;*Eé;tion
kTt
/NAVATHE
A

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 17

Indexing Structures for Files and
Physical Database Design

Introduction

» Indexes used to speed up record retrieval in
response to certain search conditions

» Index structures provide secondary access paths
= Any field can be used to create an index
= Multiple indexes can be constructed

= Most indexes based on ordered files
= [ree data structures organize the index

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-3

17.1 Types of Single-Level Ordered
Indexes

s Ordered index similar to index in a textbook

= Indexing field (attribute)

= Index stores each value of the index field with list
of pointers to all disk blocks that contain records
with that field value

s Values in index are ordered

s Primary index

» Specified on the ordering key field of ordered file
of records

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 17-4

Types of Single-Level Ordered
Indexes (cont'd.)

s Clustering index

= Used if numerous records can have the same
value for the ordering field

s Secondary index
= Can be specified on any nonordering field
» Data file can have several secondary indexes

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 17-5

Primary Indexes

s Ordered file with two fields
» Primary key, K{(i)
» Pointer to a disk block, P(i)

= One index entry in the index file for each block in
the data file

s |Indexes may be dense or sparse

» Dense index has an index entry for every search
key value in the data file

» Sparse index has entries for only some search
values

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-6

Primary Indexes (cont'd.

Data file
(Primary
key field)
Name Ssn |Birth_date | Job | Salary | Sex
| Aaron, Ed
Abbaot, Diane
Acosta, Marc]
—— | Adams, John
Adams, Robin
Akers, Jan |]
Index file B oy —
(<K(i), P(i)> entries) —
Alfred, Bob
Block anchor
primary key Block Allen, Sam | |
value pointer
Aaron, Ed —= | Allen, Troy
Adams, John Anders, Keith
Alexander, Ed :
Allen, Troy Anderson, Rob l
Anderson, Zach .—‘_>
Amold, Mack -— Andarson, Zach
. Angel, Joa
Archer, Sue
\————— | Amnold, Mack
Arnold, Steven

Atkins, Timothy |

Figure 17.1 Primary index on the ordering key field of the file shown in Figure 16.7

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 17-7

Primary Indexes (cont'd.)

= Major problem: insertion and deletion of records
= Move records around and change index values

= Solutions
=« Use unordered overflow file
= Use linked list of overflow records

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-8

Clustering Indexes

m Clustering field

= File records are physically ordered on a nonkey
field without a distinct value for each record

s Ordered file with two fields
= Same type as clustering field
= Disk block pointer

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-9

Clustering Indexes (cont'd.)

(Clustering Data file
field)
'Dept_number Name | Ssn | Job Biﬂh_datel Salary
I 1
1
1
2
Index file — 2
(<K(i), P(i)> entries) 3
3
Clustering Block 3
field value pointer
1 3
2 J 3
3 4
4 — | 4
5 ._—I

6 > 5
8 5
5
5
' 6
6
6
I 6
8
8
8

Figure 17.2 A clustering index on the Dept_number ordering
nonkey field of an EMPLOYEE file

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-10

Secondary Indexes

» Provide secondary means of accessing a data file
= SOome primary access exists

s Ordered file with two fields
» Indexing field, K(i)
= Block pointer or record pointer, P(i)

s Usually need more storage space and longer
search time than primary index

= Improved search time for arbitrary record

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 17-11

Secondary Indexes (cont'd.)

Data file
Index file
(<K(i), P(i)> entries) Indexing field
(secondary
key field)
Index Block = 9
field value pointer ™
1 . = 2
> 13
; - 8
: LU,
5 - | > -
o 1 - 15
- 3
7 .
5 17
Figure 17.4 Dense - —
secondary index (with E : - T
block pointers) on a > . - 16
nonordering key field 12 nt
13 — -
of a file. ” pl - =
15 . - | 20
16 “r 7
17) - 4
18 o > | 23
19 — 18
20 - 14
21)
22 — - 12
23 = 7
24 . - 19
22

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 17-12

Types of Single-Level Ordered
Indexes (cont'd.)

