers; (iii) the number of first-level
index entries and the number of first-level index blocks; (iv) the number
of levels needed if we make it into a multilevel index; (v) the total number
of blocks required by the multilevel index and the blocks used in the extra
level of indirection; and (vi) the approximate number of block accesses
needed to search for and retrieve all records in the file that have a specific
Department_code value, using the index.

f. Suppose that the file is ordered by the nonkey field Department_code and
we want to construct a clustering index on Department_code that uses
block anchors (every new value of Department_code starts at the beginning
of a new block). Assume there are 1,000 distinct values of
Department_code and that the EMPLOYEE records are evenly distributed
among these values. Calculate (i) the index blocking factor bfri (which is
also the index fan-out fo); (ii) the number of first-level index entries and
the number of first-level index blocks; (iii) the number of levels needed if
we make it into a multilevel index; (iv) the total number of blocks

Exercises 673

required by the multilevel index; and (v) the number of block accesses
needed to search for and retrieve all records in the file that have a specific
Department_code value, using the clustering index (assume that multiple
blocks in a cluster are contiguous).

g. Suppose that the file is not ordered by the key field Ssn and we want to
construct a B+-tree access structure (index) on Ssn. Calculate (i) the
orders p and pleaf of the B+-tree; (ii) the number of leaf-level blocks
needed if blocks are approximately 69 percent full (rounded up for con-
venience); (iii) the number of levels needed if internal nodes are also 69
percent full (rounded up for convenience); (iv) the total number of blocks
required by the B+-tree; and (v) the number of block accesses needed to
search for and retrieve a record from the file—given its Ssn value—using
the B+-tree.

h. Repeat part g, but for a B-tree rather than for a B+-tree. Compare your
results for the B-tree and for the B+-tree.

18.19. A PARTS file with Part# as the key field includes records with the following
Part# values: 23, 65, 37, 60, 46, 92, 48, 71, 56, 59, 18, 21, 10, 74, 78, 15, 16, 20,
24, 28, 39, 43, 47, 50, 69, 75, 8, 49, 33, 38. Suppose that the search field values
are inserted in the given order in a B+-tree of order p = 4 and pleaf = 3; show
how the tree will expand and what the final tree will look like.

18.20. Repeat Exercise 18.19, but use a B-tree of order p = 4 instead of a B+-tree.

18.21. Suppose that the following search field values are deleted, in the given order,
from the B+-tree of Exercise 18.19; show how the tree will shrink and show
the final tree. The deleted values are 65, 75, 43, 18, 20, 92, 59, 37.

18.22. Repeat Exercise 18.21, but for the B-tree of Exercise 18.20.

18.23. Algorithm 18.1 outlines the procedure for searching a nondense multilevel
primary index to retrieve a file record. Adapt the algorithm for each of the
following cases:

a. A multilevel secondary index on a nonkey nonordering field of a file.
Assume that option 3 of Section 18.1.3 is used, where an extra level of
indirection stores pointers to the individual records with the corres-
ponding index field value.

b. A multilevel secondary index on a nonordering key field of a file.

c. A multilevel clustering index on a nonkey ordering field of a file.

18.24. Suppose that several secondary indexes exist on nonkey fields of a file,
implemented using option 3 of Section 18.1.3; for example, we could have
secondary indexes on the fields Department_code, Job_code, and Salary of the
EMPLOYEE file of Exercise 18.18. Describe an efficient way to search for and
retrieve records satisfying a complex selection condition on these fields, such
as (Department_code = 5 AND Job_code = 12 AND Salary = 50,000), using the
record pointers in the indirection level.

724 Chapter 19 Algorithms for Query Processing and Optimization

19.6. How many different join orders are there for a query that joins 10 relations?

19.7. What is meant by cost-based query optimization?

19.8. What is the difference between pipelining and materialization?

19.9. Discuss the cost components for a cost function that is used to estimate
query execution cost. Which cost components are used most often as the
basis for cost functions?

19.10. Discuss the different types of parameters that are used in cost functions.
Where is this information kept?

19.11. List the cost functions for the SELECT and JOIN methods discussed in
Section 19.8.

19.12. What is meant by semantic query optimization? How does it differ from
other query optimization techniques?

Exercises
19.13. Consider SQL queries Q1, Q8, Q1B, and Q4 in Chapter 4 and Q27 in

Chapter 5.

a. Draw at least two query trees that can represent each of these queries.
Under what circumstances would you use each of your query trees?

b. Draw the initial query tree for each of these queries, and then show how
the query tree is optimized by the algorithm outlined in Section 19.7.

c. For each query, compare your own query trees of part (a) and the initial
and final query trees of part (b).

19.14. A file of 4096 blocks is to be sorted with an available buffer space of 64
blocks. How many passes will be needed in the merge phase of the external
sort-merge algorithm?

