
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 7

More SQL: Complex Queries,

Triggers, Views, and Schema

Modification

Slide 7- 2

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Chapter 7 Outline

 More Complex SQL Retrieval Queries

 Specifying Semantic Constraints as Assertions

and Actions as Triggers

 Views (Virtual Tables) in SQL

 Schema Modification in SQL

Slide 7- 3

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

More Complex SQL Retrieval

Queries

 Additional features allow users to specify more

complex retrievals from database:

 Nested queries, joined tables, and outer joins (in

the FROM clause), aggregate functions, and

grouping

Slide 7- 4

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Comparisons Involving NULL

and Three-Valued Logic

 Meanings of NULL

 Unknown value

 Unavailable or withheld value

 Not applicable attribute

 Each individual NULL value considered to be

different from every other NULL value

 SQL uses a three-valued logic:

 TRUE, FALSE, and UNKNOWN (like Maybe)

 NULL = NULL comparison is avoided

Slide 7- 5

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Comparisons Involving NULL

and Three-Valued Logic (cont’d.)

Slide 7- 6

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Comparisons Involving NULL

and Three-Valued Logic (cont’d.)

 SQL allows queries that check whether an
attribute value is NULL

 IS or IS NOT NULL

Slide 7- 7

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Nested Queries, Tuples,

and Set/Multiset Comparisons

 Nested queries

 Complete select-from-where blocks within WHERE

clause of another query

 Outer query and nested subqueries

 Comparison operator IN

 Compares value v with a set (or multiset) of values

V

 Evaluates to TRUE if v is one of the elements in V

Slide 7- 8

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Nested Queries (cont’d.)

Slide 7- 9

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Nested Queries (cont’d.)

 Use tuples of values in comparisons

 Place them within parentheses

Slide 7- 10

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

 Use other comparison operators to compare a

single value v

 = ANY (or = SOME) operator

 Returns TRUE if the value v is equal to some value in

the set V and is hence equivalent to IN

 Other operators that can be combined with ANY (or

SOME): >, >=, <, <=, and <>

 ALL: value must exceed all values from nested

query

Nested Queries (cont’d.)

Slide 7- 11

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Nested Queries (cont’d.)

 Avoid potential errors and ambiguities

 Create tuple variables (aliases) for all tables

referenced in SQL query

Slide 7- 12

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Correlated Nested Queries

 Queries that are nested using the = or IN

comparison operator can be collapsed into one

single block: E.g., Q16 can be written as:

 Q16A: SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E, DEPENDENT AS D

WHERE E.Ssn=D.Essn AND E.Sex=D.Sex

AND

E.Fname=D.Dependent_name;

 Correlated nested query

 Evaluated once for each tuple in the outer query

Slide 7- 13

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The EXISTS and UNIQUE Functions

in SQL for correlating queries

 EXISTS function

 Check whether the result of a correlated nested

query is empty or not. They are Boolean functions

that return a TRUE or FALSE result.

 EXISTS and NOT EXISTS

 Typically used in conjunction with a correlated

nested query

 SQL function UNIQUE(Q)

 Returns TRUE if there are no duplicate tuples in

the result of query Q

Slide 7- 14

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

USE of EXISTS

Q7:

SELECT Fname, Lname

FROM Employee

WHERE EXISTS (SELECT *

FROM DEPENDENT

WHERE Ssn= Essn)

AND EXISTS (SELECT *

FROM Department

WHERE Ssn= Mgr_Ssn)

Slide 7- 15

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

USE OF NOT EXISTS

To achieve the “for all” (universal quantifier- see Ch.8) effect,

we use double negation this way in SQL:

Query: List first and last name of employees who work on

ALL projects controlled by Dno=5.

