
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 17

Indexing Structures for Files and 
Physical Database Design



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

n Indexes used to speed up record retrieval in 
response to certain search conditions

n Index structures provide secondary access paths
n Any field can be used to create an index

n Multiple indexes can be constructed
n Most indexes based on ordered files

n Tree data structures organize the index

Slide 17- 3



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

17.1 Types of Single-Level Ordered 
Indexes

n Ordered index similar to index in a textbook
n Indexing field (attribute)

n Index stores each value of the index field with list 
of pointers to all disk blocks that contain records 
with that field value

n Values in index are ordered
n Primary index

n Specified on the ordering key field of ordered file 
of records

Slide 17- 4



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Types of Single-Level Ordered 
Indexes (cont’d.)

n Clustering index
n Used if numerous records can have the same 

value for the ordering field
n Secondary index

n Can be specified on any nonordering field
n Data file can have several secondary indexes

Slide 17- 5



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Primary Indexes

n Ordered file with two fields
n Primary key, K(i)
n Pointer to a disk block, P(i)

n One index entry in the index file for each block in 
the data file

n Indexes may be dense or sparse
n Dense index has an index entry for every search 

key value in the data file
n Sparse index has entries for only some search 

values

Slide 17- 6



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Primary Indexes (cont’d.)

Slide 17-7

Figure 17.1 Primary index on the ordering key field of the file shown in Figure 16.7



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Primary Indexes (cont’d.)

n Major problem: insertion and deletion of records
n Move records around and change index values
n Solutions

n Use unordered overflow file
n Use linked list of overflow records

Slide 17- 8



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Clustering Indexes

n Clustering field
n File records are physically ordered on a nonkey 

field without a distinct value for each record
n Ordered file with two fields

n Same type as clustering field
n Disk block pointer

Slide 17- 9



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Clustering Indexes (cont’d.)

Slide 17-10

Figure 17.2 A clustering index on the Dept_number ordering 
nonkey field of an EMPLOYEE file



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Secondary Indexes

n Provide secondary means of accessing a data file
n Some primary access exists

n Ordered file with two fields
n Indexing field, K(i)
n Block pointer or record pointer, P(i)

n Usually need more storage space and longer 
search time than primary index
n Improved search time for arbitrary record

Slide 17- 11



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Secondary Indexes (cont’d.)

Slide 17-12

Figure 17.4 Dense 
secondary index (with 
block pointers) on a 
nonordering key field 
of a file.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Types of Single-Level Ordered 
Indexes (cont’d.)

Slide 17-13

Table 17.1 Types of indexes based on the properties of the indexing field

Table 17.2 Properties of index types



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

17.2 Multilevel Indexes
n Designed to greatly reduce remaining search 

space as search is conducted
n Index file

n Considered first (or base level) of a multilevel 
index

n Second level
n Primary index to the first level

n Third level
n Primary index to the second level

Slide 17- 14



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-15

Figure 17.6 A two-level 
primary index resembling 
ISAM (indexed sequential 
access method) organization



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

17.3 Dynamic Multilevel Indexes 
Using B-Trees and B+ -Trees

n Tree data structure terminology
n Tree is formed of nodes
n Each node (except root) has one parent and zero 

or more child nodes
n Leaf node has no child nodes

n Unbalanced if leaf nodes occur at different levels
n Nonleaf node called internal node
n Subtree of node consists of node and all 

descendant nodes

Slide 17- 16



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Tree Data Structure

Slide 17-17

Figure 17.7 A tree data structure that shows an unbalanced tree



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Search Trees and B-Trees

n Search tree used to guide search for a record
n Given value of one of record’s fields

Slide 17- 18

Figure 17.8 A node in a search tree with pointers to subtrees below it



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Search Trees and B-Trees (cont’d.)

n Algorithms necessary for inserting and deleting 
search values into and from the tree

Slide 17- 19

Figure 17.9 A search tree of order p = 3



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

B-Trees

n Provide multi-level access structure
n Tree is always balanced
n Space wasted by deletion never becomes 

excessive
n Each node is at least half-full

n Each node in a B-tree of order p can have at 
most p-1 search values

Slide 17- 20



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

B-Tree Structures

Slide 17-21

Figure 17.10 B-tree structures (a) A node in a B-tree with q−1 search values (b) A 
B-tree of order p=3. The values were inserted in the order 8, 5, 1, 7, 3, 12, 9, 6



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

B+ -Trees

n Data pointers stored only at the leaf nodes
n Leaf nodes have an entry for every value of the 

search field, and a data pointer to the record if 
search field is a key field

n For a nonkey search field, the pointer points to a 
block containing pointers to the data file records

n Internal nodes
n Some search field values from the leaf nodes 

repeated to guide search

Slide 17- 22



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

B+ -Trees (cont’d.)

