
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Chapter 12 Outline

 Overview of Object Database Concepts

 Object-Relational Features

 Object Database Extensions to SQL

 ODMG Object Model and the Object Definition

Language ODL

 Object Database Conceptual Design

 The Object Query Language OQL

 Overview of the C++ Language Binding

Slide 12- 2

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Object and Object-Relational

Databases

 Object databases (ODB)

 Object data management systems (ODMS)

 Meet some of the needs of more complex

applications

 Specify:

 Structure of complex objects

 Operations that can be applied to these objects

Slide 12- 3

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Overview of Object Database

Concepts

 Introduction to object-oriented concepts and

features

 Origins in OO programming languages

 Object has two components:

 State (value) and behavior (operations)

 Instance variables (attributes)

 Hold values that define internal state of object

 Operation is defined in two parts:

 Signature (interface) and implementation (method)

Slide 12- 4

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Overview of Object Database

Concepts (cont’d.)

 Inheritance

 Permits specification of new types or classes that

inherit much of their structure and/or operations

from previously defined types or classes

 Operator overloading

 Operation’s ability to be applied to different types of

objects

 Operation name may refer to several distinct

implementations

Slide 12- 5

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Object Identity, and Objects versus

Literals

 Object has Unique identity

 Implemented via a unique, system-generated

object identifier (OID)

 Immutable

 Most OO database systems allow for the

representation of both objects and literals (simple

or complex values)

Slide 12- 6

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Complex Type Structures for Objects

and Literals

 Structure of arbitrary complexity

 Contain all necessary information that describes

object or literal

 Nesting type constructors

 Generate complex type from other types

 Type constructors (type generators):

 Atom (basic data type – int, string, etc.)

 Struct (or tuple)

 Collection

Slide 12- 7

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Complex Type Structures for Objects

and Literals (cont’d.)

 Collection types:

 Set

 Bag

 List

 Array

 Dictionary

 Object definition language (ODL)

 Used to define object types for a particular

database application

Slide 12- 8

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.1 Specifying the object types EMPLOYEE, DATE, and DEPARTMENT
using type constructors.

Slide 12- 9

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.2 Adding operations to the definitions of EMPLOYEE and DEPARTMENT.

Slide 12- 10

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Encapsulation of Operations

 Encapsulation

 Related to abstract data types

 Define behavior of a class of object based on

operations that can be externally applied

 External users only aware of interface of the

operations

 Can divide structure of object into visible and

hidden attributes

Slide 12- 11

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Encapsulation of Operations

 Constructor operation

 Used to create a new object

 Destructor operation

 Used to destroy (delete) an object

 Modifier operations

 Modify the state of an object

 Retrieve operation

 Dot notation to apply operations to object

Slide 12- 12

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Persistence of Objects

 Transient objects

 Exist in executing program

 Disappear once program terminates

 Persistent objects

 Stored in database, persist after program termination

 Naming mechanism: object assigned a unique name

in object base, user finds object by its name

 Reachability: object referenced from other persistent

objects, object located through references

Slide 12- 13

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.3 Creating persistent objects by naming and reachability.

Slide 12- 14

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Type (Class) Hierarchies and

Inheritance

 Inheritance

 Definition of new types based on other predefined

types

 Leads to type (or class) hierarchy

 Type: type name and list of visible (public)

functions (attributes or operations)

 Format:

 TYPE_NAME: function, function, ...,

function

Slide 12- 15

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Type (Class) Hierarchies and

Inheritance (cont’d.)

 Subtype

 Useful when creating a new type that is similar but

not identical to an already defined type

 Subtype inherits functions

 Additional (local or specific) functions in subtype

 Example:

 EMPLOYEE subtype-of PERSON: Salary,

Hire_date, Seniority

 STUDENT subtype-of PERSON: Major, Gpa

Slide 12- 16

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Type (Class) Hierarchies and

Inheritance (cont’d.)

 Extent

 A named persistent object to hold collection of all

persistent objects for a class

 Persistent collection

 Stored permanently in the database

 Transient collection

 Exists temporarily during the execution of a

program (e.g. query result)

Slide 12- 17

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Other Object-Oriented Concepts

 Polymorphism of operations

 Also known as operator overloading

 Allows same operator name or symbol to be

bound to two or more different implementations

 Type of objects determines which operator is

applied

 Multiple inheritance

 Subtype inherits functions (attributes and

operations) of more than one supertype

Slide 12- 18

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Summary of Object Database

Concepts

 Object identity

 Type constructors (type generators)

 Encapsulation of operations

 Programming language compatibility

 Type (class) hierarchies and inheritance

 Extents

 Polymorphism and operator overloading

Slide 12- 19

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Object-Relational Features:

Object DB Extensions to SQL

 Type constructors (generators)

 Specify complex types using UDT

 Mechanism for specifying object identity

 Encapsulation of operations

 Provided through user-defined types (UDTs)

 Inheritance mechanisms

 Provided using keyword UNDER

Slide 12- 20

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

User-Defined Types (UDTs) and

Complex Structures for Objects

 UDT syntax:

 CREATE TYPE <type name> AS

(<component declarations>);

 Can be used to create a complex type for an

attribute (similar to struct – no operations)

 Or: can be used to create a type as a basis for a

table of objects (similar to class – can have

operations)

Slide 12- 21

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

User-Defined Types and Complex

Structures for Objects (cont’d.)

