
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 2

CHAPTER 15

Relational Database Design

Algorithms and Further

Dependencies

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 3

Chapter Outline

 1. Further topics in Functional Dependencies

 1.1 Inference Rules for FDs

 1.2 Equivalence of Sets of FDs

 1.3 Minimal Sets of FDs

 2. Properties of Relational Decompositions

 3. Algorithms for Relational Database Schema

Design

 4. Nulls, Dangling Tuples, Alternative Relational

Designs

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 4

Chapter Outline

 5. Multivalued Dependencies and Fourth Normal

Form – further discussion

 6. Other Dependencies and Normal Forms

 6.1 Join Dependencies

 6.2 Inclusion Dependencies

 6.3 Dependencies based on Arithmetic Functions

and Procedures

 6.2 Domain-Key Normal Form

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 5

1. Functional Dependencies : Inference

Rules, Equivalence and Minimal Cover

 We discussed functional dependencies in the last

chapter.

 To recollect:

A set of attributes X functionally determines a set of

attributes Y if the value of X determines a unique

value for Y.

 Our goal here is to determine the properties of

functional dependencies and to find out the ways

of manipulating them.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Defining Functional Dependencies

 X → Y holds if whenever two tuples have the same value

for X, they must have the same value for Y

 For any two tuples t1 and t2 in any relation instance r(R): If

t1[X]=t2[X], then t1[Y]=t2[Y]

 X → Y in R specifies a constraint on all relation instances

r(R)

 Written as X → Y; can be displayed graphically on a

relation schema as in Figures in Chapter 14. (denoted by

the arrow:).

 FDs are derived from the real-world constraints on the

attributes

Slide 15- 6

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

1.1 Inference Rules for FDs (1)

 Definition: An FD X  Y is inferred from or implied by

a set of dependencies F specified on R if X  Y holds in

every legal relation state r of R; that is, whenever r

satisfies all the dependencies in F, X  Y also holds in r.

 Given a set of FDs F, we can infer additional FDs that
hold whenever the FDs in F hold

Slide 15- 7

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Inference Rules for FDs (2)

 Armstrong's inference rules:

 IR1. (Reflexive) If Y subset-of X, then X → Y

 IR2. (Augmentation) If X → Y, then XZ → YZ

 (Notation: XZ stands for X U Z)

 IR3. (Transitive) If X → Y and Y → Z, then X → Z

 IR1, IR2, IR3 form a sound and complete set of
inference rules

 These are rules hold and all other rules that hold can be
deduced from these

Slide 15- 8

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Inference Rules for FDs (3)

 Some additional inference rules that are useful:

 Decomposition: If X → YZ, then X → Y and X →
Z

 Union: If X → Y and X → Z, then X → YZ

 Psuedotransitivity: If X → Y and WY → Z, then
WX → Z

 The last three inference rules, as well as any
other inference rules, can be deduced from IR1,
IR2, and IR3 (completeness property)

Slide 15 - 9

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Closure

 Closure of a set F of FDs is the set F+ of all FDs

that can be inferred from F

 Closure of a set of attributes X with respect to F

is the set X+ of all attributes that are functionally

determined by X

 X+ can be calculated by repeatedly applying IR1,

IR2, IR3 using the FDs in F

Slide 15 - 10

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithm to determine Closure

 Algorithm 15.1. Determining X+, the Closure of X

under F

 Input: A set F of FDs on a relation schema R,

and a set of attributes X, which is a subset of R.

X+ := X;

repeat

oldX+ := X+;

for each functional dependency Y  Z in F do

if X+  Y then X+ := X+  Z;

until (X+ = oldX+);
Slide 15 - 11

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Example of Closure (1)

 For example, consider the following relation schema about classes

held at a university in a given academic year.

CLASS (Classid, Course#, Instr_name, Credit_hrs, Text, Publisher,

Classroom, Capacity).

 Let F, the set of functional dependencies for the above relation

include the following f.d.s:

FD1: Sectionid  Course#, Instr_name, Credit_hrs, Text, Publisher,

Classroom, Capacity;

FD2: Course#  Credit_hrs;

FD3: {Course#, Instr_name}  Text, Classroom;

FD4: Text  Publisher

FD5: Classroom  Capacity

These f.d.s above represent the meaning of the individual attributes and the

relationship among them and defines certain rules about the classes.

