
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 21

Concurrency Control Techniques



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

n Concurrency control protocols
n Set of rules to guarantee serializability

n Two-phase locking protocols
n Lock data items to prevent concurrent access

n Timestamp
n Unique identifier for each transaction

n Multiversion currency control protocols
n Use multiple versions of a data item

n Validation or certification of a transaction

Slide 21- 3



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.1 Two-Phase Locking Techniques
for Concurrency Control

n Lock
n Variable associated with a data item describing 

status for operations that can be applied
n One lock for each item in the database

n Binary locks
n Two states (values) 

n Locked (1)
n Item cannot be accessed

n Unlocked (0)
n Item can be accessed when requested

Slide 21- 4



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Two-Phase Locking Techniques
for Concurrency Control (cont’d.)

n Transaction requests access by issuing a 
lock_item(X) operation

Slide 21- 5

Figure 21.1 Lock and unlock operations for binary locks



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Two-Phase Locking Techniques
for Concurrency Control (cont’d.)

n Lock table specifies items that have locks
n Lock manager subsystem

n Keeps track of and controls access to locks
n Rules enforced by lock manager module

n At most one transaction can hold the lock on an 
item at a given time

n Binary locking too restrictive for database items

Slide 21- 6



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Two-Phase Locking Techniques
for Concurrency Control (cont’d.)

n Shared/exclusive or read/write locks
n Read operations on the same item are not 

conflicting
n Must have exclusive lock to write
n Three locking operations

n read_lock(X)
n write_lock(X)
n unlock(X)

Slide 21- 7



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21-8

Figure 21.2 Locking and 
unlocking operations for 
two-mode (read/write, or 
shared/exclusive) locks



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Two-Phase Locking Techniques
for Concurrency Control (cont’d.)

n Lock conversion
n Transaction that already holds a lock allowed to 

convert the lock from one state to another
n Upgrading

n Issue a read_lock operation then a write_lock 
operation

n Downgrading
n Issue a read_lock operation after a write_lock 

operation

Slide 21- 9



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Guaranteeing Serializability by Two-
Phase Locking

n Two-phase locking protocol
n All locking operations precede the first unlock 

operation in the transaction
n Phases

n Expanding (growing) phase
n New locks can be acquired but none can be released
n Lock conversion upgrades must be done during this phase

n Shrinking phase
n Existing locks can be released but none can be acquired
n Downgrades must be done during this phase

Slide 21- 10



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21- 11

Figure 21.3 Transactions that 
do not obey two-phase 
locking (a) Two transactions 
T1 and T2 (b) Results of 
possible serial schedules of 
T1 and T2 (c) A 
nonserializable schedule S 
that uses locks



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Guaranteeing Serializability by Two-
Phase Locking

n If every transaction in a schedule follows the two-
phase locking protocol, schedule guaranteed to 
be serializable

n Two-phase locking may limit the amount of 
concurrency that can occur in a schedule

n Some serializable schedules will be prohibited by 
two-phase locking protocol

Slide 21- 12



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Variations of Two-Phase Locking

n Basic 2PL
n Technique described on previous slides

n Conservative (static) 2PL
n Requires a transaction to lock all the items it 

accesses before the transaction begins
n Predeclare read-set and write-set

n Deadlock-free protocol
n Strict 2PL

n Transaction does not release exclusive locks until 
after it commits or aborts

Slide 21- 13



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Variations of Two-Phase Locking 
(cont’d.)

n Rigorous 2PL
n Transaction does not release any locks until after it 

commits or aborts
n Concurrency control subsystem responsible for 

generating read_lock and write_lock requests
n Locking generally considered to have high 

overhead

Slide 21- 14



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Dealing with Deadlock and Starvation

n Deadlock
n Occurs when each transaction T in a set is waiting 

for some item locked by some other transaction T’
n Both transactions stuck in a waiting queue

Slide 21- 15

Figure 21.5 Illustrating the deadlock problem (a) A partial schedule of T1′ and T2′ that is
in a state of deadlock (b) A wait-for graph for the partial schedule in (a)



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Dealing with Deadlock and Starvation 
(cont’d.)

n Deadlock prevention protocols
n Every transaction locks all items it needs in 

advance
n Ordering all items in the database

n Transaction that needs several items will lock them 
in that order

n Both approaches impractical
n Protocols based on a timestamp

n Wait-die
n Wound-wait

Slide 21- 16



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Dealing with Deadlock and Starvation 
(cont’d.)

n No waiting algorithm
n If transaction unable to obtain a lock, immediately 

aborted and restarted later
n Cautious waiting algorithm

n Deadlock-free
n Deadlock detection

n System checks to see if a state of deadlock exists
n Wait-for graph

Slide 21- 17



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Dealing with Deadlock and Starvation 
(cont’d.)

n Victim selection
n Deciding which transaction to abort in case of 

deadlock
n Timeouts

n If system waits longer than a predefined time, it 
aborts the transaction

n Starvation
n Occurs if a transaction cannot proceed for an 

indefinite period of time while other transactions 
continue normally

n Solution: first-come-first-served queue
Slide 21- 18



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.2 Concurrency Control Based
on Timestamp Ordering
n Timestamp

n Unique identifier assigned by the DBMS to identify 
a transaction

n Assigned in the order submitted
n Transaction start time

n Concurrency control techniques based on 
timestamps do not use locks
n Deadlocks cannot occur

Slide 21- 19



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control Based
on Timestamp Ordering (cont’d.)
n Generating timestamps

n Counter incremented each time its value is 
assigned to a transaction

n Current date/time value of the system clock
n Ensure no two timestamps are generated during the 

same tick of the clock
n General approach

n Enforce equivalent serial order on the transactions 
based on their timestamps

Slide 21- 20



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control Based
on Timestamp Ordering (cont’d.)
n Timestamp ordering (TO)

n Allows interleaving of transaction operations
n Must ensure timestamp order is followed for each 

pair of conflicting operations
n Each database item assigned two timestamp 

values
n read_TS(X)
n write_TS(X)