 Array type – to specify collections

 Reference array elements using []

 CARDINALITY function

 Return the current number of elements in an array

 Early SQL had only array for collections

 Later versions of SQL added other collection

types (set, list, bag, array, etc.)

Slide 12- 22

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Object Identifiers Using Reference

Types

 Reference type

 Create unique object identifiers (OIDs)

 Can specify system-generated object identifiers

 Alternatively can use primary key as OID as in

traditional relational model

 Examples:

 REF IS SYSTEM GENERATED

 REF IS <OID_ATTRIBUTE>

<VALUE_GENERATION_METHOD> ;

Slide 12- 23

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Creating Tables Based on the UDTs

 INSTANTIABLE

 Specify that UDT is instantiable

 The user can then create one or more tables

based on the UDT

 If keyword INSTANTIABLE is left out, can use

UDT only as attribute data type – not as a basis for

a table of objects

Slide 12- 24

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Encapsulation of Operations

 User-defined type

 Specify methods (or operations) in addition to the

attributes

 Format:
CREATE TYPE <TYPE-NAME> (

<LIST OF COMPONENT ATTRIBUTES AND THEIR TYPES>

<DECLARATION OF FUNCTIONS (METHODS)>

);

Slide 12- 25

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.4a Illustrating some of the object features of SQL. Using UDTs as types
for attributes such as Address and Phone.

continued on next slide

Slide 12- 26

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.4b Illustrating some of the object features of SQL. Specifying UDT for
PERSON_TYPE.

continued on next slide

Slide 12- 27

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying Type Inheritance

 NOT FINAL:

 The keyword NOT FINAL indicates that subtypes

can be created for that type

 UNDER

 The keyword UNDER is used to create a subtype

Slide 12- 28

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.4c Illustrating some of the object features of SQL. Specifying UDTs for
STUDENT_TYPE and EMPLOYEE_TYPE as two subtypes of PERSON_TYPE.

continued on next slide

Slide 12- 29

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.4c (continued) Illustrating some of the object features of SQL.
Specifying UDTs for STUDENT_TYPE and EMPLOYEE_TYPE as two subtypes of
PERSON_TYPE.

continued on next slide

Slide 12- 30

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying Type Inheritance

 Type inheritance rules:

 All attributes/operations are inherited

 Order of supertypes in UNDER clause determines

inheritance hierarchy

 Instance (object) of a subtype can be used in

every context in which a supertype instance used

 Subtype can redefine any function defined in

supertype

Slide 12- 31

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Creating Tables based on UDT

 UDT must be INSTANTIABLE

 One or more tables can be created

 Table inheritance:

 UNDER keyword can also be used to specify

supertable/subtable inheritance

 Objects in subtable must be a subset of the

objects in the supertable

Slide 12- 32

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.4d Illustrating some of the object features of SQL. Creating tables
based on some of the UDTs, and illustrating table inheritance.

continued on next slide

Slide 12- 33

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying Relationships via

Reference

 Component attribute of one tuple may be a

reference to a tuple of another table

 Specified using keyword REF

 Keyword SCOPE

 Specify name of table whose tuples referenced

 Dot notation

 Build path expressions

 –>

 Used for dereferencing

Slide 12- 34

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.4e Illustrating some of the object features of SQL. Specifying
relationships using REF and SCOPE.

Slide 12- 35

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Summary of SQL Object Extensions

 UDT to specify complex types

 INSTANTIABLE specifies if UDT can be used to

create tables; NOT FINAL specifies if UDT can be

inherited by a subtype

 REF for specifying object identity and inter-

object references

 Encapsulation of operations in UDT

 Keyword UNDER to specify type inheritance and

table inheritance

Slide 12- 36

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

ODMG Object Model and Object

Definition Language ODL

 ODMG object model

 Data model for object definition language (ODL)

and object query language (OQL)

 Objects and Literals

 Basic building blocks of the object model

 Object has five aspects:

 Identifier, name, lifetime, structure, and

creation

 Literal

 Value that does not have an object identifier

Slide 12- 37

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The ODMG Object Model and the ODL

(cont’d.)

