
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 7

More SQL: Complex Queries,

Triggers, Views, and Schema

Modification

Slide 7- 2

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Chapter 7 Outline

 More Complex SQL Retrieval Queries

 Specifying Semantic Constraints as Assertions

and Actions as Triggers

 Views (Virtual Tables) in SQL

 Schema Modification in SQL

Slide 7- 3

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

More Complex SQL Retrieval

Queries

 Additional features allow users to specify more

complex retrievals from database:

 Nested queries, joined tables, and outer joins (in

the FROM clause), aggregate functions, and

grouping

Slide 7- 4

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Comparisons Involving NULL

and Three-Valued Logic

 Meanings of NULL

 Unknown value

 Unavailable or withheld value

 Not applicable attribute

 Each individual NULL value considered to be

different from every other NULL value

 SQL uses a three-valued logic:

 TRUE, FALSE, and UNKNOWN (like Maybe)

 NULL = NULL comparison is avoided

Slide 7- 5

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Comparisons Involving NULL

and Three-Valued Logic (cont’d.)

Slide 7- 6

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Comparisons Involving NULL

and Three-Valued Logic (cont’d.)

 SQL allows queries that check whether an
attribute value is NULL

 IS or IS NOT NULL

Slide 7- 7

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Nested Queries, Tuples,

and Set/Multiset Comparisons

 Nested queries

 Complete select-from-where blocks within WHERE

clause of another query

 Outer query and nested subqueries

 Comparison operator IN

 Compares value v with a set (or multiset) of values

V

 Evaluates to TRUE if v is one of the elements in V

Slide 7- 8

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Nested Queries (cont’d.)

Slide 7- 9

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Nested Queries (cont’d.)

 Use tuples of values in comparisons

 Place them within parentheses

Slide 7- 10

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

 Use other comparison operators to compare a

single value v

 = ANY (or = SOME) operator

 Returns TRUE if the value v is equal to some value in

the set V and is hence equivalent to IN

 Other operators that can be combined with ANY (or

SOME): >, >=, <, <=, and <>

 ALL: value must exceed all values from nested

query

Nested Queries (cont’d.)

Slide 7- 11

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Nested Queries (cont’d.)

 Avoid potential errors and ambiguities

 Create tuple variables (aliases) for all tables

referenced in SQL query

Slide 7- 12

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Correlated Nested Queries

 Queries that are nested using the = or IN

comparison operator can be collapsed into one

single block: E.g., Q16 can be written as:

 Q16A: SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E, DEPENDENT AS D

WHERE E.Ssn=D.Essn AND E.Sex=D.Sex

AND

E.Fname=D.Dependent_name;

 Correlated nested query

 Evaluated once for each tuple in the outer query

Slide 7- 13

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The EXISTS and UNIQUE Functions

in SQL for correlating queries

 EXISTS function

 Check whether the result of a correlated nested

query is empty or not. They are Boolean functions

that return a TRUE or FALSE result.

 EXISTS and NOT EXISTS

 Typically used in conjunction with a correlated

nested query

 SQL function UNIQUE(Q)

 Returns TRUE if there are no duplicate tuples in

the result of query Q

Slide 7- 14

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

USE of EXISTS

Q7:

SELECT Fname, Lname

FROM Employee

WHERE EXISTS (SELECT *

FROM DEPENDENT

WHERE Ssn= Essn)

AND EXISTS (SELECT *

FROM Department

WHERE Ssn= Mgr_Ssn)

Slide 7- 15

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

USE OF NOT EXISTS

To achieve the “for all” (universal quantifier- see Ch.8) effect,

we use double negation this way in SQL:

Query: List first and last name of employees who work on

ALL projects controlled by Dno=5.