Slide 15 - 12

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Example of Closure (2)

 The closures of attributes or sets of attributes for some example sets:

{ Classid } + = { Classid , Course#, Instr_name, Credit_hrs, Text, Publisher,

Classroom, Capacity } = CLASS

{ Course#} + = { Course#, Credit_hrs}

{ Course#, Instr_name } + = { Course#, Credit_hrs, Text, Publisher,

Classroom, Capacity }

Note that each closure above has an interpretation that is revealing about the

attribute(s) on the left-hand-side. The closure of { Classid } + is the entire

relation CLASS indicating that all attributes of the relation can be determined

from Classid and hence it is a key.

Slide 15 - 13

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

1.2 Equivalence of Sets of FDs

 Two sets of FDs F and G are equivalent if:

 Every FD in F can be inferred from G, and

 Every FD in G can be inferred from F

 Hence, F and G are equivalent if F+ =G+

 Definition (Covers):

 F covers G if every FD in G can be inferred from F

 (i.e., if G+ subset-of F+)

 F and G are equivalent if F covers G and G covers F

 There is an algorithm for checking equivalence of sets of

FDs

Slide 15 - 14

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

1.3 Finding Minimal Cover of F.D.s (1)

 Just as we applied inference rules to expand on a set F of

FDs to arrive at F+, its closure, it is possible to think in the

opposite direction to see if we could shrink or reduce the

set F to its minimal form so that the minimal set is still

equivalent to the original set F.

 Definition: An attribute in a functional dependency is

considered extraneous attribute if we can remove it

without changing the closure of the set of dependencies.

Formally, given F, the set of functional dependencies and

a functional dependency X  A in F , attribute Y is

extraneous in X if Y is a subset of X, and F logically

implies (F- (X  A)  { (X – Y)  A })

Slide 15 - 15

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Minimal Sets of FDs (2)

 A set of FDs is minimal if it satisfies the
following conditions:

1. Every dependency in F has a single attribute for
its RHS.

2. We cannot remove any dependency from F and
have a set of dependencies that is equivalent to
F.

3. We cannot replace any dependency X  A in F
with a dependency Y  A, where Y is a proper-
subset-of X and still have a set of dependencies
that is equivalent to F.

Slide 15 - 16

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Minimal Sets of FDs (3)

 Algorithm 15.2. Finding a Minimal Cover F for a Set of Functional
Dependencies E

 Input: A set of functional dependencies E.

1. Se tF:=E.

2. Replace each functional dependency X → {A1, A2, ..., An} in F by
the n functional dependencies X →A1, X →A2, ..., X → An.

3. For each functional dependency X → A in F
for each attribute B that is an element of X

if { {F – {X → A} } ∪ { (X – {B}) → A} } is equivalent to F
then replace X → A with (X – {B}) → A in F.

(* The above constitutes a removal of the extraneous
attribute B from X *)

4. For each remaining functional dependency X → A in F if {F – {X → A}
} is equivalent to F, then remove X → A from F.

(* The above constitutes a removal of the redundant dependency
X  A from F *)

Slide 15- 17

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 18

Computing the Minimal Sets of FDs (4)

We illustrate algorithm 15.2 with the following:

Let the given set of FDs be E : {B → A, D → A, AB → D}.We have to find the minimum

cover of E.

■ All above dependencies are in canonical form; so we have completed step 1

of Algorithm 10.2 and can proceed to step 2. In step 2 we need to determine

if AB → D has any redundant attribute on the left-hand side; that is, can it be

replaced by B → D or A → D?

■ Since B → A, by augmenting with B on both sides (IR2), we have BB → AB, or

B → AB (i). However, AB → D as given (ii).

■ Hence by the transitive rule (IR3), we get from (i) and (ii), B → D. Hence

AB → D may be replaced by B → D.

■ We now have a set equivalent to original E , say E′ : {B → A, D → A, B → D}.

No further reduction is possible in step 2 since all FDs have a single attribute

on the left-hand side.

