Edition

|.' . /FNAVATHE

¢ 3

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 7

More SQL: Complex Queries,
Triggers, Views, and Schema
Modification

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 2

Chapter 7 Outline

s More Complex SQL Retrieval Queries

s Specifying Semantic Constraints as Assertions
and Actions as Triggers

= Views (Virtual Tables) in SQL
s Schema Modification in SQL

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 3

More Complex SQL Retrieval
Queries

= Additional features allow users to specify more
complex retrievals from database:

= Nested queries, joined tables, and outer joins (in
the FROM clause), aggregate functions, and

grouping

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 4

Comparisons Involving NULL
and Three-Valued Logic

= Meanings of NULL
= Unknown value
= Unavailable or withheld value
= Not applicable attribute

= Each individual NULL value considered to be
different from every other NULL value

s SQL uses a three-valued logic:
= TRUE, FALSE, and UNKNOWN (like Maybe)

= NULL = NULL comparison is avoided

Slide 7-5

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Comparisons Involving NULL
and Three-Valued Logic (cont'd.)

Table 7.1 Logical Connectives in Three-Valued Logic

(a) AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

(b) OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

(c) NOT
TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN

apyTight © 2016, 2011, 2007

By Paarson Edutation Inc PEAR SON

4 Raghts Reserded

Fungbmeveals iy Dyt abese Sytwrs, Te

ALWATS LEAANING

FEaner Emamn | Shamkant 5. Navanthes

Slide 7- 6

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Comparisons Involving NULL
and Three-Valued Logic (cont'd.)

s SQL allows queries that check whether an
attribute value Is NULL

m IS Or IS NOT NULL

Query 18. Retrieve the names of all employees who do not have supervisors.

Qis: SELECT Fname, Lname
FROM EMPLOYEE
WHERE Super_ssn IS NULL;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 7

Nested Queries, Tuples,
and Set/Multiset Comparisons

= Nested queries

= Complete select-from-where blocks within WHERE
clause of another query

= Outer query and nested subqueries
= Comparison operator IN

= Compares value v with a set (or multiset) of values
Vv

s Evaluates to TRUE If v is one of the elements in V

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 8

Nested Queries (cont'd.)

Q4A: SELECT DISTINCT Pnumber

FROM PROJECT
WHERE Pnumber IN
(SELECT
FROM
WHERE

OR

Pnumber IN

(SELECT
FROM
WHERE

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Pnumber

PROJECT, DEPARTMENT, EMPLOYEE
Dnum=Dnumber AND

Mgr_ssn=Ssn AND Lname="Smith’)

Pno

WORKS_ON, EMPLOYEE
Essn=Ssn AND Lname="Smith’);

Slide 7-9

Nested Queries (cont'd.)

s Use tuples of values in comparisons
= Place them within parentheses

SELECT DISTINCT Essn

FROM WORKS_ON

WHERE (Pno, Hours) IN (SELECT Pno, Hours
FROM WORKS_ON
WHERE Essn="123456789’);

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 10

Nested Queries (cont'd.)

» Use other comparison operators to compare a
single value v
= = ANY (Oor = SOME) operator

» Returns TRUE If the value v is equal to some value in
the set V and is hence equivalent to IN

= Other operators that can be combined with ANY (or
SOME): >, >=, <, <=, and <>
= ALL: Vvalue must exceed all values from nested

q uery SELECT Lname, Fname
FROM EMPLOYEE
WHERE Salary > ALL (SELECT Salary

FROM EMPLOYEE
WHERE Dno=5);

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 11

Nested Queries (cont'd.)

= Avoid potential errors and ambiguities

= Create tuple variables (aliases) for all tables
referenced in SQL query

Query 16. Retrieve the name of each employee who has a dependent with the
same first name and is the same sex as the employee.