Slide 21- 21



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control Based
on Timestamp Ordering (cont’d.)
n Basic TO algorithm

n If conflicting operations detected, later operation 
rejected by aborting transaction that issued it

n Schedules produced guaranteed to be conflict 
serializable

n Starvation may occur
n Strict TO algorithm

n Ensures schedules are both strict and conflict 
serializable

Slide 21- 22



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control Based
on Timestamp Ordering (cont’d.)
n Thomas’s write rule

n Modification of basic TO algorithm
n Does not enforce conflict serializability
n Rejects fewer write operations by modifying 

checks for write_item(X) operation

Slide 21- 23



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.3 Multiversion Concurrency
Control Techniques

n Several versions of an item are kept by a system
n Some read operations that would be rejected in 

other techniques can be accepted by reading an 
older version of the item
n Maintains serializability

n More storage is needed
n Multiversion currency control scheme types

n Based on timestamp ordering
n Based on two-phase locking
n Validation and snapshot isolation techniques

Slide 21- 24



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiversion Concurrency
Control Techniques (cont’d.)

n Multiversion technique based on timestamp 
ordering
n Two timestamps associated with each version are 

kept
n read_TS(Xi)
n write_TS(Xi)

Slide 21- 25



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiversion Concurrency
Control Techniques (cont’d.)

n Multiversion two-phase locking using certify locks
n Three locking modes: read, write, and certify

Slide 21- 26

Figure 21.6 Lock compatibility tables (a) Lock compatibility table for read/write 
locking scheme (b) Lock compatibility table for read/write/certify locking scheme



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.4 Validation (Optimistic) Techniques and 
Snapshot Isolation Concurrency Control

n Optimistic techniques
n Also called validation or certification techniques
n No checking is done while the transaction is 

executing
n Updates not applied directly to the database until 

finished transaction is validated
n All updates applied to local copies of data items

n Validation phase checks whether any of 
transaction’s updates violate serializability

n Transaction committed or aborted based on result

Slide 20- 27



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control Based on 
Snapshot Isolation

n Transaction sees data items based on committed 
values of the items in the database snapshot
n Does not see updates that occur after transaction 

starts
n Read operations do not require read locks

n Write operations require write locks
n Temporary version store keeps track of older 

versions of updated items
n Variation: serializable snapshot isolation (SSI)

Slide 20- 28



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.5 Granularity of Data Items and
Multiple Granularity Locking

n Size of data items known as granularity
n Fine (small)
n Coarse (large)

n Larger the data item size, lower the degree of 
concurrency permitted
n Example: entire disk block locked

n Smaller the data item size, more locks required
n Higher overhead

n Best item size depends on transaction type

Slide 20- 29



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiple Granularity Level Locking

n Lock can be requested at any level

Slide 21- 30

Figure 21.7 A granularity hierarchy for illustrating multiple granularity level locking



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiple Granularity Level Locking 
(cont’d.)

n Intention locks are needed
n Transaction indicates along the path from the root 

to the desired node, what type of lock (shared or 
exclusive) it will require from one of the node’s 
descendants

n Intention lock types
n Intention-shared (IS)

n Shared locks will be requested on a descendant 
node

n Intention-exclusive (IX)
n Exclusive locks will be requested

Slide 21- 31



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiple Granularity Level Locking 
(cont’d.)

n Intention lock types (cont’d.)
n Shared-intension-exclusive (SIX)

n Current node is locked in shared mode but one or 
more exclusive locks will be requested on a 
descendant node

Slide 21- 32

Figure 21.8 Lock compatibility matrix for multiple granularity locking



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiple Granularity Level Locking 
(cont’d.)

n Multiple granularity locking (MGL) protocol rules

Slide 21- 33



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.6 Using Locks for Concurrency
Control in Indexes

n Two-phase locking can be applied to B-tree and 
B+ -tree indexes
n Nodes of an index correspond to disk pages

n Holding locks on index pages could cause 
transaction blocking
n Other approaches must be used

n Conservative approach
n Lock the root node in exclusive mode and then 

access the appropriate child node of the root

Slide 21- 34



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Using Locks for Concurrency
Control in Indexes (cont’d.)

n Optimistic approach
n Request and hold shared locks on nodes leading 

to the leaf node, with exclusive lock on the leaf
n B-link tree approach

n Sibling nodes on the same level are linked at 
every level

n Allows shared locks when requesting a page
n Requires lock be released before accessing the 

child node

Slide 21- 35



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.7 Other Concurrency Control 
Issues

n Insertion
n When new data item is inserted, it cannot be 

accessed until after operation is completed
n Deletion operation on the existing data item

n Write lock must be obtained before deletion
n Phantom problem

n Can occur when a new record being inserted 
satisfies a condition that a set of records accessed 
by another transaction must satisfy

n Record causing conflict not recognized by 
concurrency control protocol

Slide 21- 36



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Other Concurrency Control Issues 
(cont’d.)

n Interactive transactions
n User can input a value of a data item to a 

transaction T based on some value written to the 
screen by transaction T′, which may not have 
committed

n Solution approach: postpone output of 
transactions to the screen until committed

n Latches
n Locks held for a short duration
n Do not follow usual concurrency control protocol

Slide 21- 37



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.8 Summary

n Concurrency control techniques
n Two-phase locking
n Timestamp-based ordering
n Multiversion protocols
n Snapshot isolation

n Data item granularity
n Locking protocols for indexes
n Phantom problem and interactive transaction 

issues

Slide 21- 38