SELECT Fname, Lname

FROM Employee

WHERE NOT EXISTS ((SELECT Pnumber

FROM PROJECT

WHERE Dno=5)

EXCEPT (SELECT Pno

FROM WORKS_ON

WHERE Ssn= ESsn)

The above is equivalent to double negation: List names of those

employees for whom there does NOT exist a project managed by

department no. 5 that they do NOT work on.
Slide 7- 16

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Double Negation to accomplish “for

all” in SQL

 Q3B: SELECT Lname, Fname

FROM EMPLOYEE

WHERE NOT EXISTS (SELECT *

FROM WORKS_ON B

WHERE (B.Pno IN (SELECT Pnumber

FROM PROJECT

WHERE Dnum=5

AND

NOT EXISTS (SELECT *

FROM WORKS_ON C

WHERE C.Essn=Ssn

AND C.Pno=B.Pno)));

The above is a direct rendering of: List names of those employees for whom

there does NOT exist a project managed by department no. 5 that they

do NOT work on.

Slide 7- 17

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Explicit Sets and Renaming of

Attributes in SQL

 Can use explicit set of values in WHERE clause
Q17: SELECT DISTINCT Essn

FROM WORKS_ON

WHERE Pno IN (1, 2, 3);

 Use qualifier AS followed by desired new name

 Rename any attribute that appears in the result of

a query

Slide 7- 18

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying Joined Tables in the

FROM Clause of SQL

 Joined table

 Permits users to specify a table resulting from a

join operation in the FROM clause of a query

 The FROM clause in Q1A

 Contains a single joined table. JOIN may also be

called INNER JOIN

Slide 7- 19

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Different Types of JOINed Tables in

SQL

 Specify different types of join

 NATURAL JOIN

 Various types of OUTER JOIN (LEFT, RIGHT,

FULL)

 NATURAL JOIN on two relations R and S

 No join condition specified

 Is equivalent to an implicit EQUIJOIN condition for

each pair of attributes with same name from R and

S

Slide 7- 20

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

NATURAL JOIN

 Rename attributes of one relation so it can be joined with

another using NATURAL JOIN:

Q1B: SELECT Fname, Lname, Address

FROM (EMPLOYEE NATURAL JOIN

(DEPARTMENT AS DEPT (Dname, Dno, Mssn,

Msdate)))

WHERE Dname=‘Research’;

The above works with EMPLOYEE.Dno = DEPT.Dno as an

implicit join condition

Slide 7- 21

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

INNER and OUTER Joins

 INNER JOIN (versus OUTER JOIN)

 Default type of join in a joined table

 Tuple is included in the result only if a matching tuple exists

in the other relation

 LEFT OUTER JOIN

 Every tuple in left table must appear in result

 If no matching tuple

 Padded with NULL values for attributes of right table

 RIGHT OUTER JOIN

 Every tuple in right table must appear in result

 If no matching tuple

 Padded with NULL values for attributes of left table

Slide 7- 22

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Example: LEFT OUTER JOIN

SELECT E.Lname AS Employee_Name

S.Lname AS Supervisor_Name

FROM Employee AS E LEFT OUTER JOIN EMPLOYEE AS S

ON E.Super_ssn = S.Ssn)

ALTERNATE SYNTAX:

SELECT E.Lname , S.Lname

FROM EMPLOYEE E, EMPLOYEE S

WHERE E.Super_ssn + = S.Ssn

Slide 7- 23

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiway JOIN in the FROM clause

 FULL OUTER JOIN – combines result if LEFT

and RIGHT OUTER JOIN

 Can nest JOIN specifications for a multiway join:

Q2A: SELECT Pnumber, Dnum, Lname, Address, Bdate

FROM ((PROJECT JOIN DEPARTMENT ON

Dnum=Dnumber) JOIN EMPLOYEE ON

Mgr_ssn=Ssn)

WHERE Plocation=‘Stafford’;

Slide 7- 24

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Aggregate Functions in SQL

 Used to summarize information from multiple

tuples into a single-tuple summary

 Built-in aggregate functions

 COUNT, SUM, MAX, MIN, and AVG

 Grouping

 Create subgroups of tuples before summarizing

 To select entire groups, HAVING clause is used

 Aggregate functions can be used in the SELECT

clause or in a HAVING clause

Slide 7- 25

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Renaming Results of Aggregation