Q16: SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E
WHERE ESsnIN (SELECT Essn
FROM DEPENDENT AS D

WHERE E.Fname=D.Dependent_name
AND E.Sex=D.Sex);

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 12

Correlated Nested Queries

m Queries that are nested using the =or IN
comparison operator can be collapsed into one
single block: E.g., Q16 can be written as:

= QI16A: SELECT E.Fname, E.Lhame
FROM EMPLOYEE AS E, DEPENDENT AS D
WHERE E.Ssn=D.Essn AND E.Sex=D.Sex

AND
E.Fname=D.Dependent_name;

= Correlated nested query
= Evaluated once for each tuple in the outer query

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 13

The EXISTS and UNIQUE Functions
In SQL for correlating queries

m EXISTS function

s Check whether the result of a correlated nested
guery is empty or not. They are Boolean functions
that return a TRUE or FALSE result.

m EXISTS and NOT EXISTS

= Typically used in conjunction with a correlated
nested query

s SQL function UNIQUE (Q)

= Returns TRUE If there are no duplicate tuples in
the result of query Q

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 14

USE of EXISTS

Q7.

SELECT Fname, Lname

FROM Employee

WHERE EXISTS (SELECT *
FROM DEPENDENT
WHERE Ssn= Essn)

AND EXISTS (SELECT *
FROM Department
WHERE Ssn= Mgr_Ssn)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 7- 15

USE OF NOT EXISTS

To achieve the “for all” (universal quantifier- see Ch.8) effect,
we use double negation this way in SQL.:

Query: List first and last name of employees who work on
ALL projects controlled by Dno=5.

SELECT Fname, Lhame

FROM Employee

WHERE NOT EXISTS ((SELECT Pnumber
FROM PROJECT
WHERE Dno=5)

EXCEPT (SELECT Pno
FROM WORKS_ON
WHERE Ssn= ESsn)
The above is equivalent to double negation: List names of those
employees for whom there does NOT exist a project managed by
department no. 5 that they do NOT work on.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 16

Double Negation to accomplish “for
all” in SQL

= Q3B: SELECT Lhname, Fhame
FROM EMPLOYEE

WHERE NOT EXISTS (SELECT *
FROM WORKS_ONB

WHERE (B.PnolIN (SELECT Pnumber
FROM PROJECT

WHERE Dnum=5
AND

NOT EXISTS (SELECT *
FROM WORKS ONC
WHERE C.Essn=Ssn
AND C.Pno=B.Pno)));

The above is a direct rendering of: List names of those employees for whom
there does NOT exist a project managed by department no. 5 that they

do NOT work on.

Slide 7- 17

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Explicit Sets and Renaming of
Attributes in SQL

= Can use explicit set of values in WHERE clause

Q17: SELECT DISTINCT Essn
FROM WORKS_ON
WHERE Pno IN (1, 2, 3);

m Use qualifier AS followed by desired new name

= Rename any attribute that appears in the result of
a query

Q8A: SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn=S.Ssn;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 18

Specifying Joined Tables in the
FROM Clause of SQL

s Joined table

= Permits users to specify a table resulting from a
join operation in the FROM clause of a query

= The FROM clause in Q1A

= Contains a single joined table. JOIN may also be
called INNER JOIN

Q1A: SELECT Fname, Lname, Address
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)
WHERE Dname="‘Research’;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 19

Different Types of JOINed Tables In
SQL

m Specify different types of join
= NATURAL JOIN

= Various types of OUTER JOIN (LEFT, RIGHT,
FULL)

s NATURAL JOIN on two relations R and S
= No join condition specified

= IS equivalent to an implicit EQUIJOIN condition for
each pair of attributes with same name from R and
S

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 20

NATURAL JOIN

= Rename attributes of one relation so it can be joined with
another using NATURAL JOIN:

Q1B: SELECT Fname, Lname, Address

FROM (EMPLOYEE NATURAL JOIN
(DEPARTMENT AS DEPT (Dname, Dno, Mssn,
Msdate)))

WHERE Dname=‘Research’;

The above works with EMPLOYEE.Dno = DEPT.Dno as an
Implicit join condition

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 21

INNER and OUTER Joins

= INNER JOIN (versus OUTER JOIN)
= Default type of join in a joined table

= Tuple is included in the result only If a matching tuple exists
In the other relation

= LEFT OUTER JOIN
= Every tuple in left table must appear in result
= If no matching tuple
« Padded with NULL values for attributes of right table
= RIGHT OUTER JOIN
= Every tuple in right table must appear in result
= If no matching tuple
« Padded with NULL values for attributes of left table

