CHAPTER 30

Database Security
30.1 Introduction to Database Security Issues

- Database security a broad area
 - Legal, ethical, policy, and system-related issues

- Threats to databases
 - Loss of integrity
 - Improper modification of information
 - Loss of availability
 - Legitimate user cannot access data objects
 - Loss of confidentiality
 - Unauthorized disclosure of confidential information
Introduction to Database Security Issues (cont’d.)

- Database works as part of a network of services
 - Applications, Web servers, firewalls, SSL terminators, and security monitoring systems
- Types of database control measures
 - Access control
 - Inference control
 - Flow control
 - Encryption
Introduction to Database Security Issues (cont’d.)

- Discretionary security mechanisms
 - Used to grant privileges to users
- Mandatory security mechanisms
 - Classify data and users into various security classes
 - Implement security policy
- Role-based security
Control measures

Access control
- Handled by creating user accounts and passwords

Inference control
- Must ensure information about individuals cannot be accessed

Flow control
- Prevents information from flowing to unauthorized users

Data encryption
- Used to protect sensitive transmitted data
Database Security and the DBA

- Database administrator (DBA)
 - Central authority for administering database system
 - Superuser or system account

- DBA-privileged commands
 - Account creation
 - Privilege granting
 - Privilege revocation
 - Security level assignment
Access Control, User Accounts, and Database Audits

- User must log in using assigned username and password
- Login session
 - Sequence of database operations by a certain user
 - Recorded in system log
- Database audit
 - Reviewing log to examine all accesses and operations applied during a certain time period
Sensitive Data and Types of Disclosures

- Sensitivity of data
 - Inherently sensitive
 - From a sensitive source
 - Declared sensitive
 - A sensitive attribute or sensitive record
 - Sensitivity in relation to previously disclosed data
Factors in deciding whether it is safe to reveal the data

- Data availability
 - Not available when being updated

- Access acceptability
 - Authorized users

- Authenticity assurance
 - External characteristics of the user
 - Example: access only allowed during working hours
Typically a tradeoff between precision and security

- **Precision**
 - Protect all sensitive data while making available as much nonsensitive data as possible

- **Security**
 - Ensuring data kept safe from corruption and access suitably controlled
Relationship Between Information Security and Information Privacy

- Concept of privacy goes beyond security
 - Ability of individuals to control the terms under which their personal information is acquired and used
 - Security a required building block for privacy
- Preventing storage of personal information
- Ensuring appropriate use of personal information
- Trust relates to both security and privacy
30.2 Discretionary Access Control Based on Granting and Revoking Privileges

- Two levels for assigning privileges to use a database system
 - Account level
 - Example: CREATE SCHEMA or CREATE TABLE privilege
 - Not defined for SQL2
 - Relation (or table) level
 - Defined for SQL2
 - Access matrix model
Discretionary Access Control (cont’d.)

- Relation or table level (cont’d.)
 - Each relation R assigned an owner account
 - Owner of a relation given all privileges on that relation
 - Owner can grant privileges to other users on any owned relation
 - SELECT (retrieval or read) privilege on R
 - Modification privilege on R
 - References privilege on R
Specifying Privileges Through the Use of Views

- Consider owner A of relation R and other party B
 - A can create view V of R that includes only attributes A wants B to access
 - Grant SELECT on V to B
- Can define the view with a query that selects only those tuples from R that A wants B to access
Revocation and Propagation of Privileges

- **Revoking of Privileges**
 - Useful for granting a privilege temporarily
 - `REVOKE` command used to cancel a privilege

- **Propagation of privileges using the GRANT OPTION**
 - If GRANT OPTION is given, B can grant privilege to other accounts
 - DBMS must keep track of how privileges were granted if DBMS allows propagation
Revocation and Propagation of Privileges (cont’d.)

