;*Eé;tion
kTt
/NAVATHE
A

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 21

Concurrency Control Techniques

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

= Concurrency control protocols

= Set of rules to guarantee serializability
= [wo-phase locking protocols

= Lock data items to prevent concurrent access
s [Imestamp

= Unique identifier for each transaction

= Multiversion currency control protocols
= Use multiple versions of a data item

s Validation or certification of a transaction

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 21-3

21.1 Two-Phase Locking Techniques
for Concurrency Control

s Lock

» Variable associated with a data item describing
status for operations that can be applied

= One lock for each item in the database
= Binary locks

= Two states (values)
« Locked (1)

= [tem cannot be accessed

= Unlocked (0)

= [tem can be accessed when requested

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 21-4

Two-Phase Locking Techniques
for Concurrency Control (cont'd.)

s [ransaction requests access by issuing a
lock item(X) operation

lock_item(X):
B: if LOCK(X)=0 (*item is unlocked®)
then LOCK(X) «1 (*lock the item®)
else
begin

wait (until LOCK(X) =0
and the lock manager wakes up the transaction);
goto B
end;
unlock_item(X):

LOCK(X) « 0; (* unlock the item *)

if any transactions are waiting
then wakeup one of the waiting transactions;

Figure 21.1 Lock and unlock operations for binary locks

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 21-5

Two-Phase Locking Techniques
for Concurrency Control (cont'd.)

s Lock table specifies items that have locks

s Lock manager subsystem
= Keeps track of and controls access to locks
= Rules enforced by lock manager module

s At most one transaction can hold the lock on an
item at a given time

= Binary locking too restrictive for database items

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21-6

Two-Phase Locking Techniques
for Concurrency Control (cont'd.)

s Shared/exclusive or read/write locks

= Read operations on the same item are not
conflicting

= Must have exclusive lock to write
= [hree locking operations

» read_lock(X)

» write_lock(X)

= unlock(X)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 21-7

read_lock(X):
B: if LOCK(X) = “unlocked”
then begin LOCK(X) < “read-locked™;
no_of reads(X) « 1
end
else if LOCK(X) = “read-locked”
then no_of _reads(X) <« no_of reads(X) + 1
else begin
wait (until LOCK(X) = “unlocked”
and the lock manager wakes up the transaction);
gotoB
end;
write lock(X):
B: if LOCK(X) = “unlocked”
then LOCK(X) « “write-locked”

Figure 21.2 Locking and else begin
. and the lock manager wakes up the transaction);
two-mode (read/write, or gotoB
shared/exclusive) locks end;
unlock (X):

if LOCK(X) = “write-locked"
then begin LOCK(X) < “unlocked";
wakeup one of the waiting transactions, if any

end
else it LOCK(X) = “read-locked"

then begin

no_of_reads(X) < no_of reads(X) —1;
if no_of_reads(X) =0
then begin LOCK(X) = “unlocked”;
wakeup one of the waiting transactions, if any
end
end;

Slide 21-8

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Two-Phase Locking Techniques
for Concurrency Control (cont'd.)

m Lock conversion

» [ransaction that already holds a lock allowed to
convert the lock from one state to another

= Upgrading

» Issue aread lock operation then a write lock
operation

= Downgrading

= Issue aread lock operation after a write lock
operation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21-9

Guaranteeing Serializability by Two-
Phase Locking

= [wo-phase locking protocol

= All locking operations precede the first unlock
operation in the transaction

= Phases
« Expanding (growing) phase

= New locks can be acquired but none can be released
= Lock conversion upgrades must be done during this phase

= Shrinking phase

s Existing locks can be released but none can be acquired
= Downgrades must be done during this phase

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21-10

(a)

Figure 21.3 Transactions that
do not obey two-phase
locking (a) Two transactions
T1 and T2 (b) Results of
possible serial schedules of
T1and T2 (c) A
nonserializable schedule S
that uses locks

(c)

Time

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

T, T,
read_lock(Y); read_lock(X);
read_item(Y); read_item(X);
unlock(Y); unlock(X);
write_lock(X); write_lock(Y);
read_item(X); read_item(Y);
X=X+Y; Y=X+Y,
write_item(X); write_item(Y);
unlock(X); unlock(Y);
T, T,
read_lock(Y);
read_item(Y);
unlock(Y);
read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y=X+Y;
write_item(Y);
unlock(Y);

write_lock(X);

read_item(X);

X=X+Y;

write_item(X);

unlock(X);

(b)

Initial values: X=20, Y=30

Result serial schedule T,
followed by 7,: X=50, Y=80

Result of serial schedule T,
followed by T,: X=70, Y=50

Slide 21- 11

Guaranteeing Serializability by Two-
Phase Locking

m If every transaction in a schedule follows the two-
phase locking protocol, schedule guaranteed to
be serializable

