
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 24

NOSQL Databases
and Big Data Storage Systems



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

n NOSQL
n Not only SQL

n Most NOSQL systems are distributed databases 
or distributed storage systems
n Focus on semi-structured data storage, high 

performance, availability, data replication, and 
scalability

Slide 24- 3



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction (cont’d.)

n NOSQL systems focus on storage of “big data”
n Typical applications that use NOSQL

n Social media
n Web links
n User profiles
n Marketing and sales
n Posts and tweets
n Road maps and spatial data
n Email

Slide 24- 4



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.1 Introduction to NOSQL Systems

n BigTable
n Google’s proprietary NOSQL system
n Column-based or wide column store

n DynamoDB (Amazon)
n Key-value data store

n Cassandra (Facebook)
n Uses concepts from both key-value store and 

column-based systems

Slide 24- 5



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction to NOSQL Systems 
(cont’d.)

n MongoDB and CouchDB
n Document stores

n Neo4J and GraphBase
n Graph-based NOSQL systems

n OrientDB
n Combines several concepts

n Database systems classified on the object model
n Or native XML model

Slide 24- 6



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction to NOSQL Systems 
(cont’d.)

n NOSQL characteristics related to distributed 
databases and distributed systems
n Scalability
n Availability, replication, and eventual consistency
n Replication models

n Master-slave
n Master-master

n Sharding of files
n High performance data access

Slide 24- 7



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction to NOSQL Systems 
(cont’d.)

n NOSQL characteristics related to data models 
and query languages
n Schema not required
n Less powerful query languages
n Versioning

Slide 24- 8



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction to NOSQL Systems 
(cont’d.)

n Categories of NOSQL systems
n Document-based NOSQL systems
n NOSQL key-value stores
n Column-based or wide column NOSQL systems
n Graph-based NOSQL systems
n Hybrid NOSQL systems
n Object databases
n XML databases

Slide 24- 9



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.2 The CAP Theorem

n Various levels of consistency among replicated 
data items
n Enforcing serializabilty the strongest form of 

consistency
n High overhead – can reduce read/write operation 

performance
n CAP theorem

n Consistency, availability, and partition tolerance
n Not possible to guarantee all three simultaneously

n In distributed system with data replication

Slide 24- 10



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The CAP Theorem (cont’d.)

n Designer can choose two of three to guarantee
n Weaker consistency level is often acceptable in 

NOSQL distributed data store
n Guaranteeing availability and partition tolerance 

more important
n Eventual consistency often adopted

Slide 24- 11



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.3 Document-Based NOSQL 
Systems and MongoDB

n Document stores
n Collections of similar documents

n Individual documents resemble complex objects 
or XML documents
n Documents are self-describing
n Can have different data elements

n Documents can be specified in various formats
n XML
n JSON

Slide 24- 12



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

MongoDB Data Model

n Documents stored in binary JSON (BSON) format
n Individual documents stored in a collection
n Example command

n First parameter specifies name of the collection
n Collection options include limits on size and 

number of documents

n Each document in collection has unique ObjectID 
field called _id

Slide 24- 13



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

MongoDB Data Model (cont’d.)

n A collection does not have a schema
n Structure of the data fields in documents chosen 

based on how documents will be accessed
n User can choose normalized or denormalized 

design
n Document creation using insert operation

n Document deletion using remove operation

Slide 24- 14



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 15

Figure 24.1 (continues)
Example of simple documents in 
MongoDB (a) Denormalized 
document design with embedded 
subdocuments (b) Embedded 
array of document references



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 16

Figure 24.1 (cont’d.) 
Example of simple 
documents in MongoDB 
(c) Normalized documents 
(d) Inserting the 
documents in Figure 
24.1(c) into their 
collections