 Following query returns a single row of computed values

from EMPLOYEE table:

Q19: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG

(Salary)

FROM EMPLOYEE;

 The result can be presented with new names:

Q19A: SELECT SUM (Salary) AS Total_Sal, MAX (Salary) AS

Highest_Sal, MIN (Salary) AS Lowest_Sal, AVG

(Salary) AS Average_Sal

FROM EMPLOYEE;

Slide 7- 26

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Aggregate Functions in SQL (cont’d.)

 NULL values are discarded when aggregate

functions are applied to a particular column

Slide 7- 27

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Aggregate Functions on Booleans

 SOME and ALL may be applied as functions on

Boolean Values.

 SOME returns true if at least one element in the

collection is TRUE (similar to OR)

 ALL returns true if all of the elements in the

collection are TRUE (similar to AND)

Slide 7- 28

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Grouping: The GROUP BY Clause

 Partition relation into subsets of tuples

 Based on grouping attribute(s)

 Apply function to each such group independently

 GROUP BY clause

 Specifies grouping attributes

 COUNT (*) counts the number of rows in the

group

Slide 7- 29

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Examples of GROUP BY

 The grouping attribute must appear in the SELECT

clause:

Q24: SELECT Dno, COUNT (*), AVG (Salary)

FROM EMPLOYEE

GROUP BY Dno;

 If the grouping attribute has NULL as a possible value,

then a separate group is created for the null value (e.g.,

null Dno in the above query)

 GROUP BY may be applied to the result of a JOIN:
Q25: SELECT Pnumber, Pname, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE Pnumber=Pno

GROUP BY Pnumber, Pname;

Slide 7- 30

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Grouping: The GROUP BY and

HAVING Clauses (cont’d.)

 HAVING clause

 Provides a condition to select or reject an entire

group:
 Query 26. For each project on which more than two employees work,

retrieve the project number, the project name, and the number of

employees who work on the project.

Q26: SELECT Pnumber, Pname, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE Pnumber=Pno

GROUP BY Pnumber, Pname

HAVING COUNT (*) > 2;

Slide 7- 31

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Combining the WHERE and the

HAVING Clause

 Consider the query: we want to count the total number of

employees whose salaries exceed $40,000 in each

department, but only for departments where more than

five employees work.

 INCORRECT QUERY:

SELECT Dno, COUNT (*)

FROM EMPLOYEE

WHERE Salary>40000

GROUP BY Dno

HAVING COUNT (*) > 5;

Slide 7- 32

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Combining the WHERE and the

HAVING Clause (continued)

Correct Specification of the Query:

 Note: the WHERE clause applies tuple by tuple

whereas HAVING applies to entire group of

tuples

Slide 7- 33

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Use of WITH

 The WITH clause allows a user to define a table

that will only be used in a particular query (not

available in all SQL implementations)

 Used for convenience to create a temporary

“View” and use that immediately in a query

 Allows a more straightforward way of looking a

step-by-step query

Slide 7- 34

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Example of WITH

 See an alternate approach to doing Q28:

 Q28’: WITH BIGDEPTS (Dno) AS

(SELECT Dno

FROM EMPLOYEE

GROUP BY Dno

HAVING COUNT (*) > 5)

SELECT Dno, COUNT (*)

FROM EMPLOYEE

WHERE Salary>40000 AND Dno IN BIGDEPTS

GROUP BY Dno;

Slide 7- 35

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Use of CASE

 SQL also has a CASE construct

 Used when a value can be different based on

certain conditions.

 Can be used in any part of an SQL query where a

value is expected

 Applicable when querying, inserting or updating

tuples

Slide 7- 36

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

EXAMPLE of use of CASE

 The following example shows that employees are

receiving different raises in different departments

(A variation of the update U6)

 U6’: UPDATE EMPLOYEE

SET Salary =

CASE WHEN Dno = 5THEN Salary + 2000

WHEN Dno = 4THEN Salary + 1500

WHEN Dno = 1THEN Salary + 3000

Slide 7- 37

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Recursive Queries in SQL

 An example of a recursive relationship between

tuples of the same type is the relationship

between an employee and a supervisor.