■ In step 3 we look for a redundant FD in E′. By using the transitive rule on

B → D and D → A, we derive B → A. Hence B → A is redundant in E’ and can

be eliminated.

■ Hence the minimum cover of E is {B → D, D → A}.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Minimal Sets of FDs (5)

 Every set of FDs has an equivalent minimal set

 There can be several equivalent minimal sets

 There is no simple algorithm for computing a

minimal set of FDs that is equivalent to a set F of

FDs. The process of Algorithm 15.2 is used until

no further reduction is possible.

 To synthesize a set of relations, we assume that

we start with a set of dependencies that is a

minimal set

 E.g., see algorithm 15.4

Slide 15- 19

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 20

DESIGNING A SET OF RELATIONS (1)

 The Approach of Relational Synthesis

(Bottom-up Design):

 Assumes that all possible functional dependencies

are known.

 First constructs a minimal set of FDs

 Then applies algorithms that construct a target set

of 3NF or BCNF relations.

 Additional criteria may be needed to ensure the

the set of relations in a relational database are

satisfactory (see Algorithm 15.3).

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 21

DESIGNING A SET OF RELATIONS (2)

 Goals:

 Lossless join property (a must)

 Algorithm 15.3 tests for general losslessness.

 Dependency preservation property

 Observe as much as possible

 Algorithm 15.5 decomposes a relation into BCNF

components by sacrificing the dependency

preservation.

 Additional normal forms

 4NF (based on multi-valued dependencies)

 5NF (based on join dependencies)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 22

Algorithm to determine the key of a

relation

 Algorithm 15.2a Finding a Key K for R, given a
set F of Functional Dependencies

 Input: A universal relation R and a set of
functional dependencies F on the attributes
of R.

1. Set K := R;

2. For each attribute A in K {

Compute (K - A)+ with respect to F;

If (K - A)+ contains all the attributes in R,

then set K := K - {A};

}

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 23

2. Properties of Relational Decompositions

(1)

 Relation Decomposition and

Insufficiency of Normal Forms:

 Universal Relation Schema:
 A relation schema R = {A1, A2, …, An} that

includes all the attributes of the database.

 Universal relation assumption:
 Every attribute name is unique.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 24

Properties of Relational Decompositions

(2)

2.1 Relation Decomposition and
Insufficiency of Normal Forms (cont.):

 Decomposition:
 The process of decomposing the universal relation

schema R into a set of relation schemas D =

{R1,R2, …, Rm} that will become the relational

database schema by using the functional

dependencies.
 Attribute preservation condition:

 Each attribute in R will appear in at least one
relation schema Ri in the decomposition so that no
attributes are “lost”.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 25

Properties of Relational Decompositions

(3)

 Another goal of decomposition is to have each

individual relation Ri in the decomposition D be in

BCNF or 3NF.

 Additional properties of decomposition are

needed to prevent from generating spurious

tuples

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 26

Properties of Relational Decompositions

(4)

2.2 Dependency Preservation Property of a
Decomposition:

 Definition: Given a set of dependencies F on R,
the projection of F on Ri, denoted by pRi(F) where
Ri is a subset of R, is the set of dependencies X 
Y in F+ such that the attributes in X υ Y are all
contained in Ri.

 Hence, the projection of F on each relation
schema Ri in the decomposition D is the set of
functional dependencies in F+, the closure of F,
such that all their left- and right-hand-side
attributes are in Ri.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 27

Properties of Relational Decompositions

(5)

 Dependency Preservation Property of a
Decomposition (cont.):
 Dependency Preservation Property:

 A decomposition D = {R1, R2, ..., Rm} of R is
dependency-preserving with respect to F if the
union of the projections of F on each Ri in D is
equivalent to F; that is

((R1(F)) υ . . . υ (Rm(F)))+ = F+

 (See examples in Fig 14.13a and Fig 14.12)

 Claim 1:
 It is always possible to find a dependency-

preserving decomposition D with respect to F such
that each relation Ri in D is in 3nf.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 28

Properties of Relational Decompositions

(6)

