;*Eé;tion
kTt
/NAVATHE
A

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 24

NOSQL Databases
and Big Data Storage Systems

Introduction

= NOSQL
= Not only SQL

s Most NOSQL systems are distributed databases
or distributed storage systems

= Focus on semi-structured data storage, high
performance, availability, data replication, and
scalability

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24-3

Introduction (cont’'d.)

= NOSQL systems focus on storage of “big data”
s Typical applications that use NOSQL

» Social media

= Web links

= User profiles

= Marketing and sales

» Posts and tweets

= Road maps and spatial data
= Email

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 24-4

24.1 Introduction to NOSQL Systems

= BigTable
= Google’s proprietary NOSQL system
» Column-based or wide column store
= DynamoDB (Amazon)
» Key-value data store
m Cassandra (Facebook)

= Uses concepts from both key-value store and
column-based systems

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24-5

Introduction to NOSQL Systems
(cont’'d.)

= MongoDB and CouchDB

= Document stores
= Neo4J and GraphBase

» Graph-based NOSQL systems
s OrientDB

= Combines several concepts

s Database systems classified on the object model
= Or native XML model

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24-6

Introduction to NOSQL Systems
(cont’'d.)

s NOSQL characteristics related to distributed
databases and distributed systems

= Scalability
= Avallability, replication, and eventual consistency

= Replication models
= Master-slave
= Master-master

» Sharding of files
» High performance data access

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 24-7

Introduction to NOSQL Systems
(cont’'d.)

s NOSQL characteristics related to data models
and query languages
= Schema not required
» Less powerful query languages
= Versioning

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24-8

Introduction to NOSQL Systems
(cont’'d.)

s Categories of NOSQL systems
» Document-based NOSQL systems
= NOSQL key-value stores
= Column-based or wide column NOSQL systems
» Graph-based NOSQL systems
= Hybrid NOSQL systems
= Object databases
= XML databases

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24-9

24.2 The CAP Theorem

= Various levels of consistency among replicated
data items

» Enforcing serializabilty the strongest form of
consistency

=« High overhead — can reduce read/write operation
performance

m CAP theorem

= Consistency, availability, and partition tolerance
= Not possible to guarantee all three simultaneously
» In distributed system with data replication

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24-10

The CAP Theorem (cont'd.)

= Designer can choose two of three to guarantee

= Weaker consistency level is often acceptable in
NOSQL distributed data store

= Guaranteeing availability and partition tolerance
more important

= Eventual consistency often adopted

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 24-11

24.3 Document-Based NOSQL
Systems and MongoDB

s Document stores
s Collections of similar documents

= |Individual documents resemble complex objects
or XML documents

= Documents are self-describing
= Can have different data elements
s Documents can be specified in various formats
« XML
« JSON

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 24-12

MongoDB Data Model

s Documents stored in binary JSON (BSON) format
= Individual documents stored in a collection
s Example command

= First parameter specifies name of the collection

= Collection options include limits on size and
number of documents

db.createCollection(“project’, { capped : true, size : 1310720, max : 500 })

= Each document in collection has unique Object|D
field called id

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24-13

MongoDB Data Model (cont'd.)

m A collection does not have a schema

= Structure of the data fields in documents chosen
based on how documents will be accessed

s User can choose normalized or denormalized
design

s Document creation using insert operation

db.<collection_name>.insert(<document(s)>)

s Document deletion using remove operation

db.<collection_name>.remove(<condition>)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 24-14

(a) project document with an array of embedded workers:

{

_id: “P1T,
Pname: “ProductX",
Plocation: “Bellaire”,
Workers: [

{ Ename: “John Smith",
Hours: 32.5
}|

{ Ename: “Joyce English”,
Hours: 20.0
}

Figure 24.1 (continues)):
Example of simple documents in

. f :
MongoDB (a) Denormalized (b) project document with an embedded array of worker ids

document design with embedded (y o
_id: P17,
subdocuments (b) Embedded Brome: “ProductX".
array of document references Plocation: “Bellaire”,
Workerlds: [“W1", "W2"]
}
{ _id: “W1",
Ename: *John Smith",
Hours: 325
}
{ _id: “W2",
Ename: *Joyce English”,
Hours: 20.0