- Horizontal and vertical propagation limits
 - Limiting horizontal propagation to an integer number i
 - Account B given the GRANT OPTION can grant the privilege to at most i other accounts
 - Vertical propagation limits the depth of the granting of privileges
 - Not available currently in SQL or other relational systems
Mandatory access control

- Additional security policy that classifies data and users based on security classes
- Typical security classes
 - Top secret
 - Secret
 - Confidential
 - Unclassified
- Bell-LaPadula model
 - Subject and object classifications
Mandatory Access Control and Role-Based Access Control for Multilevel Security (cont’d.)

- **Simple security property**
 - Subject S not allowed read access to object O unless $\text{class}(S) \geq \text{class}(O)$

- **Star property**
 - Subject not allowed to write an object unless $\text{class}(S) \leq \text{class}(O)$
 - Prevent information from flowing from higher to lower classifications

- **Attribute values and tuples considered as data objects**
Figure 30.2 A multilevel relation to illustrate multilevel security (a) The original EMPLOYEE tuples (b) Appearance of EMPLOYEE after filtering for classification C users (c) Appearance of EMPLOYEE after filtering for classification U users (d) Polyinstantiation of the Smith tuple
Comparing Discretionary Access Control and Mandatory Access Control

- **DAC policies have a high degree of flexibility**
 - Do not impose control on how information is propagated
- **Mandatory policies ensure high degree of protection**
 - Rigid
 - Prevent illegal information flow
Role-Based Access Control

- Permissions associated with organizational roles
 - Users are assigned to appropriate roles
- Can be used with traditional discretionary and mandatory access control
- Mutual exclusion of roles
 - Authorization time exclusion
 - Runtime exclusion
- Identity management
Label-Based Security and Row-Level Access Control

- Sophisticated access control rules implemented by considering the data row by row
- Each row given a label
 - Used to prevent unauthorized users from viewing or altering certain data
- Provides finer granularity of data security
- Label security policy
 - Defined by an administrator
XML Access Control

- Digital signatures for XML
 - XML Signature Syntax and Processing specification
 - Defines mechanisms for countersigning and transformations
- XML encryption
 - XML Encryption Syntax and Processing specification
 - Defines XML vocabulary and processing rules
Access Control Policies for the Web and Mobile Applications

- E-commerce environments require elaborate access control policies
 - Go beyond traditional DBMSs
- Legal and financial consequences for unauthorized data breach
- Content-based access control
 - Takes protection object content into account
- Credentials
30.4 SQL Injection

- SQL injection
 - Most common threat to database system
- Other common threats
 - Unauthorized privilege escalation
 - Privilege abuse
 - Denial of service
 - Weak authentication
SQL Injection Methods

- Attacker injects a string input through the application
 - Changes or manipulates SQL statement to attacker’s advantage
- Unauthorized data manipulation or execution of system-level commands
- SQL manipulation
 - Changes an SQL command in the application
 - Example: adding conditions to the WHERE clause
SQL Injection Methods (cont’d.)

- SQL manipulation (cont’d.)
 - Typical manipulation attack occurs during database login

- Code injection
 - Add additional SQL statements or commands that are then processed

- Function call injection
 - Database or operating system function call inserted into vulnerable SQL statement to manipulate data or make a privileged system call
Risks Associated with SQL Injection

- Database fingerprinting
- Denial of service
- Bypassing authentication
- Identifying injectable parameters
- Executing remote commands
- Performing privilege escalation
Protection Techniques

- **Blind variables (using parameterized statements)**
 - Protects against injection attacks
 - Improves performance
- **Filtering input (input validation)**
 - Remove escape characters from input strings
 - Escape characters can be used to inject manipulation attacks
- **Function security**
 - Standard and custom functions should be restricted
30.5 Introduction to Statistical Database Security

- Statistical databases used to provide statistics about various populations
 - Users permitted to retrieve statistical information
 - Must prohibit retrieval of individual data
- Population: set of tuples of a relation (table) that satisfy some selection condition