2.3 Non-additive (Lossless) Join Property of a
Decomposition:

 Definition: Lossless join property: a decomposition D = {R1,
R2, ..., Rm} of R has the lossless (nonadditive) join property
with respect to the set of dependencies F on R if, for every
relation state r of R that satisfies F, the following holds, where *
is the natural join of all the relations in D:

* ( R1(r), ..., Rm(r)) = r
 Note: The word loss in lossless refers to loss of information,

not to loss of tuples. In fact, for “loss of information” a better
term is “addition of spurious information”

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 29

Properties of Relational Decompositions

(7)

Lossless (Non-additive) Join Property of a Decomposition :

 Algorithm 15.3: Testing for Lossless Join Property

 Input: A universal relation R, a decomposition D = {R1, R2, ...,
Rm} of R, and a set F of functional dependencies.

1. Create an initial matrix S with one row i for each relation Ri in D, and
one column j for each attribute Aj in R.

2. Set S(i,j):=bij for all matrix entries. (* each bij is a distinct symbol
associated with indices (i,j) *).

3. For each row i representing relation schema Ri

{for each column j representing attribute Aj

{if (relation Ri includes attribute Aj) then set S(i,j):= aj;};};

 (* each aj is a distinct symbol associated with index (j) *)

 CONTINUED on NEXT SLIDE

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 30

Properties of Relational Decompositions

(8)

 Lossless (Non-additive) Join Property of a Decomposition (cont.):

Algorithm 15.3: Testing for Lossless Join Property (continued)

4. Repeat the following loop until a complete loop execution results in no changes to S

{for each functional dependency X Y in F

{for all rows in S which have the same symbols in the columns corresponding to
attributes in X

{make the symbols in each column that correspond to an attribute in Y
be the same in all these rows as follows:

If any of the rows has an “a” symbol for the column, set the
other rows to that same “a” symbol in the column.

If no “a” symbol exists for the attribute in any of the rows,
choose one of the “b” symbols that appear in one of the rows for the attribute and set
the other rows to that same “b” symbol in the column ;};

};

};

5. If a row is made up entirely of “a” symbols, then the decomposition has the lossless join
property; otherwise it does not.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 31

Properties of Relational Decompositions

(9)

Figure 15.1 Nonadditive join test for n-ary decompositions.

(a) Case 1: Decomposition of EMP_PROJ into EMP_PROJ1 and

EMP_LOCS fails test.

(b) A decomposition of EMP_PROJ that has the lossless join property.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 32

Properties of Relational Decompositions

(10)

Nonadditive join test for n-

ary decompositions.

(Figure 15.1)

(c) Case 2: Decomposition

of EMP_PROJ into EMP,

PROJECT, and

WORKS_ON satisfies test.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 33

Test for checking non-additivity of Binary

Relational Decompositions (11)

2.4 Testing Binary Decompositions for Non-
additive Join (Lossless Join) Property

 Binary Decomposition: Decomposition of a
relation R into two relations.

 PROPERTY NJB (non-additive join test for
binary decompositions): A decomposition D =
{R1, R2} of R has the lossless join property with
respect to a set of functional dependencies F on R
if and only if either

 The f.d. ((R1 ∩ R2)  (R1- R2)) is in F+, or

 The f.d. ((R1 ∩ R2)  (R2 - R1)) is in F+.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 34

Properties of Relational Decompositions

(12)

2.5 Successive Non-additive Join Decomposition:

 Claim 2 (Preservation of non-additivity in

successive decompositions):

 If a decomposition D = {R1, R2, ..., Rm} of R has

the lossless (non-additive) join property with respect

to a set of functional dependencies F on R,

 and if a decomposition Di = {Q1, Q2, ..., Qk} of Ri

has the lossless (non-additive) join property with

respect to the projection of F on Ri,

 then the decomposition D2 = {R1, R2, ..., Ri-1, Q1, Q2, ...,

Qk, Ri+1, ..., Rm} of R has the non-additive join property

with respect to F.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 35

3. Algorithms for Relational Database

Schema Design (1)

 Design of 3NF Schemas:

Algorithm 15.4 Relational Synthesis into 3NF with Dependency
Preservation and Non-Additive (Lossless) Join Property

 Input: A universal relation R and a set of functional
dependencies F on the attributes of R.