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24-15

(c) normalized project and worker documents (not a fully normalized design
for M:N relationships):
{

_id: P17,
Pname: *ProductX”,
Plocation: “Bellaire”
Figure 24.1 (cont'd.) b |
Example of simple | Elr?e:lme' ‘Ygr:n'Smith'
documentg in MongoDB Projectld: “py"
(c) Normalized documents Hours: 32.5
(d) Inserting the J
documents in Figure { _id: "W2",
24 .1(c) into their Engme: .‘Joyce English”,
collections Projectld: P17,
Hours: 20.0

}

(d) inserting the documents in (c) into their collections “project” and “worker™:
db.project.insert({ _id: “P1", Pname: “ProductX”, Plocation: “Bellaire" })
db.worker.insert([{ _id: “W1", Ename: “John Smith", Projectld: “P1”, Hours: 32.5 },

{ _id: *"W2", Ename: “Joyce English”, Projectld: “P1",
Hours: 20.0}1)

Slide 24-16

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

MongoDB Distributed Systems
Characteristics

s [wo-phase commit method

» Used to ensure atomicity and consistency of
multidocument transactions

= Replication in MongoDB

= Concept of replica set to create multiple copies on
different nodes

= Variation of master-slave approach

= Primary copy, secondary copy, and arbiter

» Arbiter participates in elections to select new
primary if needed

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 24-17

MongoDB Distributed Systems
Characteristics (cont'd.)

= Replication in MongoDB (cont'd.)

= All write operations applied to the primary copy
and propagated to the secondaries

= User can choose read preference
» Read requests can be processed at any replica
= Sharding in MongoDB
» Horizontal partitioning divides the documents into
disjoint partitions (shards)
= Allows adding more nodes as needed

= Shards stored on different nodes to achieve load
balancing

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24-18

MongoDB Distributed Systems
Characteristics (cont'd.)

= Sharding in MongoDB (cont'd.)

» Partitioning field (shard key) must exist in every
document in the collection
« Must have an index
» Range partitioning
« Creates chunks by specifying a range of key values
« Works best with range queries
= Hash partitioning

« Partitioning based on the hash values of each shard
key

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24-19

24.4 NOSQL Key-Value Stores

s Key-value stores focus on high performance,
availability, and scalability

= Can store structured, unstructured, or semi-
structured data

= Key: unique identifier associated with a data item
» Used for fast retrieval

= Value: the data item itself
= Can be string or array of bytes
= Application interprets the structure

= No query language

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 20

DynamoDB Overview

= DynamoDB part of Amazon’s Web Services/SDK
platforms

» Proprietary
= Table holds a collection of self-describing items
m |[tem consists of attribute-value pairs

= Attribute values can be single or multi-valued

s Primary key used to locate items within a table
= Can be single attribute or pair of attributes

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 24-21

Voldemort Key-Value Distributed
Data Store

= Voldemort: open source key-value system similar
to DynamoDB
= Voldemort features
= Simple basic operations (get, put, and delete)
» High-level formatted data values
» Consistent hashing for distributing (key, value)
pairs
= Consistency and versioning

= Concurrent writes allowed
= Each write associated with a vector clock

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 24-22

Figure 24.2 Example of consistent
hashing (a) Ring having three nodes
A, B, and C, with C having greater
capacity. The h(K) values that map to
the circle points in range 1 have their
(k, v) items stored in node A, range 2
in node B, range 3in node C (b)
Adding a node D to the ring. ltems in
range 4 are moved to the node D
from node B (range 2 is reduced) and

node C (range 3 is reduced)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

—a

-\ _C~ / Range 3

Range 3

Range 3 \
(reduced) | || Range 4
D
Range 4 { ' / Range 2
J (reduced)
Range 1 "\"“—'/ énge 3

