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Chapter 12 Outline

 Overview of Object Database Concepts

 Object-Relational Features

 Object Database Extensions to SQL

 ODMG Object Model and the Object Definition 

Language ODL

 Object Database Conceptual Design

 The Object Query Language OQL

 Overview of the C++ Language Binding
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Object and Object-Relational

Databases

 Object databases (ODB)

 Object data management systems (ODMS)

 Meet some of the needs of more complex 

applications

 Specify:  

 Structure of complex objects 

 Operations that can be applied to these objects
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Overview of Object Database 

Concepts

 Introduction to object-oriented concepts and 

features

 Origins in OO programming languages

 Object has two components: 

 State (value) and behavior (operations)

 Instance variables (attributes)

 Hold values that define internal state of object

 Operation is defined in two parts:

 Signature (interface) and implementation (method)
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Overview of Object Database 

Concepts (cont’d.)

 Inheritance

 Permits specification of new types or classes that 

inherit much of their structure and/or operations 

from previously defined types or classes

 Operator overloading

 Operation’s ability to be applied to different types of 

objects

 Operation name may refer to several distinct 

implementations
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Object Identity, and Objects versus 

Literals

 Object has Unique identity

 Implemented via a unique, system-generated 

object identifier (OID)

 Immutable

 Most OO database systems allow for the 

representation of both objects and literals (simple 

or complex values)

Slide 12- 6



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Complex Type Structures for Objects 

and Literals

 Structure of arbitrary complexity 

 Contain all necessary information that describes 

object or literal

 Nesting type constructors

 Generate complex type from other types

 Type constructors (type generators): 

 Atom (basic data type – int, string, etc.)

 Struct (or tuple)

 Collection
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Complex Type Structures for Objects 

and Literals (cont’d.)

 Collection types:

 Set

 Bag

 List

 Array

 Dictionary

 Object definition language (ODL)

 Used to define object types for a particular 

database application
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Figure 12.1   Specifying the object types EMPLOYEE, DATE, and DEPARTMENT 
using type constructors.
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Figure 12.2 Adding operations to the definitions of EMPLOYEE and DEPARTMENT.
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Encapsulation of Operations

 Encapsulation

 Related to abstract data types

 Define behavior of a class of object based on 

operations that can be externally applied 

 External users only aware of interface of the 

operations

 Can divide structure of object into visible and 

hidden attributes
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Encapsulation of Operations

 Constructor operation

 Used to create a new object 

 Destructor operation

 Used to destroy (delete) an object

 Modifier operations 

 Modify the state of an object

 Retrieve operation

 Dot notation to apply operations to object
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Persistence of Objects

 Transient objects 

 Exist in executing program 

 Disappear once program terminates

 Persistent objects 

 Stored in database, persist after program termination

 Naming mechanism: object assigned a unique name 

in object base, user finds object by its name

 Reachability: object referenced from other persistent 

objects, object located through references
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Figure 12.3 Creating persistent objects by naming and reachability.

Slide 12- 14



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Type (Class) Hierarchies and 

Inheritance

 Inheritance 

 Definition of new types based on other predefined 

types

 Leads to type (or class) hierarchy

 Type: type name and list of visible (public) 

functions (attributes or operations)

 Format:

 TYPE_NAME: function, function, ..., 

function
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Type (Class) Hierarchies and 

Inheritance (cont’d.)

 Subtype 

 Useful when creating a new type that is similar but 

not identical to an already defined type

 Subtype inherits functions

 Additional (local or specific) functions in subtype

 Example:

 EMPLOYEE subtype-of PERSON: Salary, 

Hire_date, Seniority

 STUDENT subtype-of PERSON: Major, Gpa
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Type (Class) Hierarchies and 

Inheritance (cont’d.)

 Extent 

 A named persistent object to hold collection of all 

persistent objects for a class

 Persistent collection

 Stored permanently in the database

 Transient collection

 Exists temporarily during the execution of a 

program (e.g. query result)

Slide 12- 17



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Other Object-Oriented Concepts

 Polymorphism of operations

 Also known as operator overloading

 Allows same operator name or symbol to be 

bound to two or more different implementations

 Type of objects determines which operator is 

applied

 Multiple inheritance

 Subtype inherits functions (attributes and 

operations) of more than one supertype
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Summary of Object Database 

Concepts

 Object identity

 Type constructors (type generators)

 Encapsulation of operations

 Programming language compatibility

 Type (class) hierarchies and inheritance

 Extents

 Polymorphism and operator overloading
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Object-Relational Features:

Object DB Extensions to SQL

 Type constructors (generators)

 Specify complex types using UDT

 Mechanism for specifying object identity

 Encapsulation of operations 

 Provided through user-defined types (UDTs) 

 Inheritance mechanisms 

 Provided using keyword UNDER
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User-Defined Types (UDTs) and 

Complex Structures for Objects

 UDT syntax:

 CREATE TYPE <type name> AS 

(<component declarations>);

 Can be used to create a complex type for an 

attribute (similar to struct – no operations)

 Or: can be used to create a type as a basis for a 

table of objects (similar to class – can have 

operations)
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User-Defined Types and Complex 

Structures for Objects (cont’d.)

