Data warehouse is an integrated repository derived from multiple distributed source databases.

Created by replicating or transforming source data to new representation.

Some data can be web-database or regular databases (relational, files, etc.).

Warehouse creation involves reading, cleaning, aggregating, and storing data.

Warehouse data is used for strategic analysis, decision making, market research types of applications.

Open access to third party users.
Examples:

• Human genome databases.

• Drug-drug interactions database created by thousands of doctors in hundreds of hospitals.

• Stock prices, analyst research.

• Teaching material (slides, exercises, exams, examples).

• Census data or similar statistics collected by government.
Ideas for Security

• Replication
• Aggregation and Generalization
• Exaggeration and Mutilation
• Anonymity
• User Profiles, Access Permissions
Anonymity

One can divulge information to a third party without revealing where it came from and without necessarily revealing the system has done so.

- User privacy and warehouse data privacy.
- User does not know the source of data.
- Warehouse system does not store the results and even the access path for the query.
- Separation of storage system and audit query system*.
- Non-intrusive auditing and monitoring.
- Distribution of query processing, logs, auditing activity.
- Secure multi-party computation.
- Mental poker (card distribution).

* Research project of Atallah and Prabhakar at Purdue.
• Witness (Permission Inference)
User can execute query Q if there is an equivalent query Q’ for which the user has permission. Security is on result and not computation.

• Create views over mutually suspicious organizations by filtering out sensitive data.
Similarity Depends on Application

- Two objects might be similar to a K-12 student, but not a scientist.
- 1999 and 1995 annual reports of the CS department might be similar to a graduate school applicant, but not to a faculty applicant.

Goal: Use ideas of replication to provide security by using a variety of similarity criterion

Goal: Different QoS to match different classes of users.
Similarity Based Replication

SOME DEFINITIONS:

- **Distinct functions** used to determine how similar two objects are (Distinct Preserving Transformations).
- **Precision**: fraction of retrieved data as needed (relevant) for the user query.
- **False Positive**: object retrieved that is similar to the data needed by query, but it is not.
- **False Negative**: object is needed by the query, but not retrieved.

* Bhargava/Annamalia, Defining Data Equivalence, IDPT, 1996
Access Permission

• Information permission (system-wide)
 – (employee salary is releasable to payroll clerks and cost analyst).

• Physical permission (local)
 – (cost analysts are allowed to run queries on the warehouse).

Cooperation Instead of Autonomy in Warehouse*

- In UK, the Audit Commission estimated losses of the order of $2 billion.
- Japanese Yakuza made a profit of $7 billion.
- A secure organization needs to secure data, as well as it’s interpretation.
 (Integrity of data OK, but the benefit rules were interpreted wrong and misapplied.)
 \[\Rightarrow\] Interpretation Integrity

Extensions to the SQL Grant/Revoke Security Model*

- Limitation is a generalization of revoke.
- Limitation Predicates should apply to only paths (reduces chance of inadvertent & malicious denial of service).
- One can add either limitation or reactivation, or both.
- Limitation respects lines of authority.
- Flexibility can be provided to limitation.

Aggregation and Generalization

- Summaries, Statistics
 - (over large or small set of records)
 - (various levels of granularity)
- Graphical image with numerical data.
- Reduce the resolution of images.
- Approximate answers
 - (real-time vs. delayed quotes, blood analysis results)
- Inherit access to related data.
Dynamic

• Authenticate users dynamically and provides access privileges.
 – Mobile agent interacts with the user and provides authentication and personalized views based on analysis and verification.

• Rule-based interaction session.

• Analysis of the user input.

• Determination of the user’s validity and creating a session id for the user and assignment of access permission.
Exaggeration and Misleading

• Give low or high range of normal values. Initially (semantically normal).

• Partially incorrect or difficult to verify data. Quality improves if security is assured.

• Give old data, check damage done, give better data.

• Projected values than actual values.
User Profile

• User profiles are used for providing different levels of security.

• Each user can have a profile stored at the web server or at third party server.

• User can change profile attributes at run-time.

• User behavior is taken into account based on past record.

• Mobile agent accesses the web page on behalf of the user and tries to negotiate with web server for the security level.
User Profile

- Personal category
 - personal identifications; name, dob, ss, etc.
- Data category
 - document content; keywords
 - document structure; audio/video, links
 - source of data
- Delivery data – web views, e-mail
- Secure data category
Static

• Predefined set of user names, domain names, and access restrictions for each
 – (restricted & inflexible)

• Virtual view, Materialized view, Query driven

• Build user profiles and represent them
 – past behavior
 – feedback
 – earlier queries
 – type, content and duration