Slide 24- 23

Examples of Other Key-Value Stores

s Oracle key-value store
= Oracle NOSQL Database

= Redis key-value cache and store

» Caches data in main memory to improve
performance

» Offers master-slave replication and high availability
= Offers persistence by backing up cache to disk

s Apache Cassandra

= Offers features from several NOSQL categories
= Used by Facebook and others

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 24-24

24.5 Column-Based or Wide Column
NOSQL Systems

s BigTable: Google’s distributed storage system for
big data

= Used in Gmall

» Uses Google File System for data storage and
distribution

s Apache Hbase a similar, open source system

» Uses Hadoop Distributed File System (HDFS) for
data storage

» Can also use Amazon’s Simple Storage System
(S3)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 25

Hbase Data Model and Versioning

s Data organization concepts
= Namespaces
= [ables
= Column families
= Column qualifiers
= Columns
= Rows
= Data cells

s Data is self-describing

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 26

Hbase Data Model and Versioning
(cont’'d.)

s HBase stores multiple versions of data items
= TiImestamp associated with each version
= Each row in a table has a unique row key

m [able associated with one or more column
families

= Column qualifiers can be dynamically specified
as new table rows are created and inserted

s Namespace is collection of tables
= Cell holds a basic data item

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 24-27

(a) creating a table:
create 'EMPLOYEE’, ‘Name', ‘Address’, ‘Details’
(b) Inserting some row data in the EMPLOYEE table:
put ‘EMPLOYEE’, ‘row1’, ‘Name:Fname', ‘John'
put ‘EMPLOYEE’, ‘row1’, ‘Name:Lname’, ‘Smith’
put ‘EMPLOYEE’, ‘row1’, ‘Name:Nickname’, ‘Johnny'
put ‘EMPLOYEE’, ‘row1’, ‘Details:Job’, ‘Engineer’
put ‘EMPLOYEE’, ‘row1’, ‘Details:Review’, ‘Good’
put ‘EMPLOYEE’, ‘row?2’, ‘Name:Fname’, ‘Alicia’
put ‘EMPLOYEE’, ‘row2’, ‘Name:Lname’, ‘Zelaya'
put ‘EMPLOYEE’, ‘row2’, ‘Name:MName’, ‘Jennifer’
put ‘EMPLOYEE’, ‘row?2’, ‘Details:Job’, ‘DBA’
put ‘EMPLOYEE’, ‘row?2’, ‘Details:Supervisor’, ‘James Borg'
put ‘EMPLOYEE’, ‘row3’, ‘Name:Fname’, ‘James'
put ‘EMPLOYEE’, ‘row3’, ‘Name:Minit', ‘E’
put ‘EMPLOYEE’, ‘row3’, ‘Name:Lname’, ‘Borg’
put ‘EMPLOYEE’, ‘row3’, ‘Name:Suffix', ‘Jr.’
put ‘EMPLOYEE’, ‘row3’, ‘Details:Job’, ‘CEQO’
put ‘EMPLOYEE’, ‘row3’, ‘Details:Salary’, ‘1,000,000’

(c) Some Hbase basic CRUD operations:
Creating a table: create <tablename>, <column family>, <column family>, ...
Inserting Data: put <tablename>, <rowid>, <column family>:<column qualifier>, <value>
Reading Data (all data in a table): scan <tablename>
Retrieve Data (one item): get <tablename><rowid>

Figure 24.3 Examples in Hbase (a) Creating a table called EMPLOYEE with three column
families: Name, Address, and Details (b) Inserting some inthe EMPLOYEE table;
different rows can have different self-describing column qualifiers (Fname, Lname,
Nickname, Mname, Minit, Suffix, ... for column family Name; Job, Review, Supervisor,
Salary for column family Details). (c) Some CRUD operations of Hbase