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 22

Example: LEFT OUTER JOIN

SELECT E.Lname AS Employee_Name
S.Lname AS Supervisor_Name

FROM Employee AS E LEFT OUTER JOIN EMPLOYEE AS S
ON E.Super_ssn = S.Ssn)

ALTERNATE SYNTAX:

SELECT E.Lname , S.Lhame
FROM EMPLOYEE E, EMPLOYEE S
WHERE E.Super_ssn + = S5.5Ssn

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 23

Multiway JOIN in the FROM clause

s FULL OUTER JOIN — combines result if LEFT
and RIGHT OUTER JOIN

= Can nest JOIN specifications for a multiway join:

Q2A: SELECT Pnumber, Dnum, Lname, Address, Bdate

FROM ((PROJECT JOIN DEPARTMENT ON
Dnum=Dnumber) JOIN EMPLOYEE ON
Mgr_ssn=Ssn)

WHERE Plocation="Stafford’;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 24

Aggregate Functions in SQL

s Used to summarize information from multiple
tuples into a single-tuple summary

= Bullt-in aggregate functions

= COUNT, SUM, MAX, MIN, and AVG
= Grouping

= Create subgroups of tuples before summarizing
= [0 select entire groups, HAVING clause is used

s Aggregate functions can be used in the SELECT
clause or in a HAVING clause

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 25

Renaming Results of Aggregation

s Following query returns a single row of computed values
from EMPLOYEE table:

Q19: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG
(Salary)

FROM EMPLOYEE;
= The result can be presented with new names:

Q19A: SELECT SUM (Salary) AS Total Sal, MAX (Salary) AS
Highest Sal, MIN (Salary) AS Lowest_Sal, AVG
(Salary) AS Average Sal

FROM EMPLOYEE;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 26

Aggregate Functions in SQL (cont'd.)

= NULL values are discarded when aggregate
functions are applied to a particular column

Query 20. Find the sum of the salaries of all employees of the ‘Research’
department, as well as the maximum salary, the minimum salary, and the aver-
age salary in this department.

Q20: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)
WHERE Dname="Research’;

Queries 21 and 22. Retrieve the total number of employees in the company
(Q21) and the number of employees in the ‘Research’ department (Q22).

Q21: SELECT COUNT (%)

FROM EMPLOYEE;
Q22: SELECT COUNT (*)
FROM EMPLOYEE, DEPARTMENT

WHERE DNO=DNUMBER AND DNAME="Research’;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 27

Aggregate Functions on Booleans

= SOME and ALL may be applied as functions on
Boolean Values.

s SOME returns true If at least one element in the
collection is TRUE (similar to OR)

s ALL returns true If all of the elements in the
collection are TRUE (similar to AND)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 28

Grouping: The GROUP BY Clause

= Partition relation into subsets of tuples
= Based on grouping attribute(s)
= Apply function to each such group independently
= GROUP BY clause
= Specifies grouping attributes
s COUNT (*) counts the number of rows in the
group

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 29

Examples of GROUP BY

= The grouping attribute must appear in the SELECT
clause:
Q24: SELECT Dno, COUNT (*), AVG (Salary)
FROM EMPLOYEE
GROUP BY Dno;

s If the grouping attribute has NULL as a possible value,
then a separate group Is created for the null value (e.g.,
null Dno in the above query)

= GROUP BY may be applied to the result of a JOIN:

Q25: SELECT Pnumber, Pname, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE Pnumber=Pno

GROUP BY Pnumber, Pname;:

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 30

Grouping: The GROUP BY and
HAVING Clauses (cont'd.)

s HAVING clause

= Provides a condition to select or reject an entire
group:

s Query 26. For each project on which more than two employees work,

retrieve the project number, the project name, and the number of
employees who work on the project.

Q26: SELECT Pnumber, Pname, COUNT (%)
FROM PROJECT, WORKS_ON
WHERE Pnumber=Pno

GROUP BY Pnumber, Pname
HAVING COUNT (*) > 2;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 31

Combining the WHERE and the
HAVING Clause

= Consider the query: we want to count the total number of
employees whose salaries exceed $40,000 in each
department, but only for departments where more than
five employees work.

