
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 5

The Relational Data Model and

Relational Database Constraints

Slide 1- 2

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 3

Chapter Outline

 Relational Model Concepts

 Relational Model Constraints and Relational

Database Schemas

 Update Operations and Dealing with Constraint

Violations

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 4

Relational Model Concepts

 The relational Model of Data is based on the concept of a

Relation

 The strength of the relational approach to data management

comes from the formal foundation provided by the theory of

relations

 We review the essentials of the formal relational model in

this chapter

 In practice, there is a standard model based on SQL –

this is described in Chapters 6 and 7 as a language

 Note: There are several important differences between

the formal model and the practical model, as we shall see

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 5

Relational Model Concepts

 A Relation is a mathematical concept based on

the ideas of sets

 The model was first proposed by Dr. E.F. Codd of

IBM Research in 1970 in the following paper:

 "A Relational Model for Large Shared Data

Banks," Communications of the ACM, June 1970

 The above paper caused a major revolution in the

field of database management and earned Dr.

Codd the coveted ACM Turing Award

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 6

Informal Definitions

 Informally, a relation looks like a table of values.

 A relation typically contains a set of rows.

 The data elements in each row represent certain facts
that correspond to a real-world entity or relationship

 In the formal model, rows are called tuples

 Each column has a column header that gives an indication
of the meaning of the data items in that column
 In the formal model, the column header is called an

attribute name (or just attribute)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 7

Example of a Relation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 8

Informal Definitions

 Key of a Relation:

 Each row has a value of a data item (or set of items)

that uniquely identifies that row in the table

 Called the key

 In the STUDENT table, SSN is the key

 Sometimes row-ids or sequential numbers are

assigned as keys to identify the rows in a table

 Called artificial key or surrogate key

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 9

Formal Definitions - Schema

 The Schema (or description) of a Relation:

 Denoted by R(A1, A2,An)

 R is the name of the relation

 The attributes of the relation are A1, A2, ..., An

 Example:

 CUSTOMER (Cust-id, Cust-name, Address, Phone#)

 CUSTOMER is the relation name

 Defined over the four attributes: Cust-id, Cust-name,

Address, Phone#

 Each attribute has a domain or a set of valid values.

 For example, the domain of Cust-id is 6 digit numbers.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 10

Formal Definitions - Tuple

 A tuple is an ordered set of values (enclosed in angled

brackets ‘< … >’)
 Each value is derived from an appropriate domain.

 A row in the CUSTOMER relation is a 4-tuple and would

consist of four values, for example:

 <632895, "John Smith", "101 Main St. Atlanta, GA 30332",

"(404) 894-2000">

 This is called a 4-tuple as it has 4 values

 A tuple (row) in the CUSTOMER relation.

 A relation is a set of such tuples (rows)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 11

Formal Definitions - Domain

 A domain has a logical definition:

 Example: “USA_phone_numbers” are the set of 10 digit phone
numbers valid in the U.S.

 A domain also has a data-type or a format defined for it.

 The USA_phone_numbers may have a format: (ddd)ddd-dddd where
each d is a decimal digit.

 Dates have various formats such as year, month, date formatted
as yyyy-mm-dd, or as dd mm,yyyy etc.

 The attribute name designates the role played by a domain in a
relation:

 Used to interpret the meaning of the data elements corresponding
to that attribute

 Example: The domain Date may be used to define two attributes
named “Invoice-date” and “Payment-date” with different meanings

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 12

Formal Definitions - State

 The relation state is a subset of the Cartesian
product of the domains of its attributes

 each domain contains the set of all possible values
the attribute can take.

 Example: attribute Cust-name is defined over the
domain of character strings of maximum length
25

 dom(Cust-name) is varchar(25)

 The role these strings play in the CUSTOMER
relation is that of the name of a customer.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 13

Formal Definitions - Summary

 Formally,

 Given R(A1, A2,, An)

 r(R) dom (A1) X dom (A2) XX dom(An)

 R(A1, A2, …, An) is the schema of the relation

 R is the name of the relation

 A1, A2, …, An are the attributes of the relation

 r(R): a specific state (or "value" or “population”) of

relation R – this is a set of tuples (rows)

 r(R) = {t1, t2, …, tn} where each ti is an n-tuple

 ti = <v1, v2, …, vn> where each vj element-of dom(Aj)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 14

Formal Definitions - Example

 Let R(A1, A2) be a relation schema:

 Let dom(A1) = {0,1}

 Let dom(A2) = {a,b,c}

 Then: dom(A1) X dom(A2) is all possible combinations:

{<0,a> , <0,b> , <0,c>, <1,a>, <1,b>, <1,c> }

 The relation state r(R) dom(A1) X dom(A2)

 For example: r(R) could be {<0,a> , <0,b> , <1,c> }

 this is one possible state (or “population” or “extension”) r of

the relation R, defined over A1 and A2.