SELECT Fname, Lname

FROM Employee

WHERE NOT EXISTS ((SELECT Pnumber

FROM PROJECT

WHERE Dno=5)

EXCEPT (SELECT Pno

FROM WORKS_ON

WHERE Ssn= ESsn)

The above is equivalent to double negation: List names of those

employees for whom there does NOT exist a project managed by

department no. 5 that they do NOT work on.
Slide 7- 16

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Double Negation to accomplish “for

all” in SQL

 Q3B: SELECT Lname, Fname

FROM EMPLOYEE

WHERE NOT EXISTS (SELECT *

FROM WORKS_ON B

WHERE (B.Pno IN (SELECT Pnumber

FROM PROJECT

WHERE Dnum=5

AND

NOT EXISTS (SELECT *

FROM WORKS_ON C

WHERE C.Essn=Ssn

AND C.Pno=B.Pno)));

The above is a direct rendering of: List names of those employees for whom

there does NOT exist a project managed by department no. 5 that they

do NOT work on.

Slide 7- 17

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Explicit Sets and Renaming of

Attributes in SQL

 Can use explicit set of values in WHERE clause
Q17: SELECT DISTINCT Essn

FROM WORKS_ON

WHERE Pno IN (1, 2, 3);

 Use qualifier AS followed by desired new name

 Rename any attribute that appears in the result of

a query

Slide 7- 18

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying Joined Tables in the

FROM Clause of SQL

 Joined table

 Permits users to specify a table resulting from a

join operation in the FROM clause of a query

 The FROM clause in Q1A

 Contains a single joined table. JOIN may also be

called INNER JOIN

Slide 7- 19

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Different Types of JOINed Tables in

SQL

 Specify different types of join

 NATURAL JOIN

 Various types of OUTER JOIN (LEFT, RIGHT,

FULL)

 NATURAL JOIN on two relations R and S

 No join condition specified

 Is equivalent to an implicit EQUIJOIN condition for

each pair of attributes with same name from R and

S

Slide 7- 20

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

NATURAL JOIN

 Rename attributes of one relation so it can be joined with

another using NATURAL JOIN:

Q1B: SELECT Fname, Lname, Address

FROM (EMPLOYEE NATURAL JOIN

(DEPARTMENT AS DEPT (Dname, Dno, Mssn,

Msdate)))

WHERE Dname=‘Research’;

The above works with EMPLOYEE.Dno = DEPT.Dno as an

implicit join condition

Slide 7- 21

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

INNER and OUTER Joins

 INNER JOIN (versus OUTER JOIN)

 Default type of join in a joined table

 Tuple is included in the result only if a matching tuple exists

in the other relation

 LEFT OUTER JOIN

 Every tuple in left table must appear in result

 If no matching tuple

 Padded with NULL values for attributes of right table

 RIGHT OUTER JOIN

 Every tuple in right table must appear in result

 If no matching tuple

 Padded with NULL values for attributes of left table

Slide 7- 22

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Example: LEFT OUTER JOIN

SELECT E.Lname AS Employee_Name

S.Lname AS Supervisor_Name

FROM Employee AS E LEFT OUTER JOIN EMPLOYEE AS S

ON E.Super_ssn = S.Ssn)

ALTERNATE SYNTAX:

SELECT E.Lname , S.Lname

FROM EMPLOYEE E, EMPLOYEE S

WHERE E.Super_ssn + = S.Ssn

Slide 7- 23

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiway JOIN in the FROM clause

 FULL OUTER JOIN – combines result if LEFT

and RIGHT OUTER JOIN

 Can nest JOIN specifications for a multiway join:

Q2A: SELECT Pnumber, Dnum, Lname, Address, Bdate

FROM ((PROJECT JOIN DEPARTMENT ON

Dnum=Dnumber) JOIN EMPLOYEE ON

Mgr_ssn=Ssn)

WHERE Plocation=‘Stafford’;

Slide 7- 24

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Aggregate Functions in SQL

 Used to summarize information from multiple

tuples into a single-tuple summary

 Built-in aggregate functions

 COUNT, SUM, MAX, MIN, and AVG

 Grouping

 Create subgroups of tuples before summarizing

 To select entire groups, HAVING clause is used

 Aggregate functions can be used in the SELECT

clause or in a HAVING clause

Slide 7- 25

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Renaming Results of Aggregation