= INCORRECT QUERY:

SELECT Dno, COUNT (*)
FROM EMPLOYEE
WHERE Salary>40000

GROUP BY Dno
HAVING COUNT (*) > 5;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 32

Combining the WHERE and the
HAVING Clause (continued)

Correct Specification of the Query:

= Note: the WHERE clause applies tuple by tuple
whereas HAVING applies to entire group of

tuples

Query 28. For each department that has more than five employees, retrieve
the department number and the number of its employees who are making

more than $40,000.

028: SELECT Dnumber, COUNT (*)
FROM DEPARTMENT, EMPLOYEE
WHERE Dnumber=Dno AND Salary>40000 AND

(SELECT Dno
FROM EMPLOYEE
GROUP BYDno
HAVING COUNT (*) > 5)

Slide 7- 33

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Use of WITH

= The WITH clause allows a user to define a table
that will only be used in a particular query (not
available in all SQL implementations)

m Used for convenience to create a temporary
“View” and use that immediately in a query

= Allows a more straightforward way of looking a
step-by-step query

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 34

Example of WITH

= See an alternate approach to doing Q28:

= Q28" WITH BIGDEPTS (Dno) AS
(SELECT Dno
FROM EMPLOYEE
GROUP BY Dno
HAVING COUNT (*) > 5)

SELECT Dno, COUNT (*)
FROM EMPLOYEE
WHERE Salary>40000 AND Dno IN BIGDEPTS

GROUP BY Dno;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 35

Use of CASE

s SQL also has a CASE construct

s Used when a value can be different based on
certain conditions.

= Can be used in any part of an SQL query where a
value Is expected

= Applicable when querying, inserting or updating
tuples

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 36

EXAMPLE of use of CASE

= The following example shows that employees are
receiving different raises in different departments
(A variation of the update U6)

n UG’: UPDATE EMPLOYEE
SET Salary =
CASE WHEN Dno =5THEN Salary + 2000

WHEN Dno =4THEN Salary + 1500
WHEN Dno =1THEN Salary + 3000

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 37

Recursive Queries in SQL

= An example of a recursive relationship between
tuples of the same type Is the relationship
between an employee and a supervisor.

= This relationship is described by the foreign key
Super _ssn of the EMPLOYEE relation

= An example of a recursive operation is to retrieve all supervisees of
a supervisory employee e at all levels—that is, all employees e’
directly supervised by e, all employees e" directly supervised by each
employee €', all employees e"’ directly supervised by each employee
e”, and so on. Thus the CEO would have each employee in the
company as a supervisee in the resulting table. Example shows such
table SUP_EMP with 2 columns (Supervisor,Supervisee(any level)):

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 38

An EXAMPLE of RECURSIVE Query

= Q29: WITH RECURSIVE SUP_EMP (SupSsn, EmpSsn) AS
SELECT SupervisorSsn, Ssn
FROM EMPLOYEE

UNION

SELECT E.Ssn, S.SupSsn
FROM EMPLOYEE AS E, SUP_EMP AS S
WHERE E.SupervisorSsn = S.EmpSsn)
SELECT *

FROM SUP_EMP;

= The above query starts with an empty SUP_EMP and
successively builds SUP_EMP table by computing
Immediate supervisees first, then second level
supervisees, etc. until a fixed point is reached and no
more supervisees can be added

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 39

EXPANDED Block Structure of SQL
Queries

SELECT <attribute and function list>
FROM <table list>

| WHERE <condition>]
| GROUP BY <grouping attribute(s)>]

 HAVING <group condition>]
 ORDER BY <attribute list>];