19.15. Develop cost functions for the PROJECT, UNION, INTERSECTION, SET DIF-
FERENCE, and CARTESIAN PRODUCT algorithms discussed in Section 19.4.

19.16. Develop cost functions for an algorithm that consists of two SELECTs, a
JOIN, and a final PROJECT, in terms of the cost functions for the individual
operations.

19.17. Can a nondense index be used in the implementation of an aggregate opera-
tor? Why or why not?

19.18. Calculate the cost functions for different options of executing the JOIN oper-
ation OP7 discussed in Section 19.3.2.

19.19. Develop formulas for the hybrid hash-join algorithm for calculating the size
of the buffer for the first bucket. Develop more accurate cost estimation for-
mulas for the algorithm.

those tuples for which the condition evaluates to TRUE after substituting their cor-
responding attribute values—are selected.

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

Q1: SELECT Fname, Lname, Address
FROM EMPLOYEE, DEPARTMENT
WHERE Dname=‘Research’ AND Dnumber=Dno;

In the WHERE clause of Q1, the condition Dname = ‘Research’ is a selection condi-
tion that chooses the particular tuple of interest in the DEPARTMENT table, because
Dname is an attribute of DEPARTMENT. The condition Dnumber = Dno is called a
join condition, because it combines two tuples: one from DEPARTMENT and one
from EMPLOYEE, whenever the value of Dnumber in DEPARTMENT is equal to the
value of Dno in EMPLOYEE. The result of query Q1 is shown in Figure 4.3(b). In
general, any number of selection and join conditions may be specified in a single
SQL query.

A query that involves only selection and join conditions plus projection attributes is
known as a select-project-join query. The next example is a select-project-join
query with two join conditions.

Query 2. For every project located in ‘Stafford’, list the project number, the
controlling department number, and the department manager’s last name,
address, and birth date.

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND

Plocation=‘Stafford’;

The join condition Dnum = Dnumber relates a project tuple to its controlling depart-
ment tuple, whereas the join condition Mgr_ssn = Ssn relates the controlling depart-
ment tuple to the employee tuple who manages that department. Each tuple in the
result will be a combination of one project, one department, and one employee that
satisfies the join conditions. The projection attributes are used to choose the attrib-
utes to be displayed from each combined tuple. The result of query Q2 is shown in
Figure 4.3(c).

4.3.2 Ambiguous Attribute Names, Aliasing,
Renaming, and Tuple Variables

In SQL, the same name can be used for two (or more) attributes as long as the attrib-
utes are in different relations. If this is the case, and a multitable query refers to two or
more attributes with the same name, we must qualify the attribute name with the
relation name to prevent ambiguity. This is done by prefixing the relation name to
the attribute name and separating the two by a period. To illustrate this, suppose that
in Figures 3.5 and 3.6 the Dno and Lname attributes of the EMPLOYEE relation were

100 Chapter 4 Basic SQL

called Dnumber and Name, and the Dname attribute of DEPARTMENT was also called
Name; then, to prevent ambiguity, query Q1 would be rephrased as shown in Q1A. We
must prefix the attributes Name and Dnumber in Q1A to specify which ones we are
referring to, because the same attribute names are used in both relations:

Q1A: SELECT Fname, EMPLOYEE.Name, Address
FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.Name=‘Research’ AND

DEPARTMENT.Dnumber=EMPLOYEE.Dnumber;

Fully qualified attribute names can be used for clarity even if there is no ambiguity
in attribute names. Q1 is shown in this manner as is Q1! below. We can also create
an alias for each table name to avoid repeated typing of long table names (see Q8
below).

Q1!: SELECT EMPLOYEE.Fname, EMPLOYEE.LName,
EMPLOYEE.Address

FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.DName=‘Research’ AND

DEPARTMENT.Dnumber=EMPLOYEE.Dno;

The ambiguity of attribute names also arises in the case of queries that refer to the
same relation twice, as in the following example.

Query 8. For each employee, retrieve the employee’s first and last name and
the first and last name of his or her immediate supervisor.

Q8: SELECT E.Fname, E.Lname, S.Fname, S.Lname
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn=S.Ssn;

In this case, we are required to declare alternative relation names E and S, called
aliases or tuple variables, for the EMPLOYEE relation. An alias can follow the key-
word AS, as shown in Q8, or it can directly follow the relation name—for example,
by writing EMPLOYEE E, EMPLOYEE S in the FROM clause of Q8. It is also possible
to rename the relation attributes within the query in SQL by giving them aliases.
For example, if we write

EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)

in the FROM clause, Fn becomes an alias for Fname, Mi for Minit, Ln for Lname, and so
on.