 Following query returns a single row of computed values

from EMPLOYEE table:

Q19: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG

(Salary)

FROM EMPLOYEE;

 The result can be presented with new names:

Q19A: SELECT SUM (Salary) AS Total_Sal, MAX (Salary) AS

Highest_Sal, MIN (Salary) AS Lowest_Sal, AVG

(Salary) AS Average_Sal

FROM EMPLOYEE;

Slide 7- 26

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Aggregate Functions in SQL (cont’d.)

 NULL values are discarded when aggregate

functions are applied to a particular column

Slide 7- 27

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Aggregate Functions on Booleans

 SOME and ALL may be applied as functions on

Boolean Values.

 SOME returns true if at least one element in the

collection is TRUE (similar to OR)

 ALL returns true if all of the elements in the

collection are TRUE (similar to AND)

Slide 7- 28

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Grouping: The GROUP BY Clause

 Partition relation into subsets of tuples

 Based on grouping attribute(s)

 Apply function to each such group independently

 GROUP BY clause

 Specifies grouping attributes

 COUNT (*) counts the number of rows in the

group

Slide 7- 29

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Examples of GROUP BY

 The grouping attribute must appear in the SELECT

clause:

Q24: SELECT Dno, COUNT (*), AVG (Salary)

FROM EMPLOYEE

GROUP BY Dno;

 If the grouping attribute has NULL as a possible value,

then a separate group is created for the null value (e.g.,

null Dno in the above query)

 GROUP BY may be applied to the result of a JOIN:
Q25: SELECT Pnumber, Pname, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE Pnumber=Pno

GROUP BY Pnumber, Pname;

Slide 7- 30

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Grouping: The GROUP BY and

HAVING Clauses (cont’d.)

 HAVING clause

 Provides a condition to select or reject an entire

group:
 Query 26. For each project on which more than two employees work,

retrieve the project number, the project name, and the number of

employees who work on the project.

Q26: SELECT Pnumber, Pname, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE Pnumber=Pno

GROUP BY Pnumber, Pname

HAVING COUNT (*) > 2;

Slide 7- 31

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Combining the WHERE and the

HAVING Clause

 Consider the query: we want to count the total number of

employees whose salaries exceed $40,000 in each

department, but only for departments where more than

five employees work.

 INCORRECT QUERY:

SELECT Dno, COUNT (*)

FROM EMPLOYEE

WHERE Salary>40000

GROUP BY Dno

HAVING COUNT (*) > 5;

Slide 7- 32

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Combining the WHERE and the

HAVING Clause (continued)

Correct Specification of the Query:

 Note: the WHERE clause applies tuple by tuple

whereas HAVING applies to entire group of

tuples

Slide 7- 33

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Use of WITH

 The WITH clause allows a user to define a table

that will only be used in a particular query (not

available in all SQL implementations)

 Used for convenience to create a temporary

“View” and use that immediately in a query

 Allows a more straightforward way of looking a

step-by-step query

Slide 7- 34

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Example of WITH

 See an alternate approach to doing Q28:

 Q28’: WITH BIGDEPTS (Dno) AS

(SELECT Dno

FROM EMPLOYEE

GROUP BY Dno

HAVING COUNT (*) > 5)

SELECT Dno, COUNT (*)

FROM EMPLOYEE

WHERE Salary>40000 AND Dno IN BIGDEPTS

GROUP BY Dno;

Slide 7- 35

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Use of CASE

 SQL also has a CASE construct

 Used when a value can be different based on

certain conditions.

 Can be used in any part of an SQL query where a

value is expected

 Applicable when querying, inserting or updating

tuples

Slide 7- 36

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

EXAMPLE of use of CASE

 The following example shows that employees are

receiving different raises in different departments

(A variation of the update U6)

 U6’: UPDATE EMPLOYEE

SET Salary =

CASE WHEN Dno = 5THEN Salary + 2000

WHEN Dno = 4THEN Salary + 1500

WHEN Dno = 1THEN Salary + 3000

Slide 7- 37

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Recursive Queries in SQL

 An example of a recursive relationship between

tuples of the same type is the relationship

between an employee and a supervisor.