 Array type – to specify collections

 Reference array elements using []

 CARDINALITY function

 Return the current number of elements in an array

 Early SQL had only array for collections

 Later versions of SQL added other collection 

types (set, list, bag, array, etc.)
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Object Identifiers Using Reference 

Types

 Reference type

 Create unique object identifiers (OIDs)

 Can specify system-generated object identifiers

 Alternatively can use primary key as OID as in 

traditional relational model

 Examples:

 REF IS SYSTEM GENERATED

 REF IS <OID_ATTRIBUTE> 

<VALUE_GENERATION_METHOD> ;
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Creating Tables Based on the UDTs

 INSTANTIABLE

 Specify that UDT is instantiable

 The user can then create one or more tables 

based on the UDT

 If keyword INSTANTIABLE is left out, can use 

UDT only as attribute data type – not as a basis for 

a table of objects
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Encapsulation of Operations

 User-defined type 

 Specify methods (or operations) in addition to the 

attributes

 Format:
CREATE TYPE <TYPE-NAME> (

<LIST OF COMPONENT ATTRIBUTES AND THEIR TYPES>

<DECLARATION OF FUNCTIONS (METHODS)>

);
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Figure 12.4a Illustrating some of the object features of SQL. Using UDTs as types 
for attributes such as Address and Phone.

continued on next slide
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Figure 12.4b   Illustrating some of the object features of SQL. Specifying UDT for 
PERSON_TYPE.

continued on next slide
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Specifying Type Inheritance

 NOT FINAL:

 The keyword NOT FINAL indicates that subtypes 

can be created for that type

 UNDER

 The keyword UNDER is used to create a subtype
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Figure 12.4c   Illustrating some of the object features of SQL. Specifying UDTs for 
STUDENT_TYPE and EMPLOYEE_TYPE as two subtypes of PERSON_TYPE.

continued on next slide
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Figure 12.4c (continued) Illustrating some of the object features of SQL. 
Specifying UDTs for STUDENT_TYPE and EMPLOYEE_TYPE as two subtypes of 
PERSON_TYPE.

continued on next slide
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Specifying Type Inheritance

 Type inheritance rules:

 All attributes/operations are inherited

 Order of supertypes in UNDER clause determines 

inheritance hierarchy

 Instance (object) of a subtype can be used in 

every context in which a supertype instance used

 Subtype can redefine any function defined in 

supertype
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Creating Tables based on UDT

 UDT must be INSTANTIABLE

 One or more tables can be created

 Table inheritance:

 UNDER keyword can also be used to specify 

supertable/subtable inheritance

 Objects in subtable must be a subset of the 

objects in the supertable
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Figure 12.4d   Illustrating some of the object features of SQL. Creating tables 
based on some of the UDTs, and illustrating table inheritance.

continued on next slide

Slide 12- 33



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying Relationships via 

Reference

 Component attribute of one tuple may be a 

reference to a tuple of another table

 Specified using keyword REF

 Keyword SCOPE 

 Specify name of table whose tuples referenced

 Dot notation 

 Build path expressions

 –>

 Used for dereferencing
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Figure 12.4e   Illustrating some of the object features of SQL. Specifying 
relationships using REF and SCOPE.
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Summary of SQL Object Extensions

 UDT to specify complex types

 INSTANTIABLE specifies if UDT can be used to 

create tables; NOT FINAL specifies if UDT can be 

inherited by a subtype

 REF for specifying object identity and inter-

object references

 Encapsulation of operations in UDT

 Keyword UNDER to specify type inheritance and 

table inheritance
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ODMG Object Model and Object 

Definition Language ODL

 ODMG object model

 Data model for object definition language (ODL) 

and object query language (OQL)

 Objects and Literals

 Basic building blocks of the object model

 Object has five aspects: 

 Identifier, name, lifetime, structure, and 

creation

 Literal 

 Value that does not have an object identifier
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The ODMG Object Model and the ODL 

(cont’d.)

