
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 18

Strategies for Query Processing



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

n DBMS techniques to process a query
n Scanner identifies query tokens
n Parser checks the query syntax
n Validation checks all attribute and relation names
n Query tree (or query graph) created
n Execution strategy or query plan devised

n Query optimization
n Planning a good execution strategy

Slide 18- 3



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Processing

Slide 18-4
Figure 18.1 Typical steps when processing a high-level query



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.1 Translating SQL Queries into 
Relational Algebra and Other Operators

n SQL
n Query language used in most RDBMSs

n Query decomposed into query blocks
n Basic units that can be translated into the 

algebraic operators
n Contains single SELECT-FROM-WHERE 

expression
n May contain GROUP BY and HAVING clauses

Slide 18- 5



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Translating SQL Queries (cont’d.)

n Example:

n Inner block

n Outer block

Slide 18- 6



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Translating SQL Queries (cont’d.)

n Example (cont’d.)
n Inner block translated into:

n Outer block translated into:

n Query optimizer chooses execution plan for each 
query block

Slide 18- 7



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Additional Operators Semi-Join and 
Anti-Join

n Semi-join
n Generally used for unnesting EXISTS, IN, and 

ANY subqueries
n Syntax: T1.X S = T2.Y

n T1 is the left table and T2 is the right table of the 
semi-join

n A row of T1 is returned as soon as T1.X finds a 
match with any value of T2.Y without searching for 
further matches

Slide 18- 8



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Additional Operators Semi-Join and 
Anti-Join (cont’d.)

n Anti-join
n Used for unnesting NOT EXISTS, NOT IN, and 

ALL subqueries
n Syntax: T1.x A = T2.y

n T1 is the left table and T2 is the right table of the 
anti-join

n A row of T1 is rejected as soon as T1.x finds a 
match with any value of T2.y

n A row of T1 is returned only if T1.x does not match 
with any value of T2.y

Slide 18- 9



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.2 Algorithms for External Sorting
n Sorting is an often-used algorithm in query 

processing
n External sorting

n Algorithms suitable for large files that do not fit 
entirely in main memory

n Sort-merge strategy based on sorting smaller 
subfiles (runs) and merging the sorted runs

n Requires buffer space in main memory
n DBMS cache

Slide 18- 10



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18-11
Figure 18.2 Outline of the sort-merge algorithm for external sorting



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for External Sorting (cont’d.)

n Degree of merging
n Number of sorted subfiles that can be merged in 

each merge step
n Performance of the sort-merge algorithm

n Number of disk block reads and writes before 
sorting is completed

Slide 18- 12



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.3 Algorithms for SELECT 
Operation

n SELECT operation
n Search operation to locate records in a disk file 

that satisfy a certain condition
n File scan or index scan (if search involves an 

index)
n Search methods for simple selection 

n S1: Linear search (brute force algorithm)
n S2: Binary search
n S3a: Using a primary index
n S3b: Using a hash key

Slide 18- 13



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for SELECT Operation 
(cont’d.)

n Search methods for simple selection (cont’d.)
n S4: Using a primary index to retrieve multiple 

records
n S5: Using a clustering index to retrieve multiple 

records
n S6: Using a secondary (B+ -tree) index on an 

equality comparison
n S7a: Using a bitmap index
n S7b: Using a functional index

Slide 18- 14



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for SELECT Operation 
(cont’d.)

n Search methods for conjunctive (logical AND) 
selection
n Using an individual index
n Using a composite index
n Intersection of record pointers

n Disjunctive (logical OR) selection
n Harder to process and optimize

Slide 18- 15



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for SELECT Operation 
(cont’d.)

n Selectivity
n Ratio of the number of records (tuples) that satisfy 

the condition to the total number of records 
(tuples) in the file

n Number between zero (no records satisfy 
condition) and one (all records satisfy condition)

n Query optimizer receives input from system 
catalog to estimate selectivity

Slide 18- 16



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.4 Implementing the JOIN 
Operation

n JOIN operation
n One of the most time consuming in query 

processing
n EQUIJOIN (NATURAL JOIN)
n Two-way or multiway joins

n Methods for implementing joins
n J1: Nested-loop join (nested-block join)
n J2: Index-based nested-loop join
n J3: Sort-merge join
n J4: Partition-hash join

Slide 18- 17



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation 
(cont’d.)

Slide 18-18

Figure 18.3 Implementing 
JOIN, PROJECT, UNION, 
INTERSECTION, and 
SET DIFFERENCE by 
using sort-merge, where R 
has n tuples and S has m 
tuples. (a) Implementing 
the operation



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation 
(cont’d.)

Slide 18-19

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and 
SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples. 
(b) Implementing the operation



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation 
(cont’d.)

Slide 18-20

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and 
SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples. 
(c) Implementing the operation



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation 
(cont’d.)

Slide 18-21

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and 
SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples. 
(d) Implementing the operation



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation 
(cont’d.)