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 40

Specifying Constraints as Assertions
and Actions as Triggers

» Semantic Constraints: The following are beyond
the scope of the EER and relational model

s CREATE ASSERTION
= Specify additional types of constraints outside
scope of built-in relational model constraints
m CREATE TRIGGER
= Specify automatic actions that database system

will perform when certain events and conditions
occur

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 41

Specifying General Constraints as
Assertions in SQL

m CREATE ASSERTION

s Specify a query that selects any tuples that violate
the desired condition

= Use only in cases where it goes beyond a simple
CHECK which applies to individual attributes and

domains

CREATE ASSERTION SALARY_CONSTRAINT
CHECK (NOT EXISTS (SELECT
FROM EMPLOYEE E, EMPLOYEE M,
DEPARTMENT D
WHERE E.Salary>M.Salary
AND E.Dno=D.Dnumber
AND D.Mgr_ssn=M.Ssn));

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 42

Introduction to Triggers in SQL

m CREATE TRIGGER statement
s Used to monitor the database

= Typical trigger has three components which make
it a rule for an “active database “ (more on active
databases in section 26.1) :

= Event(s)
= Condition
= Action

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 43

USE OF TRIGGERS

= AN EXAMPLE with standard Syntax.(Note : other
SQL implementations like PostgreSQL use a
different syntax.)

RS5:

CREATE TRIGGER SALARY_VIOLATION

BEFORE INSERT OR UPDATE OF Salary, Supervisor_ssn ON
EMPLOYEE

FOR EACH ROW

WHEN (NEW.SALARY > (SELECT Salary FROM EMPLOYEE
WHERE Ssn = NEW. Supervisor_Ssn))

INFORM_SUPERVISOR (NEW.Supervisor.Ssn, New.Ssn)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 44

Views (Virtual Tables) in SQL

s Concept of a view In SQL

= Single table derived from other tables called the
defining tables

= Considered to be a virtual table that is not
necessarily populated

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 45

Specification of Views In SQL

s CREATE VIEW command

= Give table name, list of attribute names, and a query to
specify the contents of the view

= In V1, attributes retain the names from base tables. In
V2, attributes are assigned names

Vi: CREATEVIEW WORKS_ON1
AS SELECT Fname, Lname, Pname, Hours
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn=Essn AND Pno=Pnumber;

V2: CREATEVIEW DEPT_INFO(Dept_name, No_of_emps, Total_sal)
AS SELECT Dname, COUNT (*), SUM (Salary)
FROM DEPARTMENT, EMPLOYEE
WHERE Dnumber=Dno
GROUP BY Dname;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 46

Specification of Views in SQL
(cont’'d.)

= Once a View Is defined, SQL gueries can use the
View relation in the FROM clause

= View Is always up-to-date

= Responsibility of the DBMS and not the user
= DROP VIEW command

= Dispose of a view

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 47

View Implementation, View Update,
and Inline Views

= Complex problem of efficiently implementing a
view for querying

s Strategyl: Query modification approach

= Compute the view as and when needed. Do not
store permanently

= Modify view query into a query on underlying base
tables

» Disadvantage: inefficient for views defined via
complex queries that are time-consuming to
execute

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 48

View Materialization

s Strategy 2: View materialization
= Physically create a temporary view table when the
view is first queried

= Keep that table on the assumption that other
gueries on the view will follow

= Requires efficient strategy for automatically updating
the view table when the base tables are updated
= Incremental update strategy for materialized

Views

= DBMS determines what new tuples must be inserted,
deleted, or modified in a materialized view table

Slide 7- 49

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

View Materialization (contd.)

= Multiple ways to handle materialization:

= Immediate update strategy updates a view as
soon as the base tables are changed

= lazy update strategy updates the view when
needed by a view query

= periodic update strategy updates the view
periodically (in the latter strategy, a view query
may get a result that is not up-to-date). This is
commonly used in Banks, Retalil store operations,
etc.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 50

View Update

= Update on a view defined on a single table without any
aggregate functions

= Can be mapped to an update on underlying base
table- possible if the primary key Is preserved in the

view
= Update not permitted on aggregate views. E.g.,
UV2: UPDATE DEPT_INFO
SET Total sal=100000
WHERE Dname=‘Research’;

cannot be processed because Total sal is a computed value
In the view definition

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 51

View Update and Inline Views

= View involving joins

= Often not possible for DBMS to determine which
of the updates is intended

s Clause WITH CHECK OPTION

= Must be added at the end of the view definition if a
view IS to be updated to make sure that tuples
being updated stay in the view

x In-line view

= Defined in the FROM clause of an SQL query (e.g.,
we saw Its used in the WITH example)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 52