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

MongoDB Distributed Systems 
Characteristics

n Two-phase commit method
n Used to ensure atomicity and consistency of 

multidocument transactions
n Replication in MongoDB

n Concept of replica set to create multiple copies on 
different nodes

n Variation of master-slave approach
n Primary copy, secondary copy, and arbiter

n Arbiter participates in elections to select new 
primary if needed

Slide 24- 17



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

MongoDB Distributed Systems 
Characteristics (cont’d.)

n Replication in MongoDB (cont’d.)
n All write operations applied to the primary copy 

and propagated to the secondaries
n User can choose read preference

n Read requests can be processed at any replica
n Sharding in MongoDB

n Horizontal partitioning divides the documents into 
disjoint partitions (shards)

n Allows adding more nodes as needed 
n Shards stored on different nodes to achieve load 

balancing
Slide 24- 18



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

MongoDB Distributed Systems 
Characteristics (cont’d.)

n Sharding in MongoDB (cont’d.)
n Partitioning field (shard key) must exist in every 

document in the collection
n Must have an index

n Range partitioning
n Creates chunks by specifying a range of key values
n Works best with range queries

n Hash partitioning
n Partitioning based on the hash values of each shard 

key

Slide 24- 19



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.4 NOSQL Key-Value Stores

n Key-value stores focus on high performance, 
availability, and scalability
n Can store structured, unstructured, or semi-

structured data
n Key: unique identifier associated with a data item

n Used for fast retrieval
n Value: the data item itself

n Can be string or array of bytes
n Application interprets the structure

n No query language
Slide 24- 20



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

DynamoDB Overview

n DynamoDB part of Amazon’s Web Services/SDK 
platforms
n Proprietary

n Table holds a collection of self-describing items
n Item consists of attribute-value pairs

n Attribute values can be single or multi-valued
n Primary key used to locate items within a table

n Can be single attribute or pair of attributes

Slide 24- 21



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Voldemort Key-Value Distributed 
Data Store

n Voldemort: open source key-value system similar 
to DynamoDB

n Voldemort features
n Simple basic operations (get, put, and delete)
n High-level formatted data values
n Consistent hashing for distributing (key, value) 

pairs
n Consistency and versioning

n Concurrent writes allowed
n Each write associated with a vector clock

Slide 24- 22



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 23

Figure 24.2 Example of consistent 
hashing (a) Ring having three nodes 
A, B, and C, with C having greater 
capacity. The h(K) values that map to 
the circle points in range 1 have their 
(k, v) items stored in node A, range 2 
in node B, range 3 in node C (b) 
Adding a node D to the ring. Items in 
range 4 are moved to the node D 
from node B (range 2 is reduced) and 
node C (range 3 is reduced)



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Examples of Other Key-Value Stores

n Oracle key-value store
n Oracle NOSQL Database

n Redis key-value cache and store
n Caches data in main memory to improve 

performance
n Offers master-slave replication and high availability
n Offers persistence by backing up cache to disk

n Apache Cassandra
n Offers features from several NOSQL categories
n Used by Facebook and others

Slide 24- 24



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.5 Column-Based or Wide Column
NOSQL Systems

n BigTable: Google’s distributed storage system for 
big data
n Used in Gmail
n Uses Google File System for data storage and 

distribution
n Apache Hbase a similar, open source system

n Uses Hadoop Distributed File System (HDFS) for 
data storage

n Can also use Amazon’s Simple Storage System 
(S3)

Slide 24- 25



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Hbase Data Model and Versioning

n Data organization concepts
n Namespaces
n Tables
n Column families
n Column qualifiers
n Columns
n Rows
n Data cells

n Data is self-describing

Slide 24- 26



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Hbase Data Model and Versioning 
(cont’d.)

n HBase stores multiple versions of data items
n Timestamp associated with each version

n Each row in a table has a unique row key
n Table associated with one or more column 

families
n Column qualifiers can be dynamically specified 

as new table rows are created and inserted
n Namespace is collection of tables
n Cell holds a basic data item