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 28

Hbase Crud Operations

= Provides only low-level CRUD (create, read,
update, delete) operations

s Application programs implement more complex
operations
s Create

= Creates a new table and specifies one or more
column families associated with the table

m Put

= Inserts new data or new versions of existing data
items

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 29

Hbase Crud Operations (cont'd.)

n Get
» Retrieves data associated with a single row

m Scan
= Retrieves all the rows

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 30

Hbase Storage and Distributed
System Concepts

s Each Hbase table divided into several regions

= Each region holds a range of the row keys in the
table

= Row keys must be lexicographically ordered
= Each region has several stores
» Column families are assigned to stores
= Regions assigned to region servers for storage

= Master server responsible for monitoring the
region servers

s Hbase uses Apache Zookeeperand HDFS

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 31

24.6 NOSQL Graph Databases and
Neo4)

s Graph databases
» Data represented as a graph
= Collection of vertices (nodes) and edges

s Possible to store data associated with both
individual nodes and individual edges

= Neo4;

= Open source system
= Uses concepts of nodes and relationships

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 24- 32

Neo4j (cont'd.)

Nodes can have labels
s Zero, one, or several

Both nodes and relationships can have properties
Each relationship has a start node, end node,

and a relationship type
Properties specified using a map pattern
Somewhat similar to ER/EER concepts

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 24- 33

Neo4j (cont'd.)

s Creating nodes in Neo4j
= CREATE command

= Part of high-level declarative query language
Cypher

= Node label can be specified when node is created
» Properties are enclosed in curly brackets

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 34

Neo4j (cont'd.)

(a) creating some nodes for the COMPANY data (from Figure 5.6):
CREATE (e1: EMPLOYEE, {Empid: ‘1’, Lname: ‘Smith’, Fname: ‘John’, Minit: ‘B'})
CREATE (e2: EMPLOYEE, {Empid: ‘2, Lname: ‘Wong’, Fname: ‘Franklin’})
CREATE (e3: EMPLOYEE, {Empid: ‘3', Lname: ‘Zelaya’, Fname: ‘Alicia’})
CREATE (e4: EMPLOYEE, {Empid: ‘4', Lname: ‘Wallace', Fname: ‘Jennifer’, Minit: ‘S"})

CREATE (d1: DEPARTMENT, {Dno: ‘5’, Dname: ‘Research'})
CREATE (d2: DEPARTMENT, {Dno: ‘4’, Dname: ‘Administration’})

CREATE (p1: PROJECT, {Pno: ‘1", Pname: ‘ProductX’})
CREATE (p2: PROJECT, {Pno: ‘2', Pname: ‘ProductY’})
CREATE (p3: PROJECT, {Pno: ‘10’, Pname: ‘Computerization’})
CREATE (p4: PROJECT, {Pno: ‘20', Pname: ‘Reorganization’})

CREATE (loc1: LOCATION, {Lname: ‘Houston'})
CREATE (loc2: LOCATION, {Lname: ‘Stafford’})
CREATE (loc3: LOCATION, {Lname: ‘Bellaire’})
CREATE (loc4: LOCATION, {Lname: ‘Sugarland’})

Figure 24.4 Examples in Neo4j using the Cypher language (a) Creating some nodes

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 35

Neo4j (cont'd.)

(b) creating some relationships for the COMPANY data (from Figure 5.6):
CREATE (e1) — [: WorksFor] —> (d1)
CREATE (e3) — [: WorksFor] —> (d2)

CREATE (d1) = [: Manager] —> (e2)
CREATE (d2) - [: Manager] —> (e4)

CREATE (d1) - [: LocatedIn] —> (loc1)
CREATE (d1) - [: LocatedIn] —> (loc3)
CREATE (d1) - [: LocatedIn] —> (loc4)
CREATE (d2) - [: LocatedIn] —> (loc?2)