1. Find a minimal cover G for F (use Algorithm 15.0).

2. For each left-hand-side X of a functional dependency that appears in
G,

create a relation schema in D with attributes {X υ {A1} υ {A2} ... υ
{Ak}},

where X  A1, X  A2, ..., X –>Ak are the only dependencies in
G with X as left-hand-side (X is the key of this relation).

3. If none of the relation schemas in D contains a key of R, then create
one more relation schema in D that contains attributes that form a key
of R. (Use Algorithm 15.4a to find the key of R)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 36

Algorithms for Relational Database

Schema Design (2)

 Design of BCNF Schemas

Algorithm 15.5: Relational Decomposition into BCNF with Lossless
(non-additive) join property

 Input: A universal relation R and a set of functional
dependencies F on the attributes of R.

1. Set D := {R};

2. While there is a relation schema Q in D that is not in BCNF

do {

choose a relation schema Q in D that is not in BCNF;

find a functional dependency X  Y in Q that violates BCNF;

replace Q in D by two relation schemas (Q - Y) and (X υ Y);

};

Assumption: No null values are allowed for the join attributes.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 37

4. Problems with Null Values and

Dangling Tuples (1)

4.1 Problems with NULL values

 when some tuples have NULL values for attributes that will be used to
join individual relations in the decomposition that may lead to
incomplete results.

 E.g., see Figure 15.2(a), where two relations EMPLOYEE and
DEPARTMENT are shown. The last two employee tuples—‘Berger’
and ‘Benitez’—represent newly hired employees who have not yet
been assigned to a department (assume that this does not violate any
integrity constraints).

 If we want to retrieve a list of (Ename, Dname) values for all the
employees. If we apply the NATURAL JOIN operation on EMPLOYEE
and DEPARTMENT (Figure 15.2(b)), the two aforementioned tuples
will not appear in the result.

 In such cases, LEFT OUTER JOIN may be used. The result is shown
in Figure 15.2 (c).

.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 38

Problems with Null Values and Dangling

Tuples (2)

Figure 15.2
Issues with
NULL-value
joins. (a) Some
EMPLOYEE
tuples have
NULL for the
join attribute
Dnum.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 39

Problems with Null Values and Dangling

Tuples (3)

Figure 15.2
Issues with NULL-
value joins.
(b) Result of
applying NATURAL
JOIN to the
EMPLOYEE and
DEPARTMENT
relations.
(c) Result of
applying LEFT
OUTER JOIN to
EMPLOYEE and
DEPARTMENT

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 40

Problems with Null Values and Dangling

Tuples (4)

Problems with Dangling Tuples

 Consider the decomposition of EMPLOYEE into EMPLOYEE_1 and
EMPLOYEE_2 as shown in Figure 15.3 (a) and !5.3 (b).

 Their NATURAL JOIN yields the original relation EMPLOYEE in
Figure 15.2(a).

 We may use the alternative representation, shown in Figure 15.3(c),
where we do not include a tuple in EMPLOYEE_3 if the employee has
not been assigned a department (instead of including a tuple with
NULL for Dnum as in EMPLOYEE_2).

 If we use EMPLOYEE_3 instead of EMPLOYEE_2 and apply a
NATURAL JOIN on EMPLOYEE_1 and EMPLOYEE_3, the tuples for
Berger and Benitez will not appear in the result; these are called
dangling tuples in EMPLOYEE.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 41

Problems with Null Values and Dangling

Tuples (5)

Figure 15.3
The dangling tuple problem.
(a) The relation EMPLOYEE_1
(includes all attributes of
EMPLOYEE from Figure
15.2(a) except Dnum). (b)
The relation EMPLOYEE_2
(includes Dnum attribute
with NULL values). (c) The
relation EMPLOYEE_3
(includes Dnum attribute but
does not include tuples for
which Dnum has NULL
values).

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 42

About Normalization Algorithms

4.2 Discussion of Normalization Algorithms:

 Problems:

 The database designer must first specify all the
relevant functional dependencies among the
database attributes.

 These algorithms are not deterministic in general.