 Behavior refers to operations

 State refers to properties (attributes)

 Interface

 Specifies only behavior of an object type

 Typically noninstantiable

 Class

 Specifies both state (attributes) and behavior

(operations) of an object type

 Instantiable

Slide 12- 38

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Inheritance in the Object Model of

ODMG

 Behavior inheritance

 Also known as IS-A or interface inheritance

 Specified by the colon (:) notation

 EXTENDS inheritance

 Specified by keyword extends

 Inherit both state and behavior strictly among

classes

 Multiple inheritance via extends not permitted

Slide 12- 39

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Built-in Interfaces and Classes in the

Object Model

 Collection objects

 Inherit the basic Collection interface

 i = o.create_iterator()

 Creates an iterator object for the collection

 To loop over each object in a collection

 Collection objects further specialized into:

 set, list, bag, array, and dictionary

Slide 12- 40

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.6 Inheritance hierarchy for the built-in interfaces of the object model.

Slide 12- 41

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Atomic (User-Defined) Objects

 Specified using keyword class in ODL

 Attribute

 Property; describes data in an object

 Relationship

 Specifies inter-object references

 Keyword inverse

 Single conceptual relationship in inverse directions

 Operation signature:

 Operation name, argument types, return value

Slide 12- 42

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.7 The attributes, relationships, and operations in a class definition.

Slide 12- 43

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Extents, Keys, and Factory Objects

 Extent

 A persistent named collection object that contains

all persistent objects of class

 Key

 One or more properties whose values are unique

for each object in extent of a class

 Factory object

 Used to generate or create individual objects via

its operations

Slide 12- 44

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Object Definition Language ODL

 Support semantic constructs of ODMG object

model

 Independent of any particular programming

language

 Example on next slides of a UNIVERSITY

database

 Graphical diagrammatic notation is a variation of

EER diagrams

Slide 12- 45

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.9a An example of a database schema. Graphical notation for
representing ODL schemas.

continued on next slide

Slide 12- 46

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.9b An example of a database schema. A graphical object database
schema for part of the UNIVERSITY database (GRADE and DEGREE classes are not
shown).

Slide 12- 47

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.10 Possible ODL schema for the UNIVERSITY database in Figure
12.9(b).

continued on next slide

Slide 12- 48

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.10 (continued) Possible ODL schema for the UNIVERSITY database in
Figure 12.9(b).

Slide 12- 49

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Interface Inheritance in ODL

 Next example illustrates interface inheritance in

ODL

Slide 12- 50

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.11a An illustration of interface inheritance via “:”. Graphical schema
representation.

continued on next slide

Slide 12- 51

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.11b An illustration of interface inheritance via “:”. Corresponding
interface and class definitions in ODL.

Slide 12- 52

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Object Database Conceptual Design

 Differences between conceptual design of ODB

and RDB, handling of:

 Relationships

 Inheritance

 Philosophical difference between relational model

and object model of data

 In terms of behavioral specification

Slide 12- 53

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Mapping an EER Schema to an ODB

Schema

 Create ODL class for each EER entity type

 Add relationship properties for each binary

relationship

 Include appropriate operations for each class

 ODL class that corresponds to a subclass in the

EER schema

 Inherits type and methods of its superclass in ODL

schema

Slide 12- 54

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Mapping an EER Schema to an ODB

Schema (cont’d.)

 Weak entity types

 Mapped same as regular entity types

 Categories (union types)

 Difficult to map to ODL

 An n-ary relationship with degree n > 2

 Map into a separate class, with appropriate

references to each participating class

Slide 12- 55

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The Object Query Language OQL

 Query language proposed for ODMG object

model

 Simple OQL queries, database entry points, and

iterator variables

 Syntax: select ... from ... where ... structure

 Entry point: named persistent object

 Iterator variable: define whenever a collection is

referenced in an OQL query

Slide 12- 56

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Results and Path Expressions

 Result of a query

 Any type that can be expressed in ODMG object

model

 OQL orthogonal with respect to specifying path

expressions

 Attributes, relationships, and operation names

(methods) can be used interchangeably within the

path expressions

Slide 12- 57

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Other Features of OQL

 Named query

 Specify identifier of named query

 OQL query will return collection as its result

 If user requires that a query only return a single
element use element operator

 Aggregate operators

 Membership and quantification over a collection

Slide 12- 58

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Other Features of OQL (cont’d.)

 Special operations for ordered collections

 Group by clause in OQL

 Similar to the corresponding clause in SQL

 Provides explicit reference to the collection of

objects within each group or partition

 Having clause

 Used to filter partitioned sets

Slide 12- 59

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Overview of the C++ Language

Binding in the ODMG Standard

 Specifies how ODL constructs are mapped to

C++ constructs

 Uses prefix d_ for class declarations that deal

with database concepts

 Template classes

 Specified in library binding

 Overloads operation new so that it can be used to

create either persistent or transient objects

Slide 12- 60

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Summary

 Overview of concepts utilized in object databases

 Object identity and identifiers; encapsulation of

operations; inheritance; complex structure of

objects through nesting of type constructors; and

how objects are made persistent

 Description of the ODMG object model and object

query language (OQL)

 Overview of the C++ language binding

Slide 12- 61