In Q8, we can think of E and S as two different copies of the EMPLOYEE relation; the
first, E, represents employees in the role of supervisees or subordinates; the second,
S, represents employees in the role of supervisors. We can now join the two copies.
Of course, in reality there is only one EMPLOYEE relation, and the join condition is
meant to join the relation with itself by matching the tuples that satisfy the join con-
dition E.Super_ssn = S.Ssn. Notice that this is an example of a one-level recursive
query, as we will discuss in Section 6.4.2. In earlier versions of SQL, it was not pos-
sible to specify a general recursive query, with an unknown number of levels, in a

4.3 Basic Retrieval Queries in SQL 101

Exercises 537

15.2. Discuss insertion, deletion, and modification anomalies. Why are they con-
sidered bad? Illustrate with examples.

15.3. Why should NULLs in a relation be avoided as much as possible? Discuss the
problem of spurious tuples and how we may prevent it.

15.4. State the informal guidelines for relation schema design that we discussed.
Illustrate how violation of these guidelines may be harmful.

15.5. What is a functional dependency? What are the possible sources of the infor-
mation that defines the functional dependencies that hold among the attrib-
utes of a relation schema?

15.6. Why can we not infer a functional dependency automatically from a partic-
ular relation state?

15.7. What does the term unnormalized relation refer to? How did the normal
forms develop historically from first normal form up to Boyce-Codd normal
form?

15.8. Define first, second, and third normal forms when only primary keys are
considered. How do the general definitions of 2NF and 3NF, which consider
all keys of a relation, differ from those that consider only primary keys?

15.9. What undesirable dependencies are avoided when a relation is in 2NF?

15.10. What undesirable dependencies are avoided when a relation is in 3NF?

15.11. In what way do the generalized definitions of 2NF and 3NF extend the defi-
nitions beyond primary keys?

15.12. Define Boyce-Codd normal form. How does it differ from 3NF? Why is it
considered a stronger form of 3NF?

15.13. What is multivalued dependency? When does it arise?

15.14. Does a relation with two or more columns always have an MVD? Show with
an example.

15.15. Define fourth normal form. When is it violated? When is it typically
applicable?

15.16. Define join dependency and fifth normal form.

15.17. Why is 5NF also called project-join normal form (PJNF)?

15.18. Why do practical database designs typically aim for BCNF and not aim for
higher normal forms?

Exercises
15.19. Suppose that we have the following requirements for a university database

that is used to keep track of students’ transcripts:

a. The university keeps track of each student’s name (Sname), student num-
ber (Snum), Social Security number (Ssn), current address (Sc_addr) and

538 Chapter 15 Basics of Functional Dependencies and Normalization for Relational Databases

phone (Sc_phone), permanent address (Sp_addr) and phone (Sp_phone),
birth date (Bdate), sex (Sex), class (Class) (‘freshman’, ‘sophomore’, ... ,
‘graduate’), major department (Major_code), minor department
(Minor_code) (if any), and degree program (Prog) (‘b.a.’, ‘b.s.’, ... , ‘ph.d.’).
Both Ssn and student number have unique values for each student.

b. Each department is described by a name (Dname), department code
(Dcode), office number (Doffice), office phone (Dphone), and college
(Dcollege). Both name and code have unique values for each department.

c. Each course has a course name (Cname), description (Cdesc), course
number (Cnum), number of semester hours (Credit), level (Level), and
offering department (Cdept). The course number is unique for each
course.

d. Each section has an instructor (Iname), semester (Semester), year (Year),
course (Sec_course), and section number (Sec_num). The section number
distinguishes different sections of the same course that are taught during
the same semester/year; its values are 1, 2, 3, ..., up to the total number of
sections taught during each semester.

e. A grade record refers to a student (Ssn), a particular section, and a grade
(Grade).

Design a relational database schema for this database application. First show
all the functional dependencies that should hold among the attributes. Then
design relation schemas for the database that are each in 3NF or BCNF.
Specify the key attributes of each relation. Note any unspecified require-
ments, and make appropriate assumptions to render the specification
complete.

15.20. What update anomalies occur in the EMP_PROJ and EMP_DEPT relations of
Figures 15.3 and 15.4?

15.21. In what normal form is the LOTS relation schema in Figure 15.12(a) with
respect to the restrictive interpretations of normal form that take only the
primary key into account? Would it be in the same normal form if the gen-
eral definitions of normal form were used?

15.22. Prove that any relation schema with two attributes is in BCNF.

15.23. Why do spurious tuples occur in the result of joining the EMP_PROJ1 and
EMP_ LOCS relations in Figure 15.5 (result shown in Figure 15.6)?

15.24. Consider the universal relation R = {A, B, C, D, E, F, G, H, I, J} and the set of
functional dependencies F = { {A, B}→{C}, {A}→{D, E}, {B}→{F}, {F}→{G,
H}, {D}→{I, J} }. What is the key for R? Decompose R into 2NF and then
3NF relations.

15.25. Repeat Exercise 15.24 for the following different set of functional dependen-
cies G = {{A, B}→{C}, {B, D}→{E, F}, {A, D}→{G, H}, {A}→{I}, {H}→{J} }.