 This relationship is described by the foreign key

Super_ssn of the EMPLOYEE relation
 An example of a recursive operation is to retrieve all supervisees of

a supervisory employee e at all levels—that is, all employees e

directly supervised by e, all employees e’ directly supervised by each

employee e, all employees e directly supervised by each employee

e, and so on. Thus the CEO would have each employee in the

company as a supervisee in the resulting table. Example shows such

table SUP_EMP with 2 columns (Supervisor,Supervisee(any level)):

Slide 7- 38

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

An EXAMPLE of RECURSIVE Query

 Q29: WITH RECURSIVE SUP_EMP (SupSsn, EmpSsn) AS

SELECT SupervisorSsn, Ssn

FROM EMPLOYEE

UNION

SELECT E.Ssn, S.SupSsn

FROM EMPLOYEE AS E, SUP_EMP AS S

WHERE E.SupervisorSsn = S.EmpSsn)

SELECT *

FROM SUP_EMP;

 The above query starts with an empty SUP_EMP and

successively builds SUP_EMP table by computing

immediate supervisees first, then second level

supervisees, etc. until a fixed point is reached and no

more supervisees can be added

Slide 7- 39

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

EXPANDED Block Structure of SQL

Queries

Slide 7- 40

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying Constraints as Assertions

and Actions as Triggers

 Semantic Constraints: The following are beyond

the scope of the EER and relational model

 CREATE ASSERTION

 Specify additional types of constraints outside

scope of built-in relational model constraints

 CREATE TRIGGER

 Specify automatic actions that database system

will perform when certain events and conditions

occur

Slide 7- 41

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying General Constraints as

Assertions in SQL

 CREATE ASSERTION

 Specify a query that selects any tuples that violate

the desired condition

 Use only in cases where it goes beyond a simple
CHECK which applies to individual attributes and

domains

Slide 7- 42

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction to Triggers in SQL

 CREATE TRIGGER statement

 Used to monitor the database

 Typical trigger has three components which make

it a rule for an “active database “ (more on active

databases in section 26.1) :

 Event(s)

 Condition

 Action

Slide 7- 43

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

USE OF TRIGGERS

 AN EXAMPLE with standard Syntax.(Note : other

SQL implementations like PostgreSQL use a

different syntax.)

R5:

CREATE TRIGGER SALARY_VIOLATION

BEFORE INSERT OR UPDATE OF Salary, Supervisor_ssn ON

EMPLOYEE

FOR EACH ROW

WHEN (NEW.SALARY > (SELECT Salary FROM EMPLOYEE

WHERE Ssn = NEW. Supervisor_Ssn))

INFORM_SUPERVISOR (NEW.Supervisor.Ssn, New.Ssn)

Slide 7- 44

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Views (Virtual Tables) in SQL

 Concept of a view in SQL

 Single table derived from other tables called the

defining tables

 Considered to be a virtual table that is not

necessarily populated

Slide 7- 45

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specification of Views in SQL

 CREATE VIEW command

 Give table name, list of attribute names, and a query to

specify the contents of the view

 In V1, attributes retain the names from base tables. In

V2, attributes are assigned names

Slide 7- 46

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specification of Views in SQL

(cont’d.)