 This relationship is described by the foreign key

Super_ssn of the EMPLOYEE relation
 An example of a recursive operation is to retrieve all supervisees of

a supervisory employee e at all levels—that is, all employees e

directly supervised by e, all employees e’ directly supervised by each

employee e, all employees e directly supervised by each employee

e, and so on. Thus the CEO would have each employee in the

company as a supervisee in the resulting table. Example shows such

table SUP_EMP with 2 columns (Supervisor,Supervisee(any level)):

Slide 7- 38

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

An EXAMPLE of RECURSIVE Query

 Q29: WITH RECURSIVE SUP_EMP (SupSsn, EmpSsn) AS

SELECT SupervisorSsn, Ssn

FROM EMPLOYEE

UNION

SELECT E.Ssn, S.SupSsn

FROM EMPLOYEE AS E, SUP_EMP AS S

WHERE E.SupervisorSsn = S.EmpSsn)

SELECT *

FROM SUP_EMP;

 The above query starts with an empty SUP_EMP and

successively builds SUP_EMP table by computing

immediate supervisees first, then second level

supervisees, etc. until a fixed point is reached and no

more supervisees can be added

Slide 7- 39

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

EXPANDED Block Structure of SQL

Queries

Slide 7- 40

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying Constraints as Assertions

and Actions as Triggers

 Semantic Constraints: The following are beyond

the scope of the EER and relational model

 CREATE ASSERTION

 Specify additional types of constraints outside

scope of built-in relational model constraints

 CREATE TRIGGER

 Specify automatic actions that database system

will perform when certain events and conditions

occur

Slide 7- 41

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying General Constraints as

Assertions in SQL

 CREATE ASSERTION

 Specify a query that selects any tuples that violate

the desired condition

 Use only in cases where it goes beyond a simple
CHECK which applies to individual attributes and

domains

Slide 7- 42

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction to Triggers in SQL

 CREATE TRIGGER statement

 Used to monitor the database

 Typical trigger has three components which make

it a rule for an “active database “ (more on active

databases in section 26.1) :

 Event(s)

 Condition

 Action

Slide 7- 43

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

USE OF TRIGGERS

 AN EXAMPLE with standard Syntax.(Note : other

SQL implementations like PostgreSQL use a

different syntax.)

R5:

CREATE TRIGGER SALARY_VIOLATION

BEFORE INSERT OR UPDATE OF Salary, Supervisor_ssn ON

EMPLOYEE

FOR EACH ROW

WHEN (NEW.SALARY > (SELECT Salary FROM EMPLOYEE

WHERE Ssn = NEW. Supervisor_Ssn))

INFORM_SUPERVISOR (NEW.Supervisor.Ssn, New.Ssn)

Slide 7- 44

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Views (Virtual Tables) in SQL

 Concept of a view in SQL

 Single table derived from other tables called the

defining tables

 Considered to be a virtual table that is not

necessarily populated

Slide 7- 45

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specification of Views in SQL

 CREATE VIEW command

 Give table name, list of attribute names, and a query to

specify the contents of the view

 In V1, attributes retain the names from base tables. In

V2, attributes are assigned names

Slide 7- 46

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specification of Views in SQL

(cont’d.)