Slide 17-23

Figure 17.11 The nodes of a B+-tree (a) Internal node of a B+-tree with q−1 search 
values (b) Leaf node of a B+-tree with q−1 search values and q−1 data pointers



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Searching for a Record With Search 
Key Field Value K, Using a B+ -Tree

Slide 17- 24

Algorithm 17.2 Searching for a record with search key field value K, using a B+ -Tree



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

17.4 Indexes on Multiple Keys

n Multiple attributes involved in many retrieval and 
update requests

n Composite keys
n Access structure using key value that combines 

attributes
n Partitioned hashing

n Suitable for equality comparisons

Slide 17- 25



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Indexes on Multiple Keys (cont’d.)

n Grid files
n Array with one dimension for each search attribute

Slide 17- 26

Figure 17.14 Example of a grid array on Dno and Age attributes



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

17.5 Other Types of Indexes

n Hash indexes
n Secondary structure for file access
n Uses hashing on a search key other than the one 

used for the primary data file organization
n Index entries of form (K, Pr) or (K, P)

n Pr: pointer to the record containing the key
n P: pointer to the block containing the record for that 

key

Slide 17- 27



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Hash Indexes (cont’d.)

Slide 17-28
Figure 17.15 Hash-based indexing



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Bitmap Indexes

n Used with a large number of rows
n Creates an index for one or more columns

n Each value or value range in the column is 
indexed

n Built on one particular value of a particular field
n Array of bits

n Existence bitmap
n Bitmaps for B+ -tree leaf nodes

Slide 17- 29



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Function-Based Indexing

n Value resulting from applying some function on a 
field (or fields) becomes the index key

n Introduced in Oracle relational DBMS
n Example

n Function UPPER(Lname) returns uppercase 
representation

n Query 

Slide 17- 30



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

17.6 Some General Issues 
Concerning Indexing

n Physical index
n Pointer specifies physical record address
n Disadvantage: pointer must be changed if record 

is moved
n Logical index

n Used when physical record addresses expected to 
change frequently

n Entries of the form (K, Kp)

Slide 17- 31



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Index Creation

n General form of the command to create an index

n Unique and cluster keywords optional
n Order can be ASC or DESC

n Secondary indexes can be created for any 
primary record organization
n Complements other primary access methods

Slide 17- 32



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Indexing of Strings

n Strings can be variable length
n Strings may be too long, limiting the fan-out
n Prefix compression

n Stores only the prefix of the search key adequate 
to distinguish the keys that are being separated 
and directed to the subtree

Slide 17- 33



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Tuning Indexes

n Tuning goals
n Dynamically evaluate requirements
n Reorganize indexes to yield best performance

n Reasons for revising initial index choice 
n Certain queries may take too long to run due to 

lack of an index
n Certain indexes may not get utilized
n Certain indexes may undergo too much updating if 

based on an attribute that undergoes frequent 
changes

Slide 17- 34



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Additional Issues Related to Storage 
of Relations and Indexes

n Enforcing a key constraint on an attribute
n Reject insertion if new record has same key 

attribute as existing record
n Duplicates occur if index is created on a nonkey 

field
n Fully inverted file

n Has secondary index on every field
n Indexing hints in queries

n Suggestions used to expedite query execution

Slide 17- 35



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Additional Issues Related to Storage 
of Relations and Indexes (cont’d.)

n Column-based storage of relations
n Alternative to traditional way of storing relations by 

row
n Offers advantages for read-only queries
n Offers additional freedom in index creation

Slide 17- 36



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

17.7 Physical Database Design in 
Relational Databases

n Physical design goals
n Create appropriate structure for data in storage
n Guarantee good performance

n Must know job mix for particular set of database 
system applications

n Analyzing the database queries and transactions
n Information about each retrieval query
n Information about each update transaction

Slide 17- 37



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Physical Database Design in 
Relational Databases (cont’d.)

n Analyzing the expected frequency of invocation of 
queries and transactions
n Expected frequency of using each attribute as a 

selection or join attribute
n 80-20 rule: 80 percent of processing accounted for 

by only 20 percent of queries and transactions
n Analyzing the time constraints of queries and 

transactions
n Selection attributes associated with time 

constraints are candidates for primary access 
structures

Slide 17- 38



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Physical Database Design in 
Relational Databases (cont’d.)

n Analyzing the expected frequency of update 
operations
n Minimize number of access paths for a frequently-

updated file
n Updating the access paths themselves slows down 

update operations
n Analyzing the uniqueness constraints on 

attributes
n Access paths should be specified on all candidate 

key attributes that are either the primary key of a 
file or unique attributes

Slide 17- 39



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Physical Database Design Decisions

n Design decisions about indexing
n Whether to index an attribute

n Attribute is a key or used by a query
n What attribute(s) to index on

n Single or multiple
n Whether to set up a clustered index

n One per table
n Whether to use a hash index over a tree index

n Hash indexes do not support range queries
n Whether to use dynamic hashing

n Appropriate for very volatile files
Slide 17- 40



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

17.8 Summary

n Indexes are access structures that improve 
efficiency of record retrieval from a data file

n Ordered single-level index types
n Primary, clustering, and secondary

n Multilevel indexes can be implemented as B-trees 
and B+ -trees
n Dynamic structures

n Multiple key access methods
n Logical and physical indexes

Slide 17- 41