= [wo-phase locking may limit the amount of
concurrency that can occur in a schedule

s Some serializable schedules will be prohibited by
two-phase locking protocol

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 21-12

Variations of Two-Phase Locking

s Basic 2PL

= Technique described on previous slides
= Conservative (static) 2PL

= Requires a transaction to lock all the items it
accesses before the transaction begins
» Predeclare read-set and write-set

= Deadlock-free protocol
m Strict 2PL

= [ransaction does not release exclusive locks until
after it commits or aborts

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21-13

Variations of Two-Phase Locking
(cont’'d.)

s Rigorous 2PL

= [ransaction does not release any locks until after it
commits or aborts

s Concurrency control subsystem responsible for
generating read_lock and write lock requests

s Locking generally considered to have high
overhead

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 21-14

Dealing with Deadlock and Starvation

s Deadlock

= Occurs when each transaction T in a set is waiting
for some item locked by some other transaction T’

= Both transactions stuck in a waiting queue

(@) T, T, (b) X
read_lock(Y); ‘ i
read_item(Y); IGFI "/TD.
. N L/
i read_lock(X);
Time read_item(X); 4 Y |
write_lock(X);
Y write_lock(Y);

Figure 21.5 lllustrating the deadlock problem (a) A partial schedule of T1"'and T2' that is
in a state of deadlock (b) A wait-for graph for the partial schedulein (a)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21-15

Dealing with Deadlock and Starvation
(cont’'d.)

s Deadlock prevention protocols

= Every transaction locks all items it needs In
advance

= Ordering all items in the database

= | ransaction that needs several items will lock them
in that order

= Both approaches impractical

s Protocols based on a timestamp
« Wait-die
= WWound-wait

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21-16

Dealing with Deadlock and Starvation
(cont’'d.)

= No waiting algorithm

» If transaction unable to obtain a lock, immediately
aborted and restarted later

s Cautious waiting algorithm
»« Deadlock-free
s Deadlock detection

= System checks to see if a state of deadlock exists
» Wait-for graph

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 21-17

Dealing with Deadlock and Starvation
(cont’'d.)

s Victim selection

» Deciding which transaction to abort in case of
deadlock

s [Imeouts

» If system waits longer than a predefined time, it
aborts the transaction

s Starvation

= Occurs if a transaction cannot proceed for an
indefinite period of time while other transactions
continue normally

= Solution: first-come-first-served queue

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21-18

21.2 Concurrency Control Based
on Timestamp Ordering

s [Imestamp

» Unique identifier assigned by the DBMS to identify
a transaction

= Assigned in the order submitted
= [ransaction start time

= Concurrency control techniques based on
timestamps do not use locks

s Deadlocks cannot occur

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21-19

Concurrency Control Based
on Timestamp Ordering (cont'd.)

s Generating timestamps

s Counter incremented each time its value is
assigned to a transaction

=« Current date/time value of the system clock

« Ensure no two timestamps are generated during the
same tick of the clock

s General approach

= Enforce equivalent serial order on the transactions
based on their timestamps

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21- 20

Concurrency Control Based
on Timestamp Ordering (cont'd.)

s [iImestamp ordering (TO)
= Allows interleaving of transaction operations

= Must ensure timestamp order is followed for each
pair of conflicting operations

s Each database item assigned two timestamp
values

» read_TS(X)
O erte_TS(X)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 21-21

Concurrency Control Based
on Timestamp Ordering (cont'd.)

= Basic TO algorithm

» If conflicting operations detected, later operation
rejected by aborting transaction that issued it

= Schedules produced guaranteed to be conflict
serializable

» Starvation may occur

m Strict TO algorithm

s Ensures schedules are both strict and conflict
serializable

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 21-22

Concurrency Control Based
on Timestamp Ordering (cont'd.)

= [Thomas’s write rule
= Modification of basic TO algorithm
= Does not enforce conflict serializability

» Rejects fewer write operations by modifying
checks for write item(X) operation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 21- 23

21.3 Multiversion Concurrency
Control Techniques

s Several versions of an item are kept by a system

m Some read operations that would be rejected in
other techniques can be accepted by reading an
older version of the item

= Maintains serializability
= More storage is needed
s Multiversion currency control scheme types

» Based on timestamp ordering
» Based on two-phase locking

= Validation and snapshot isolation techniques

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 21-24

Multiversion Concurrency
Control Techniques (cont'd.)

= Multiversion technique based on timestamp
ordering
= Two timestamps associated with each version are
kept
= read_TS(X))
« Write TS(X))

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21-25

Multiversion Concurrency
Control Techniques (cont'd.)