 Once a View is defined, SQL queries can use the

View relation in the FROM clause

 View is always up-to-date

 Responsibility of the DBMS and not the user

 DROP VIEW command

 Dispose of a view

Slide 7- 47

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

View Implementation, View Update,

and Inline Views

 Complex problem of efficiently implementing a

view for querying

 Strategy1: Query modification approach

 Compute the view as and when needed. Do not

store permanently

 Modify view query into a query on underlying base

tables

 Disadvantage: inefficient for views defined via

complex queries that are time-consuming to

execute

Slide 7- 48

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

View Materialization

 Strategy 2: View materialization

 Physically create a temporary view table when the

view is first queried

 Keep that table on the assumption that other

queries on the view will follow

 Requires efficient strategy for automatically updating

the view table when the base tables are updated

 Incremental update strategy for materialized

views

 DBMS determines what new tuples must be inserted,

deleted, or modified in a materialized view table

Slide 7- 49

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

View Materialization (contd.)

 Multiple ways to handle materialization:

 immediate update strategy updates a view as

soon as the base tables are changed

 lazy update strategy updates the view when

needed by a view query

 periodic update strategy updates the view

periodically (in the latter strategy, a view query

may get a result that is not up-to-date). This is

commonly used in Banks, Retail store operations,

etc.

Slide 7- 50

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

View Update

 Update on a view defined on a single table without any

aggregate functions

 Can be mapped to an update on underlying base

table- possible if the primary key is preserved in the

view

 Update not permitted on aggregate views. E.g.,

UV2: UPDATE DEPT_INFO

SET Total_sal=100000

WHERE Dname=‘Research’;

cannot be processed because Total_sal is a computed value

in the view definition

Slide 7- 51

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

 View involving joins

 Often not possible for DBMS to determine which

of the updates is intended

 Clause WITH CHECK OPTION

 Must be added at the end of the view definition if a

view is to be updated to make sure that tuples

being updated stay in the view

 In-line view

 Defined in the FROM clause of an SQL query (e.g.,

we saw its used in the WITH example)

View Update and Inline Views

Slide 7- 52

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Views as authorization mechanism

 SQL query authorization statements (GRANT and

REVOKE) are described in detail in Chapter 30

 Views can be used to hide certain attributes or

tuples from unauthorized users

 E.g., For a user who is only allowed to see

employee information for those who work for

department 5, he may only access the view
DEPT5EMP:
CREATE VIEW DEPT5EMP AS

SELECT *

FROM EMPLOYEE

WHERE Dno = 5;

Slide 7- 53

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Schema Change Statements in SQL

 Schema evolution commands

 DBA may want to change the schema while the

database is operational

 Does not require recompilation of the database

schema

Slide 7- 54

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The DROP Command

 DROP command

 Used to drop named schema elements, such as

tables, domains, or constraint

 Drop behavior options:

 CASCADE and RESTRICT

 Example:

 DROP SCHEMA COMPANY CASCADE;

 This removes the schema and all its elements

including tables,views, constraints, etc.

Slide 7- 55

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The ALTER table command

 Alter table actions include:

 Adding or dropping a column (attribute)

 Changing a column definition

 Adding or dropping table constraints

 Example:

 ALTER TABLE COMPANY.EMPLOYEE ADD

COLUMN Job VARCHAR(12);

Slide 7- 56

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Adding and Dropping Constraints

 Change constraints specified on a table

 Add or drop a named constraint

Slide 7- 57

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Dropping Columns, Default Values

 To drop a column

 Choose either CASCADE or RESTRICT

 CASCADE would drop the column from views etc.

RESTRICT is possible if no views refer to it.

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN

Address CASCADE;

 Default values can be dropped and altered :
ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn

DROP DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn SET

DEFAULT ‘333445555’;

Slide 7- 58

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Table 7.2 Summary of SQL
Syntax

continued on next slide

Slide 7- 59

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Table 7.2 (continued)
Summary of SQL Syntax

Slide 7- 60

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Summary

 Complex SQL:

 Nested queries, joined tables (in the FROM

clause), outer joins, aggregate functions, grouping

 Handling semantic constraints with CREATE

ASSERTION and CREATE TRIGGER

 CREATE VIEW statement and materialization

strategies

 Schema Modification for the DBAs using ALTER

TABLE , ADD and DROP COLUMN, ALTER

CONSTRAINT etc.

Slide 7- 61