Index Field Used for Physical Index Field Not Used for Physical
Ordering of the File Ordering of the File

Indexing field is key Primary index Secondary index (Key)

Indexing field is nonkey Clustering index Secondary index (NonKey)

Table 17.1 Types of indexes based on the properties of the indexing field

Number of (First-Level) Dense or Nondense Block Anchoring
Type of Index Index Entries (Sparse) on the Data File
Primary Number of blocks in data file Nondense Yes
Clustering Number of distinct index field Nondense Yes/no®

values
Secondary (key) Number of records in data file Dense No
Secondary (nonkey) Number of records® or number Dense or Nondense No

of distinct index field values®

“Yes if every distinct value of the ordering field starts a new block; no otherwise.
®For option 1.
“For options 2 and 3.

Table 17.2 Properties of index types

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-13

17.2 Multilevel Indexes

Designed to greatly reduce remaining search
space as search is conducted

Index file

= Considered first (or base level) of a multilevel
index

Second level
» Primary index to the first level

Third level
» Primary index to the second level

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 17-14

Two-level index Data file

First (basa) Primary
level key field
- 2 — 2
8 [5
15 e
24 . 8
12
— 15
21
_— 24
Second (top) 29
lavel
2 - I—» 35 — 35
35 -— 39 [36
55 - 44 o
Figure 17.6 A two-level 85 | - 51 | . -
primary index resembling »
. . —
ISAM (indexed sequential 46
access method) organization -
52
—»| 55 — 55
63 L — 58
71 e
80 . 63
66
- 71
78
e 80
- 85 | -__|_> =
85
89

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-15

17.3 Dynamic Multilevel Indexes
Using B-Trees and B+ -Trees

m [ree data structure terminology
= [ree is formed of nodes

= Each node (except root) has one parent and zero
or more child nodes

= Leaf node has no child nodes
= Unbalanced if leaf nodes occur at different levels

= Nonleaf node called internal node

s Subtree of node consists of node and all
descendant nodes

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-16

Tree Data Structure

- Root node (level 0)

D‘\ -«— Nodes at level 1

<_§> Cﬂ) <|> Nodes at level 2

(R) Nodes at level 3

(Nodes E, J, C, G, H, and K are leaf nodes of the tree)

Figure 17.7 A tree data structure that shows an unbalanced tree

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 17-17

Search Trees and B-Trees

s Search tree used to guide search for a record
= Given value of one of record’s fields

g-1 qe

X<K; Koi < X<K; K <X

8This restriction can be relaxed. If the index is on a nonkey field, duplicate search values may exist and
the node structure and the navigation rules for the tree may be modified.

Figure 17.8 A node in a search tree with pointers to subtrees below it

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-18

Search Trees and B-Trees (cont'd.)

m Algorithms necessary for inserting and deleting
search values into and from the tree

H Tree node pointer
D Null tree pointer

S\
e O\

Figure 17.9 A search tree of order p = 3

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-19

B-Trees

s Provide multi-level access structure
= [ree is always balanced

s Space wasted by deletion never becomes
excessive

= Each node is at least half-full

s Each node in a B-tree of order p can have at
most p-71 search values

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17- 20

B-Tree Structures

(a) . P1 K1 'Pf1 ,?32 e Ki—i “Pfi_1 TP’ ,<, "Pfi e Kq_1 "Pfq_1 Pq .
|' Tree Tree |\
*' Y Y pointer Y Y pointer \
Tree Data Data Data Data \
pointer pointer pointer pointer pointer
Tree
pointer
X<K; K_ < X<K; Ky <X
(b) IR T 8 (of |e | Tree node pointer
o | Data pointer
Null tree pointer
1o 3 o 6 |o 7 |o 9 |o 12]o

Figure 17.10 B-tree structures (a) A node in a B-tree with g—17 search values (b) A
B-tree of order p=3. The values were inserted in the order 8, 5,1, 7, 3, 12,9, 6

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 17-21

B+ -Trees

s Data pointers stored only at the leaf nodes

» Leaf nodes have an entry for every value of the
search field, and a data pointer to the record if
search field is a key field

= For a nonkey search field, the pointer points to a
block containing pointers to the data file records

s Internal nodes

= Some search field values from the leaf nodes
repeated to guide search

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 17-22

B+ -Trees (cont'd.)