= Multiversion two-phase locking using certify locks
= Three locking modes: read, write, and certify

(a) Read Write
Read Yes No
Write No No
(b) Read Write Certify
Read Yes Yes No
Write Yes No No
Certify No No No

Figure 21.6 Lock compatibility tables (a) Lock compatibility table for read/write
locking scheme (b) Lock compatibility table for read/write/certify locking scheme

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21- 26

21.4 Validation (Optimistic) Techniques and
Snapshot Isolation Concurrency Control

s Optimistic techniques
= Also called validation or certification techniques
= No checking is done while the transaction is
executing

= Updates not applied directly to the database until
finished transaction is validated

= All updates applied to local copies of data items

= Validation phase checks whether any of
transaction’s updates violate serializability

= [ransaction committed or aborted based on result

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 20- 27

Concurrency Control Based on
Snapshot Isolation

m [ransaction sees data items based on committed
values of the items in the database snapshot

= Does not see updates that occur after transaction
starts

s Read operations do not require read locks
= Write operations require write locks

m [emporary version store keeps track of older
versions of updated items

= Variation: serializable snapshotisolation (SSI)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 28

21.5 Granularity of Data Items and
Multiple Granularity Locking

= Size of data items known as granularity
» Fine (small)
= Coarse (large)

m Larger the data item size, lower the degree of
concurrency permitted

= Example: entire disk block locked

s Smaller the data item size, more locks required
» Higher overhead

s Best item size depends on transaction type

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 29

Multiple Granularity Level Locking

s Lock can be requested at any level

()

|

()
J
G‘*>l<—

(2
_\'/-
N

/;\ <¢\ VR /¢\. 7N /\
(| () (m
\P11) P12) \P1n) \P21) \P2 \P2m)

Fyge -0 Ty Figy =" FNgj """ Npt """ TNp fag1 =" Ik Fpgy =" Took """ Tomy """ Tomk

Figure 21.7 A granularity hierarchy for illustrating multiple granularity level locking

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21- 30

Multiple Granularity Level Locking
(cont’'d.)

s Intention locks are needed

= [ransaction indicates along the path from the root
to the desired node, what type of lock (shared or
exclusive) it will require from one of the node’s
descendants
= |Intention lock types
= Intention-shared (IS)

= Shared locks will be requested on a descendant
node

» Intention-exclusive (IX)
= EXxclusive locks will be requested

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21- 31

Multiple Granularity Level Locking
(cont’'d.)

= Intention lock types (cont'd.)

» Shared-intension-exclusive (SIX)

= Current node is locked in shared mode but one or
more exclusive locks will be requested on a
descendant node

IS Yes Yes Yes Yes No
IX Yes Yes No No No
S Yes No Yes No No

SIX Yes No No No No

X No No No No No

Figure 21.8 Lock compatibility matrix for multiple granularity locking

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21- 32

Multiple Granularity Level Locking
(cont’'d.)

= Multiple granularity locking (MGL) protocol rules

1. The lock compatibility (based on Figure 21.8) must be adhered to.
2. The root of the tree must be locked first, in any mode.

3. A node N can be locked by a transaction T in S or IS mode only if the parent
node N is already locked by transaction T in either IS or IX mode.

4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the
parent of node N is already locked by transaction T in either IX or SIX mode.

5. A transaction T can lock a node only if it has not unlocked any node (to
enforce the 2PL protocol).

6. A transaction T can unlock a node, N, only if none of the children of node N
are currently locked by T.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21- 33

21.6 Using Locks for Concurrency
Control in Indexes

= [wo-phase locking can be applied to B-tree and
B+ -tree indexes

= Nodes of an index correspond to disk pages

= Holding locks on index pages could cause
transaction blocking

= Other approaches must be used
= Conservative approach

= Lock the root node in exclusive mode and then
access the appropriate child node of the root

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21- 34

Using Locks for Concurrency
Control in Indexes (cont'd.)

s Optimistic approach

» Request and hold shared locks on nodes leading
to the leaf node, with exclusive lock on the leaf

= B-link tree approach

» Sibling nodes on the same level are linked at
every level

= Allows shared locks when requesting a page

» Requires lock be released before accessing the
child node

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21- 35

21.7 Other Concurrency Control
Issues

s Insertion

= WWhen new data item is inserted, it cannot be
accessed until after operation is completed

s Deletion operation on the existing data item
= Write lock must be obtained before deletion

= Phantom problem

= Can occur when a new record being inserted
satisfies a condition that a set of records accessed
by another transaction must satisfy

» Record causing conflict not recognized by
concurrency control protocol

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21- 36

Other Concurrency Control Issues
(cont’'d.)

m Interactive transactions

= User can input a value of a data item to a
transaction T based on some value written to the
screen by transaction T°, which may not have
committed

= Solution approach: postpone output of
transactions to the screen until committed

s Latches
= Locks held for a short duration
= Do not follow usual concurrency control protocol

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21- 37

21.8 Summary

Concurrency control techniques
= Two-phase locking

= TImestamp-based ordering

= Multiversion protocols

= Snapshot isolation

Data item granularity
Locking protocols for indexes

Phantom problem and interactive transaction
ISsues

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 21- 38