Figure 30.3 The PERSON relation schema for illustrating statistical database security
Only statistical queries are allowed

Q1: SELECT COUNT (*) FROM PERSON
 WHERE <condition>;
Q2: SELECT AVG (Income) FROM PERSON
 WHERE <condition>;

Preventing the inference of individual information

- Provide minimum threshold on number of tuples
- Prohibit sequences of queries that refer to the same population of tuples
- Introduce slight noise or inaccuracy
- Partition the database
 - Store records in groups of minimum size
30.6 Introduction to Flow Control

- **Flow control**
 - Regulates the distribution or flow of information among accessible objects
 - Verifies information contained in some objects does not flow explicitly or implicitly into less protected objects
- **Flow policy**
 - Specifies channels along which information is allowed to move
 - Simple form: confidential and nonconfidential
Covert channels

- Allows information to pass from a higher classification level to a lower classification level through improper means
- Timing channel requires temporal synchronization
- Storage channel does not require temporal synchronization
30.7 Encryption and Public Key Infrastructures

- Encryption converts data into cyphertext
 - Performed by applying an encryption algorithm to data using a prespecified encryption key
 - Resulting data must be decrypted using a decryption key to recover original data

- Data Encryption Standard (DES)
 - Developed by the U.S. Government for use by the general public

- Advanced Encryption Standard (AES)
 - More difficult to crack
Encryption and Public Key Infrastructures (cont’d.)

- **Symmetric key algorithms**
 - Also called secret key algorithms
 - Need for sharing the secret key
 - Can apply some function to a user-supplied password string at both sender and receiver

- **Public (asymmetric) key encryption**
 - Involves public key and private key
 - Private key is not transmitted
 - Two keys related mathematically
 - Very difficult to derive private key from public key
Public (asymmetric) key encryption steps

- Each user generates a pair of keys to be used for encryption and decryption of messages
- Each user places public key in a public register or other accessible file
 - Keeps companion key private
- Sender encrypts message using receiver’s public key
- Receiver decrypts message using receiver’s private key
- RSA public key encryption algorithm
Digital Signatures

- Consist of string of symbols
- Each is unique
 - Function of the message it is signing, along with a timestamp
 - Depends on secret number unique to the signer
- Public key techniques used to create digital signatures
Digital Certificates

- Combines value of a public key with the identity of the person or service that holds the corresponding private key into a digitally signed statement

- Information included in the certificate
 - Owner information
 - Public key of the owner
 - Date of certificate issue and validity period
 - Issuer identification
 - Digital signature
30.8 Privacy Issues and Preservation

- Growing challenge for database security
- Limit performing large-scale mining and analysis
- Central warehouses for vital information
 - Violating security could expose all data
- Distributed data mining algorithms
- Remove identity information in released data
- Inject noise into the data
 - Must be able to estimate errors introduced
- Mobile device privacy
30.9 Challenges to Maintaining Database Security

- Data quality
 - Quality stamps
 - Application-level recovery techniques to automatically repair incorrect data

- Intellectual property rights
 - Digital watermarking techniques
Challenges to Maintaining Database Security (cont’d.)

- Database survivability
 - Confinement
 - Damage assessment
 - Reconfiguration
 - Repair
 - Fault treatment
30.10 Oracle Label-Based Security

- Oracle label security
 - Enables row-level access control
 - Every table or view has an associated security policy

- Virtual private database (VPD) technology
 - Feature that adds predicates to user statements to limit their access in a transparent manner to the user and the application
 - Based on policies
Label Security Architecture

Figure 30.4 Oracle label security architecture. Data from: Oracle (2007)
How Data Labels and User Labels Work Together

Figure 30.5 Data labels and user labels in Oracle. Data from: Oracle (2007)
30.11 Summary

- Threats to databases
- Types of control measures
 - Access control
 - Inference control
 - Flow control
 - Encryption
- Mandatory access control
- SQL injection
- Key-based infrastructures