 Behavior refers to operations

 State refers to properties (attributes)

 Interface 

 Specifies only behavior of an object type

 Typically noninstantiable 

 Class 

 Specifies both state (attributes) and behavior 

(operations) of an object type

 Instantiable
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Inheritance in the Object Model of 

ODMG

 Behavior inheritance 

 Also known as IS-A or interface inheritance

 Specified by the colon (:) notation

 EXTENDS inheritance

 Specified by keyword extends

 Inherit both state and behavior strictly among 

classes

 Multiple inheritance via extends not permitted
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Built-in Interfaces and Classes in the 

Object Model

 Collection objects 

 Inherit the basic Collection interface 

 i = o.create_iterator() 

 Creates an iterator object for the collection

 To loop over each object in a collection

 Collection objects further specialized into:

 set, list, bag, array, and dictionary
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Figure 12.6 Inheritance hierarchy for the built-in interfaces of the object model.
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Atomic (User-Defined) Objects

 Specified using keyword class in ODL

 Attribute 

 Property; describes data in an object

 Relationship 

 Specifies inter-object references

 Keyword inverse 

 Single conceptual relationship in inverse directions

 Operation signature:

 Operation name, argument types, return value
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Figure 12.7 The attributes, relationships, and operations in a class definition.
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Extents, Keys, and Factory Objects

 Extent

 A persistent named collection object that contains 

all persistent objects of class

 Key 

 One or more properties whose values are unique 

for each object in extent of a class

 Factory object

 Used to generate or create individual objects via 

its operations
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Object Definition Language ODL

 Support semantic constructs of ODMG object 

model 

 Independent of any particular programming 

language

 Example on next slides of a UNIVERSITY 

database

 Graphical diagrammatic notation is a variation of 

EER diagrams
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Figure 12.9a An example of a database schema. Graphical notation for 
representing ODL schemas.

continued on next slide
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Figure 12.9b An example of a database schema. A graphical object database 
schema for part of the UNIVERSITY database (GRADE and DEGREE classes are not 
shown).
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Figure 12.10 Possible ODL schema for the UNIVERSITY database in Figure 
12.9(b).

continued on next slide
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Figure 12.10 (continued) Possible ODL schema for the UNIVERSITY database in 
Figure 12.9(b).
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Interface Inheritance in ODL

 Next example illustrates interface inheritance in 

ODL
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Figure 12.11a An illustration of interface inheritance via “:”. Graphical schema 
representation.

continued on next slide
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Figure 12.11b An illustration of interface inheritance via “:”. Corresponding 
interface and class definitions in ODL.
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Object Database Conceptual Design

 Differences between conceptual design of ODB 

and RDB, handling of:

 Relationships

 Inheritance

 Philosophical difference between relational model 

and object model of data 

 In terms of behavioral specification
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Mapping an EER Schema to an ODB 

Schema

 Create ODL class for each EER entity type

 Add relationship properties for each binary 

relationship

 Include appropriate operations for each class

 ODL class that corresponds to a subclass in the 

EER schema 

 Inherits type and methods of its superclass in ODL 

schema
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Mapping an EER Schema to an ODB 

Schema (cont’d.)

 Weak entity types 

 Mapped same as regular entity types

 Categories (union types) 

 Difficult to map to ODL

 An n-ary relationship with degree n > 2 

 Map into a separate class, with appropriate 

references to each participating class
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The Object Query Language OQL

 Query language proposed for ODMG object 

model

 Simple OQL queries, database entry points, and 

iterator variables

 Syntax: select ... from ... where ... structure

 Entry point: named persistent object

 Iterator variable: define whenever a collection is 

referenced in an OQL query
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Query Results and Path Expressions

 Result of a query 

 Any type that can be expressed in ODMG object 

model

 OQL orthogonal with respect to specifying path 

expressions

 Attributes, relationships, and operation names 

(methods) can be used interchangeably within the 

path expressions
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Other Features of OQL

 Named query

 Specify identifier of named query

 OQL query will return collection as its result

 If user requires that a query only return a single 
element use element operator

 Aggregate operators 

 Membership and quantification over a collection
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Other Features of OQL (cont’d.)

 Special operations for ordered collections

 Group by clause in OQL

 Similar to the corresponding clause in SQL

 Provides explicit reference to the collection of 

objects within each group or partition

 Having clause 

 Used to filter partitioned sets
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Overview of the C++ Language 

Binding in the ODMG Standard

 Specifies how ODL constructs are mapped to 

C++ constructs

 Uses prefix d_ for class declarations that deal 

with database concepts

 Template classes 

 Specified in library binding

 Overloads operation new so that it can be used to 

create either persistent or transient objects
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Summary

 Overview of concepts utilized in object databases

 Object identity and identifiers; encapsulation of 

operations; inheritance; complex structure of 

objects through nesting of type constructors; and 

how objects are made persistent

 Description of the ODMG object model and object 

query language (OQL)

 Overview of the C++ language binding
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