Slide 24- 27



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 28

Figure 24.3 Examples in Hbase (a) Creating a table called EMPLOYEE with three column 
families: Name, Address, and Details (b) Inserting some in the EMPLOYEE table; 
different rows can have different self-describing column qualifiers (Fname, Lname, 
Nickname, Mname, Minit, Suffix, … for column family Name; Job, Review, Supervisor, 
Salary for column family Details). (c) Some CRUD operations of Hbase



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Hbase Crud Operations

n Provides only low-level CRUD (create, read, 
update, delete) operations

n Application programs implement more complex 
operations

n Create
n Creates a new table and specifies one or more 

column families associated with the table
n Put

n Inserts new data or new versions of existing data 
items

Slide 24- 29



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Hbase Crud Operations (cont’d.)

n Get
n Retrieves data associated with a single row

n Scan
n Retrieves all the rows

Slide 24- 30



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Hbase Storage and Distributed 
System Concepts 

n Each Hbase table divided into several regions
n Each region holds a range of the row keys in the 

table
n Row keys must be lexicographically ordered
n Each region has several stores

n Column families are assigned to stores
n Regions assigned to region servers for storage

n Master server responsible for monitoring the 
region servers

n Hbase uses Apache Zookeeper and HDFS

Slide 24- 31



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.6 NOSQL Graph Databases and 
Neo4j

n Graph databases
n Data represented as a graph
n Collection of vertices (nodes) and edges
n Possible to store data associated with both 

individual nodes and individual edges
n Neo4j

n Open source system
n Uses concepts of nodes and relationships

Slide 24- 32



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Neo4j (cont’d.)

n Nodes can have labels
n Zero, one, or several

n Both nodes and relationships can have properties
n Each relationship has a start node, end node, 

and a relationship type
n Properties specified using a map pattern
n Somewhat similar to ER/EER concepts

Slide 24- 33



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Neo4j (cont’d.)

n Creating nodes in Neo4j
n CREATE command
n Part of high-level declarative query language 

Cypher
n Node label can be specified when node is created
n Properties are enclosed in curly brackets

Slide 24- 34



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Neo4j (cont’d.)

Slide 24- 35

Figure 24.4 Examples in Neo4j using the Cypher language (a) Creating some nodes



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Neo4j (cont’d.)

Slide 24- 36

Figure 24.4 (cont’d.) Examples in Neo4j using the Cypher language 
(b) Creating some relationships



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Neo4j (cont’d.)

n Path
n Traversal of part of the graph
n Typically used as part of a query to specify a 

pattern
n Schema optional in Neo4j
n Indexing and node identifiers

n Users can create for the collection of nodes that 
have a particular label

n One or more properties can be indexed

Slide 24- 37



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The Cypher Query Language of 
Neo4j

n Cypher query made up of clauses
n Result from one clause can be the input to the 

next clause in the query

Slide 24- 38



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The Cypher Query Language of 
Neo4j (cont’d.)

Slide 24- 39

Figure 24.4 (cont’d.) Examples in Neo4j using the Cypher language 
(c) Basic syntax of Cypher queries



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The Cypher Query Language of 
Neo4j (cont’d.)

Slide 24- 40

Figure 24.4 (cont’d.) Examples in 
Neo4j using the Cypher language 
(d) Examples of Cypher queries



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Neo4j Interfaces and Distributed 
System Characteristics

n Enterprise edition versus community edition
n Enterprise edition supports caching, clustering of 

data, and locking
n Graph visualization interface

n Subset of nodes and edges in a database graph 
can be displayed as a graph

n Used to visualize query results
n Master-slave replication
n Caching
n Logical logs

Slide 24- 41



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.7 Summary

n NOSQL systems focus on storage of “big data”
n General categories

n Document-based
n Key-value stores
n Column-based
n Graph-based
n Some systems use techniques spanning two or 

more categories
n Consistency paradigms
n CAP theorem

Slide 24- 42