 Once a View is defined, SQL queries can use the

View relation in the FROM clause

 View is always up-to-date

 Responsibility of the DBMS and not the user

 DROP VIEW command

 Dispose of a view

Slide 7- 47

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

View Implementation, View Update,

and Inline Views

 Complex problem of efficiently implementing a

view for querying

 Strategy1: Query modification approach

 Compute the view as and when needed. Do not

store permanently

 Modify view query into a query on underlying base

tables

 Disadvantage: inefficient for views defined via

complex queries that are time-consuming to

execute

Slide 7- 48

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

View Materialization

 Strategy 2: View materialization

 Physically create a temporary view table when the

view is first queried

 Keep that table on the assumption that other

queries on the view will follow

 Requires efficient strategy for automatically updating

the view table when the base tables are updated

 Incremental update strategy for materialized

views

 DBMS determines what new tuples must be inserted,

deleted, or modified in a materialized view table

Slide 7- 49

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

View Materialization (contd.)

 Multiple ways to handle materialization:

 immediate update strategy updates a view as

soon as the base tables are changed

 lazy update strategy updates the view when

needed by a view query

 periodic update strategy updates the view

periodically (in the latter strategy, a view query

may get a result that is not up-to-date). This is

commonly used in Banks, Retail store operations,

etc.

Slide 7- 50

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

View Update

 Update on a view defined on a single table without any

aggregate functions

 Can be mapped to an update on underlying base

table- possible if the primary key is preserved in the

view

 Update not permitted on aggregate views. E.g.,

UV2: UPDATE DEPT_INFO

SET Total_sal=100000

WHERE Dname=‘Research’;

cannot be processed because Total_sal is a computed value

in the view definition

Slide 7- 51

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

 View involving joins

 Often not possible for DBMS to determine which

of the updates is intended

 Clause WITH CHECK OPTION

 Must be added at the end of the view definition if a

view is to be updated to make sure that tuples

being updated stay in the view

 In-line view

 Defined in the FROM clause of an SQL query (e.g.,

we saw its used in the WITH example)

View Update and Inline Views

Slide 7- 52

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Views as authorization mechanism

 SQL query authorization statements (GRANT and

REVOKE) are described in detail in Chapter 30

 Views can be used to hide certain attributes or

tuples from unauthorized users

 E.g., For a user who is only allowed to see

employee information for those who work for

department 5, he may only access the view
DEPT5EMP:
CREATE VIEW DEPT5EMP AS

SELECT *

FROM EMPLOYEE

WHERE Dno = 5;

Slide 7- 53

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Schema Change Statements in SQL

 Schema evolution commands

 DBA may want to change the schema while the

database is operational

 Does not require recompilation of the database

schema

Slide 7- 54

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The DROP Command

 DROP command

 Used to drop named schema elements, such as

tables, domains, or constraint

 Drop behavior options:

 CASCADE and RESTRICT

 Example:

 DROP SCHEMA COMPANY CASCADE;

 This removes the schema and all its elements

including tables,views, constraints, etc.

Slide 7- 55

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The ALTER table command

 Alter table actions include:

 Adding or dropping a column (attribute)

 Changing a column definition

 Adding or dropping table constraints

 Example:

 ALTER TABLE COMPANY.EMPLOYEE ADD

COLUMN Job VARCHAR(12);

Slide 7- 56

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Adding and Dropping Constraints

 Change constraints specified on a table

 Add or drop a named constraint

Slide 7- 57

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Dropping Columns, Default Values

 To drop a column

 Choose either CASCADE or RESTRICT

 CASCADE would drop the column from views etc.

RESTRICT is possible if no views refer to it.

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN

Address CASCADE;

 Default values can be dropped and altered :
ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn

DROP DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn SET

DEFAULT ‘333445555’;

Slide 7- 58

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Table 7.2 Summary of SQL
Syntax

continued on next slide

Slide 7- 59

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Table 7.2 (continued)
Summary of SQL Syntax

Slide 7- 60

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Summary

 Complex SQL:

 Nested queries, joined tables (in the FROM

clause), outer joins, aggregate functions, grouping

 Handling semantic constraints with CREATE

ASSERTION and CREATE TRIGGER

 CREATE VIEW statement and materialization

strategies

 Schema Modification for the DBAs using ALTER

TABLE , ADD and DROP COLUMN, ALTER

CONSTRAINT etc.

Slide 7- 61