(a) o P1 K1 s K;‘—1 g-1 Pa 2

. e
Tree Tree Tree
pointer pointer pointer

X<K, K_ < XLZK, Ky <X
(b) ‘
K, | Pr, Ko Pry| - [K[Pr| - [Kot |oProst| Pooto | o :g:tl‘;;;o
node in
Y Y Y Y tree
Data Data Data Data
pointer pointer pointer pointer

Figure 17.11 The nodes of a B+-tree (a) Internal node of a B+-tree with g—7 search
values (b) Leaf node of a B+-tree with g—7 search values and g—171 data pointers

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-23

Searching for a Record With Search
Key Field Value K, Using a B+ -Tree

n < block containing root node of B*-tree;
read block n;
while (n is not a leaf node of the B*-tree) do
begin
g < number of tree pointers in node n;
if K< n.K; (*n.K; refers to the ith search field value in node n*)
then n «— n.Py (*n.P; refers to the sth tree pointer in node n*)
else if K> n.K,_;
then n < n.P,

else begin
search node n for an entry s such that n.K;_; < K =<n.Kj;
n < n.P;
end;
read block n
end;
search block n for entry (K, Pr;) with K= K;; (* search leaf node *)
if found

then read data file block with address Pr; and retrieve record
else the record with search field value K is not in the data file;

Algorithm 17.2 Searching for a record with search key field value K, using a B+ -Tree

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 17-24

17.4 Indexes on Multiple Keys

= Multiple attributes involved in many retrieval and
update requests
s Composite keys

s Access structure using key value that combines
attributes

s Partitioned hashing
= Suitable for equality comparisons

Slide 17-25

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Indexes on Multiple Keys (cont'd.)

m Grid files
= Array with one dimension for each search attribute

Dno EMPLOYEE file Bucket pool
0 | 1,2 A e e i
1 |34 4 —J
2 5 3 ______________,' Bucket pool
3 |67 o | | [i
4 |8 1 —r—|—>
5 | 910 0

Linear scale 0 1 2 3 4 5

for Dno
Linear Scale for Age

0 1 2 3 B 4
<20 |21-25|26-30|31-40|41-50| > 50

Figure 17.14 Example of a grid array on Dno and Age attributes

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17- 26

17.5 Other Types of Indexes

s Hash indexes
= Secondary structure for file access

= Uses hashing on a search key other than the one
used for the primary data file organization
» Index entries of form (K, P,) or (K, P)
« P, pointer to the record containing the key

= P: pointer to the block containing the record for that
key

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 17- 27

Hash Indexes (cont'd.)

Bucket 0 Emp_id Lastname Sex|
13646 -1 L. la....
21124 . > | 12676 Marcus M
..... ————— | 13646 Hanson M
Bucket 1 > 51124 S v
23402 .
81165 * L— = | 23402 Clarke F
—— | 34723 Ferragamo F
Bucket2 | | |
51024 o —— | 41301 Zara F
12676 —— | [| ... o,
----- » | 51024 Bass M
Bucket 3 > | 62104 England M
62104 1 1! e e
71221 | e—L T » | 71221 Abercombe F
..... » [81165 Gucci F

Bucket 9
34723 .
41301 =

Figure 17.15 Hash-based indexing

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-28

Bitmap Indexes

Used with a large number of rows

Creates an index for one or more columns

= Each value or value range in the column is
indexed

Built on one particular value of a particular field

= Array of bits
Existence bitmap
Bitmaps for B+ -tree leaf nodes

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 17-29

Function-Based Indexing

= Value resulting from applying some function on a
field (or fields) becomes the index key

s Introduced in Oracle relational DBMS

s Example

» Function UPPER(Lname) returns uppercase
representation

CREATE INDEX upper ix ON| Employee (UPPER(Lname));

= Query

SELECT First name, Lname
FROM Employee
WHERE UPPER(Lname)= "SMITH".