 It is not always possible to find a decomposition
into relation schemas that preserves
dependencies and allows each relation schema in
the decomposition to be in BCNF (instead of 3NF
as in Algorithm 15.5).

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 43

Summary of Algorithms for Relational

Database Schema Design (1)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 44

Summary of Algorithms for Relational

Database Schema Design (2)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 45

5. Multivalued Dependencies and Fourth

Normal Form – Further Discussion (1)

Definition:

 A multivalued dependency (MVD) X —>> Y specified on relation

schema R, where X and Y are both subsets of R, specifies the

following constraint on any relation state r of R: If two tuples t1 and

t2 exist in r such that t1[X] = t2[X], then two tuples t3 and t4 should

also exist in r with the following properties, where we use Z to

denote (R 2 (X υ Y)):

 t3[X] = t4[X] = t1[X] = t2[X].

 t3[Y] = t1[Y] and t4[Y] = t2[Y].

 t3[Z] = t2[Z] and t4[Z] = t1[Z].

 An MVD X —>> Y in R is called a trivial MVD if (a) Y is a subset of
X, or (b) X υ Y = R.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 46

Multivalued Dependencies and Fourth Normal

Form (2)
 Inference Rules for Functional and

Multivalued Dependencies:
 IR1 (reflexive rule for FDs): If X  Y, then X → Y.

 IR2 (augmentation rule for FDs): {X → Y}  XZ → YZ.

 IR3 (transitive rule for FDs): {X → Y, Y → Z}  X → Z.

 IR4 (complementation rule for MVDs): {X —>> Y}  X —>>
(R – (X  Y))}.

 IR5 (augmentation rule for MVDs): If X —>> Y and W  Z
then WX —>> YZ.

 IR6 (transitive rule for MVDs): {X —>> Y, Y —>> Z}  X —>>
(Z - Y).

 IR7 (replication rule for FD to MVD): {X –> Y}  X —>> Y.

 IR8 (coalescence rule for FDs and MVDs): If X —>> Y and
there exists W with the properties that

 (a) W  Y is empty, (b) W –> Z, and (c) Y  Z, then X –> Z.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 47

Multivalued Dependencies and Fourth Normal

Form (3)

Definition:

 A relation schema R is in 4NF with respect to a set of
dependencies F (that includes functional dependencies
and multivalued dependencies) if, for every nontrivial
multivalued dependency X —>> Y in F+, X is a superkey
for R.

 Note: F+ is the (complete) set of all dependencies
(functional or multivalued) that will hold in every relation
state r of R that satisfies F. It is also called the closure of
F.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 48

Fig. 15.4 Decomposing a relation state of EMP that is not in 4NF.

(a) EMP relation with additional tuples.

(b) Two corresponding 4NF relations EMP_PROJECTS and

EMP_DEPENDENTS.

Multivalued Dependencies and Fourth Normal

Form (4)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 49

5.3 Non-additive(Lossless) Join

Decomposition into 4NF Relations:

 PROPERTY NJB’

 The relation schemas R1 and R2 form a lossless

(non-additive) join decomposition of R with respect

to a set F of functional and multivalued

dependencies if and only if

 (R1 ∩ R2) —>> (R1 - R2)

 or by symmetry, if and only if

 (R1 ∩ R2) —>> (R2 - R1)).

Multivalued Dependencies and Fourth Normal

Form (5)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 50

Algorithm 15.7: Relational decomposition into 4NF

relations with non-additive join property

 Input: A universal relation R and a set of functional and

multivalued dependencies F.

1. Set D := { R };

2. While there is a relation schema Q in D that is not in 4NF do {

choose a relation schema Q in D that is not in 4NF;

find a nontrivial MVD X —>> Y in Q that violates 4NF;

replace Q in D by two relation schemas (Q - Y) and (X  Y);

};

Multivalued Dependencies and Fourth Normal

Form (6)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 51

6. Other Dependencies and Normal Forms

Join Dependency was defined in Chapter 14:

Definition:

 A join dependency (JD), denoted by JD(R1, R2, ..., Rn),

specified on relation schema R, specifies a constraint

on the states r of R.