Views as authorization mechanism

s SQL query authorization statements (GRANT and
REVOKE) are described in detall in Chapter 30

s Views can be used to hide certain attributes or
tuples from unauthorized users

= E.g., For a user who is only allowed to see
employee information for those who work for

department 5, he may only access the view
DEPT5EMP:

CREATE VIEW DEPTS5EMP AS
SELECT *
FROM EMPLOYEE

WHERE Dno = 5;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 53

Schema Change Statements in SQL

s Schema evolution commands

= DBA may want to change the schema while the
database is operational

= Does not require recompilation of the database
schema

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 54

The DROP Command

s DROP command

= Used to drop named schema elements, such as
tables, domains, or constraint

= Drop behavior options:
s CASCADE and RESTRICT

s Example:
= DROP SCHEMA COMPANY CASCADE;

= This removes the schema and all its elements
Including tables,views, constraints, etc.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 55

The ALTER table command

s Alter table actions include:
= Adding or dropping a column (attribute)
= Changing a column definition
= Adding or dropping table constraints

s Example:

s ALTER TABLE COMPANY.EMPLOYEE ADD
COLUMN Job VARCHAR(12);

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 7- 56

Adding and Dropping Constraints

= Change constraints specified on a table
= Add or drop a named constraint

ALTER TABLE COMPANY.EMPLOYEE
DROP CONSTRAINT EMPSUPERFK CASCADE;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 57

Dropping Columns, Default Values

= [0 drop a column
s Choose either CASCADE or RESTRICT

s CASCADE would drop the column from views etc.
RESTRICT Is possible if no views refer to it.

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN
Address CASCADE:;

s Default values can be dropped and altered :

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn
DROP DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn SET
DEFAULT ‘333445555’;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 7- 58

Table 7.2 Summary of SQL
Syntax

Table 7.2 Summary of SQL Syntax

CREATE TABLE <table name> (<column name> <column type> [<attribute constraint>]
{, <column name> <column type> [<attribute constraint>] }
[<table constraint> { , <table constraint>}1])

DROP TABLE <table name>
ALTER TABLE <table name> ADD <column name> <column type>
SELECT [DISTINCT] <attribute list>
FROM (<table name> { <alias> } | joined table>) { , (<table name> { <alias> } | <joined table>) }
[WHERE <condition>]
[GROUP BY <grouping attributes> [HAVING <group selection condition>]]
[ORDER BY <column name> [<order>] { , <column name> [<order>] }]
<attribute list> ::= (* | (<column name> | <function> (([DISTINCT] <column name>|*)))
{, (<column name> | <function> (([DISTINCT] <column name>|*))}))

<grouping attributes> ::= <column name> { , <column name> }
<order>::=(ASC | DESC)

INSERT INTO <table name> [(<column name> { , <column name>}) |
(VALUES (<constant value>, { <constant value>}) {, (<constant value> { , <constant value>1}) }
| <select statement>)

continued on next sli

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 59

Table 7.2 (continued)
Summary of SQL Syntax

Table 7.2 Summary of SQL Syntax

DELETE FROM <table name>
[WHERE <selection condition>]

UPDATE <table name>
SET <column name> = <value expression> { , <column name> = <value expression> }
[WHERE <selection condition>]

CREATE [UNIQUE] INDEX <index name>
ON <table name> (<column name> [<order>] {, <column name> [<order>] })
[CLUSTER]

DROP INDEX <index name>

CREATE VIEW <view name> [(<column name> { , <column name>1})]
AS <select statement>

DROP VIEW <view name>

NOTE: The commands for creating and dropping indexes are not part of standard SQL.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 7- 60

Summary

= Complex SQL.:

= Nested queries, joined tables (in the FROM
clause), outer joins, aggregate functions, grouping

= Handling semantic constraints with CREATE
ASSERTION and CREATE TRIGGER

s CREATE VIEW statement and materialization
strategies

= Schema Modification for the DBASs using ALTER
TABLE , ADD and DROP COLUMN, ALTER
CONSTRAINT etc.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 7- 61