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17- 30

17.6 Some General Issues
Concerning Indexing

s Physical index
» Pointer specifies physical record address

» Disadvantage: pointer must be changed if record
IS moved

s Logical index

= Used when physical record addresses expected to
change frequently

= Entries of the form (K, K,)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17- 31

Index Creation

s General form of the command to create an index

CREATE [UNIQUE] INDEX <index name>
ON <table name> (<column name> [<order> | {, <column name> [<order> | })
[CLUSTER | ;

= Unique and cluster keywords optional
s Order can be ASC or DESC

s Secondary indexes can be created for any
primary record organization

= Complements other primary access methods

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17- 32

Indexing of Strings

= Strings can be variable length
= Strings may be too long, limiting the fan-out

s Prefix compression

= Stores only the prefix of the search key adequate
to distinguish the keys that are being separated
and directed to the subtree

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17- 33

Tuning Indexes

= [uning goals

» Dynamically evaluate requirements

» Reorganize indexes to yield best performance
= Reasons for revising initial index choice

= Certain queries may take too long to run due to
lack of an index

= Certain indexes may not get utilized

» Certain indexes may undergo too much updating if
based on an attribute that undergoes frequent
changes

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17- 34

Additional Issues Related to Storage
of Relations and Indexes

s Enforcing a key constraint on an attribute

= Reject insertion if new record has same key
attribute as existing record

s Duplicates occur if index is created on a nonkey
field

s Fully inverted file
= Has secondary index on every field
» Indexing hints in queries
= Suggestions used to expedite query execution

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17- 35

Additional Issues Related to Storage
of Relations and Indexes (cont'd.)

s Column-based storage of relations

= Alternative to traditional way of storing relations by
row

» Offers advantages for read-only queries
s Offers additional freedom in index creation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17- 36

17.7 Physical Database Design in
Relational Databases

s Physical design goals
= Create appropriate structure for data in storage
= Guarantee good performance

= Must know job mix for particular set of database
system applications

s Analyzing the database queries and transactions
= Information about each retrieval query
= Information about each update transaction

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17- 37

Physical Database Design in
Relational Databases (cont'd.)

= Analyzing the expected frequency of invocation of
queries and transactions

= Expected frequency of using each attribute as a
selection or join attribute

= 80-20 rule: 80 percent of processing accounted for
by only 20 percent of queries and transactions

= Analyzing the time constraints of queries and
transactions
s Selection attributes associated with time

constraints are candidates for primary access
structures

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17- 38

Physical Database Design in
Relational Databases (cont'd.)

s Analyzing the expected frequency of update
operations
= Minimize number of access paths for a frequently-
updated file
« Updating the access paths themselves slows down
update operations
= Analyzing the uniqueness constraints on
attributes
= Access paths should be specified on all candidate

key attributes that are either the primary key of a
file or unique attributes

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17- 39

Physical Database Design Decisions

» Design decisions about indexing
= Whether to index an attribute
« Attribute is a key or used by a query
= What attribute(s) to index on
» Single or multiple
= Whether to set up a clustered index
=« One per table
= Whether to use a hash index over a tree index
« Hash indexes do not support range queries
= Whether to use dynamic hashing
= Appropriate for very volatile files

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 17-40

17.8 Summary

» Indexes are access structures that improve
efficiency of record retrieval from a data file

s Ordered single-level index types
= Primary, clustering, and secondary

s Multilevel indexes can be implemented as B-trees
and B+ -trees

» Dynamic structures
s Multiple key access methods
m Logical and physical indexes

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sllde 17- 41