Slide 18-22

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and 
SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples. 
(e) Implementing the operation



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation 
(cont’d.)

n Available buffer space has important effect on 
some JOIN algorithms

n Nested-loop approach
n Read as many blocks as possible at a time into 

memory from the file whose records are used for 
the outer loop

n Advantageous to use the file with fewer blocks as 
the outer-loop file

Slide 18- 23



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation 
(cont’d.)

n Join selection factor
n Fraction of records in one file that will be joined 

with records in another file
n Depends on the particular equijoin condition with 

another file
n Affects join performance

n Partition-hash join
n Each file is partitioned into M partitions using the 

same partitioning hash function on the join 
attributes

n Each pair of corresponding partitions is joined
Slide 18- 24



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation 
(cont’d.)

n Hybrid hash-join
n Variation of partition hash-join
n Joining phase for one of the partitions is included 

in the partition
n Goal: join as many records during the partitioning 

phase to save cost of storing records on disk and 
then rereading during the joining phase

Slide 18- 25



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.5 Algorithms for PROJECT and 
Set Operations

n PROJECT operation
n After projecting R on only the columns in the list of 

attributes, any duplicates are removed by treating 
the result strictly as a set of tuples

n Default for SQL queries
n No elimination of duplicates from the query result

n Duplicates eliminated only if the keyword DISTINCT 
is included

Slide 18- 26



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for PROJECT and Set 
Operations (cont’d.)

n Set operations
n UNION
n INTERSECTION
n SET DIFFERENCE
n CARTESIAN PRODUCT

n Set operations sometimes expensive to 
implement
n Sort-merge technique
n Hashing

Slide 18- 27



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for PROJECT and Set 
Operations (cont’d.)

n Use of anti-join for SET DIFFERENCE
n EXCEPT or MINUS in SQL
n Example: Find which departments have no 

employees

becomes

Slide 18- 28



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.6 Implementing Aggregate 
Operations and Different Types of JOINs

n Aggregate operators
n MIN, MAX, COUNT, AVERAGE, SUM
n Can be computed by a table scan or using an 

appropriate index
n Example:

n If an (ascending) B+ -tree index on Salary exists:
n Optimizer can use the Salary index to search for the 

largest Salary value 
n Follow the rightmost pointer in each index node 

from the root to the rightmost leaf
Slide 18- 29



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing Aggregate Operations and 
Different Types of JOINs (cont’d.)

n AVERAGE or SUM
n Index can be used if it is a dense index
n Computation applied to the values in the index
n Nondense index can be used if actual number of 

records associated with each index value is stored 
in each index entry

n COUNT
n Number of values can be computed from the index

Slide 18- 30



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing Aggregate Operations and 
Different Types of JOINs (cont’d.)

n Standard JOIN (called INNER JOIN in SQL)
n Variations of joins

n Outer join
n Left, right, and full
n Example: 

n Semi-Join
n Anti-Join
n Non-Equi-Join

Slide 18- 31



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.7 Combining Operations Using 
Pipelining

n SQL query translated into relational algebra 
expression
n Sequence of relational operations

n Materialized evaluation
n Creating, storing, and passing temporary results

n General query goal: minimize the number of 
temporary files

n Pipelining or stream-based processing
n Combines several operations into one
n Avoids writing temporary files

Slide 18- 32



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Combining Operations Using 
Pipelining (cont’d.)

n Pipelined evaluation benefits
n Avoiding cost and time delay associated with 

writing intermediate results to disk
n Being able to start generating results as quickly as 

possible
n Iterator

n Operation implemented in such a way that it 
outputs one tuple at a time

n Many iterators may be active at one time

Slide 18- 33



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Combining Operations Using 
Pipelining (cont’d.)

n Iterator interface methods
n Open()
n Get_Next()
n Close()

n Some physical operators may not lend 
themselves to the iterator interface concept
n Pipelining not supported

n Iterator concept can also be applied to access 
methods

Slide 18- 34



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.8 Parallel Algorithms for Query 
Processing

n Parallel database architecture approaches
n Shared-memory architecture

n Multiple processors can access common main 
memory region

n Shared-disk architecture
n Every processor has its own memory
n Machines have access to all disks

n Shared-nothing architecture
n Each processor has own memory and disk storage
n Most commonly used in parallel database systems

Slide 18- 35



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query 
Processing (cont’d.)

n Linear speed-up
n Linear reduction in time taken for operations

n Linear scale-up
n Constant sustained performance by increasing the 

number of processors and disks

Slide 18- 36



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query 
Processing (cont’d.)

n Operator-level parallelism
n Horizontal partitioning

n Round-robin partitioning
n Range partitioning
n Hash partitioning

n Sorting
n If data has been range-partitioned on an attribute:

n Each partition can be sorted separately in parallel
n Results concatenated

n Reduces sorting time

Slide 18- 37



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query 
Processing (cont’d.)

n Selection
n If condition is an equality condition on an attribute 

used for range partitioning:
n Perform selection only on partition to which the 

value belongs
n Projection without duplicate elimination

n Perform operation in parallel as data is read
n Duplicate elimination

n Sort tuples and discard duplicates

Slide 18- 38



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query 
Processing (cont’d.)

n Parallel joins divide the join into n smaller joins
n Perform smaller joins in parallel on n processors
n Take a union of the result

n Parallel join techniques
n Equality-based partitioned join
n Inequality join with partitioning and replication
n Parallel partitioned hash join

Slide 18- 39



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query 
Processing (cont’d.)

n Aggregation
n Achieved by partitioning on the grouping attribute 

and then computing the aggregate function locally 
at each processor

n Set operations
n If argument relations are partitioned using the 

same hash function, they can be done in parallel 
on each processor

Slide 18- 40



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query 
Processing (cont’d.)

n Intraquery parallelism
n Approaches

n Use parallel algorithm for each operation, with 
appropriate partitioning of the data input to that 
operation

n Execute independent operations in parallel
n Interquery parallelism

n Execution of multiple queries in parallel
n Goal: scale up
n Difficult to achieve on shared-disk or shared-

nothing architectures
Slide 18- 41



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.9 Summary

n SQL queries translated into relational algebra
n External sorting
n Selection algorithms
n Join operations
n Combining operations to create pipelined 

execution
n Parallel database system architectures

Slide 18- 42