 The constraint states that every legal state r of R should

have a non-additive join decomposition into R1, R2, ..., Rn;

that is, for every such r we have

* (R1(r), R2(r), ..., Rn(r)) = r

Note: an MVD is a special case of a JD where n = 2.

 A join dependency JD(R1, R2, ..., Rn), specified on

relation schema R, is a trivial JD if one of the relation

schemas Ri in JD(R1, R2, ..., Rn) is equal to R.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 52

Join Dependencies and Fifth Normal Form

Definition of 5NF:

 A relation schema R is in fifth normal form

(5NF) (or Project-Join Normal Form (PJNF))

with respect to a set F of functional, multivalued,

and join dependencies if,

 for every nontrivial join dependency JD(R1, R2, ...,

Rn) in F+ (that is, implied by F),

 every Ri is a superkey of R.

 Discovering join dependencies in practical databases

with hundreds of relations is next to impossible.

Therefore, 5NF is rarely used in practice.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 53

Inclusion Dependencies (1)

Definition:

 An inclusion dependency R.X < S.Y between two sets
of attributes—X of relation schema R, and Y of relation
schema S—specifies the constraint that, at any specific
time when r is a relation state of R and s a relation state
of S, we must have

X(r(R))  Y(s(S))

 Note:

 The  (subset) relationship does not necessarily have to
be a proper subset.

 The sets of attributes on which the inclusion dependency is
specified—X of R and Y of S—must have the same
number of attributes.

 In addition, the domains for each pair of corresponding
attributes should be compatible.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 54

Inclusion Dependencies (2)

 Objective of Inclusion Dependencies:

 To formalize two types of interrelational constraints which
cannot be expressed using F.D.s or MVDs:

 Referential integrity constraints

 Class/subclass relationships

 Inclusion dependency inference rules
 IDIR1 (reflexivity): R.X < R.X.

 IDIR2 (attribute correspondence): If R.X < S.Y

 where X = {A1, A2 ,..., An} and Y = {B1,
B2, ..., Bn} and Ai Corresponds-to Bi, then R.Ai < S.Bi

 for 1 ≤ i ≤ n.

 IDIR3 (transitivity): If R.X < S.Y and S.Y < T.Z, then R.X <
T.Z.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 55

Functional Dependencies based on Arithmetic

functions and procedures (1)

Arithmetic Functions:

 As long as a unique value of Y is associated with every X, we can still

consider that the FD X  Y exists.

For example,consider the relation:

ORDER_LINE (Order#, Item#, Quantity, Unit_price,

Extended_price, Discounted_price)

 each tuple represents an item from an order with a particular quantity,

and the price per unit for that item. In this relation,

(Quantity, Unit_price)  Extended_price by the formula

Extended_price = Quantity * Unit_price .

 Hence, there is a unique value for Extended_price for every pair

(Quantity, Unit_price), and thus it conforms to the definition of

functional dependency.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 56

Functional Dependencies based on Arithmetic

functions and procedures (2)

Procedures:

 There may be a procedure that takes into account the

quantity discounts, the type of item, and so on and

computes a discounted price for the total quantity ordered

for that item. Therefore, we can say

 (Item#, Quantity, Unit_price)  Discounted_price, or

 (Item#, Quantity, Extended_price)  Discounted_price.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 57

Other Dependencies and Normal Forms

(3)

6.4 Domain-Key Normal Form (DKNF):
 Definition:

 A relation schema is said to be in DKNF if all constraints and
dependencies that should hold on the valid relation states can be
enforced simply by enforcing the domain constraints and key
constraints on the relation.

 The idea is to specify (theoretically, at least) the “ultimate normal
form” that takes into account all possible types of dependencies and
constraints. .

 For a relation in DKNF, it becomes very straightforward to enforce all
database constraints by simply checking that each attribute value in a
tuple is of the appropriate domain and that every key constraint is
enforced.

 The practical utility of DKNF is limited

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 15- 58

Recap

 Functional Dependencies Revisited

 Designing a Set of Relations by Synthesis

 Properties of Relational Decompositions

 Algorithms for Relational Database Schema

Design in 3Nf and BCNF

 Multivalued Dependencies and Fourth Normal

Form

 Other Dependencies and Normal Forms