CREATE (et

) = [: WorksOn, {Hours: ‘32.57}] => (p1)
CREATE (e1) = [: WorksOn, {Hours: ‘7.5'}] => (p2)
CREATE (e2) - [: WorksOn, {Hours: ‘10.0'} | => (p1)
CREATE (e2) - [: WorksOn, {Hours: 10.0}] => (p2)
CREATE (e2) - [: WorksOn, {Hours: ‘10.0'}] => (p3)
CREATE (e2) - [: WorksOn, {Hours: 10.0}] => (p4)

Figure 24 .4 (cont'd.) Examplesin Neo4j using the Cypher language
(b) Creating some relationships

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 36

Neo4j (cont'd.)

s Path
= [raversal of part of the graph

= Typically used as part of a query to specify a
pattern

= Schema optional in Neo4]

= Indexing and node identifiers

= Users can create for the collection of nodes that
have a particular label

= One or more properties can be indexed

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 37

The Cypher Query Language of
Neo4)

s Cypher query made up of clauses

s Result from one clause can be the input to the
next clause in the query

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 38

The Cypher Query Language of
Neo4j (cont'd.)

(¢) Basic simplified syntax of some common Cypher clauses:
Finding nodes and relationships that match a pattern: MATCH <pattern>
Specifying aggregates and other query variables: WITH <specifications>
Specifying conditions on the data to be retrieved: WHERE <condition>
Specifying the data to be returned: RETURN <data>
Ordering the data to be returned: ORDER BY <data>
Limiting the number of returned data items: LIMIT <max number>
Creating nodes: CREATE <node, optional labels and properties>
Creating relationships: CREATE <relationship, relationship type and optional properties>
Deletion: DELETE <nodes or relationships>
Specifying property values and labels: SET <property values and labels>
Removing property values and labels: REMOVE <property values and labels>

Figure 24 .4 (cont'd.) Examplesin Neo4j using the Cypher language
(c) Basic syntax of Cypher queries

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 39

The Cypher Query Language of
Neo4j (cont'd.)

(d) Examples of simple Cypher queries:

1. MATCH (d : DEPARTMENT {Dno: ‘5’}) — [: LocatedIn] — (loc)
RETURN d.Dname , loc.Lname

2. MATCH (e: EMPLOYEE {Empid: ‘2'}) = [w: WorksOn] — (p)
RETURN e.Ename , w.Hours, p.Pname

3. MATCH (e) — [w: WorksOn] — (p: PROJECT {Pno: 2})
RETURN p.Pname, e.Ename , w.Hours

4. MATCH (e) — [w: WorksOn] — (p)
RETURN e.Ename , w.Hours, p.Pname

Figure 24 .4 (cont'd.) Examplesin ORDER BY e.Ename
Neo4;j using the Cypher language 5. MATCH (e) = [w: WorksOn] = (p)
. RETURN e.Ename , w.Hours, p.Pname
(d) Examples of Cypher queries ORDER BY e.Ename
LIMIT 10

6. MATCH (e) = [w: WorksOn] — (p)
WITH e, COUNT(p) AS numOfprojs
WHERE numOfprojs > 2
RETURN e.Ename , numOfprojs
ORDER BY numOfprojs

7. MATCH (e) = [w: WorksOn] — (p)
RETURN e, w, p
ORDER BY e.Ename
LIMIT 10

8. MATCH (e: EMPLOYEE {Empid: ‘2'})
SET e.Job = ‘Engineer’

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 40

Neo4 Interfaces and Distributed
System Characteristics

s Enterprise edition versus community edition

= Enterprise edition supports caching, clustering of
data, and locking

s Graph visualization interface

= Subset of nodes and edges in a database graph
can be displayed as a graph

» Used to visualize query results
s Master-slave replication
m Caching
m Logical logs

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 24- 41

24.7 Summary

= NOSQL systems focus on storage of “big data”

s General categories
= Document-based
» Key-value stores
= Column-based
= Graph-based

= Some systems use techniques spanning two or
more categories

s Consistency paradigms
m CAP theorem

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 24-42