 It has three 2-tuples: <0,a> , <0,b> , <1,c>

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 15

Definition Summary

Informal Terms Formal Terms

Table Relation

Column Header Attribute

All possible Column

Values

Domain

Row Tuple

Table Definition Schema of a Relation

Populated Table State of the Relation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 16

Example – A relation STUDENT

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 17

Characteristics Of Relations

 Ordering of tuples in a relation r(R):

 The tuples are not considered to be ordered, even
though they appear to be in the tabular form.

 Ordering of attributes in a relation schema R (and of
values within each tuple):

 We will consider the attributes in R(A1, A2, ..., An) and
the values in t=<v1, v2, ..., vn> to be ordered .

 (However, a more general alternative definition of relation
does not require this ordering. It includes both the name and
the value for each of the attributes).

 Example: t= { <name, “John” >, <SSN, 123456789> }

 This representation may be called as “self-describing”.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 18

Same state as previous Figure (but

with different order of tuples)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 19

Characteristics Of Relations

 Values in a tuple:

 All values are considered atomic (indivisible).

 Each value in a tuple must be from the domain of

the attribute for that column

 If tuple t = <v1, v2, …, vn> is a tuple (row) in the
relation state r of R(A1, A2, …, An)

 Then each vi must be a value from dom(Ai)

 A special null value is used to represent values

that are unknown or not available or inapplicable in

certain tuples.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 20

Characteristics Of Relations

 Notation:

 We refer to component values of a tuple t by:

 t[Ai] or t.Ai

 This is the value vi of attribute Ai for tuple t

 Similarly, t[Au, Av, ..., Aw] refers to the subtuple of

t containing the values of attributes Au, Av, ..., Aw,

respectively in t

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CONSTRAINTS

Constraints determine which values are permissible and

which are not in the database.

They are of three main types:

1. Inherent or Implicit Constraints: These are based on

the data model itself. (E.g., relational model does not allow a

list as a value for any attribute)

2. Schema-based or Explicit Constraints: They are

expressed in the schema by using the facilities provided by

the model. (E.g., max. cardinality ratio constraint in the ER

model)

3. Application based or semantic constraints: These are

beyond the expressive power of the model and must be

specified and enforced by the application programs.
Slide 5- 21

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 22

Relational Integrity Constraints

 Constraints are conditions that must hold on all valid

relation states.

 There are three main types of (explicit schema-based)

constraints that can be expressed in the relational model:

 Key constraints

 Entity integrity constraints

 Referential integrity constraints

 Another schema-based constraint is the domain

constraint

 Every value in a tuple must be from the domain of its

attribute (or it could be null, if allowed for that attribute)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 23

Key Constraints

 Superkey of R:

 Is a set of attributes SK of R with the following condition:

 No two tuples in any valid relation state r(R) will have the

same value for SK

 That is, for any distinct tuples t1 and t2 in r(R), t1[SK] t2[SK]

 This condition must hold in any valid state r(R)

 Key of R:

 A "minimal" superkey

 That is, a key is a superkey K such that removal of any

attribute from K results in a set of attributes that is not a

superkey (does not possess the superkey uniqueness

property)

 A Key is a Superkey but not vice versa

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 24

Key Constraints (continued)

 Example: Consider the CAR relation schema:

 CAR(State, Reg#, SerialNo, Make, Model, Year)

 CAR has two keys:

 Key1 = {State, Reg#}

 Key2 = {SerialNo}

 Both are also superkeys of CAR

 {SerialNo, Make} is a superkey but not a key.

 In general:

 Any key is a superkey (but not vice versa)

 Any set of attributes that includes a key is a superkey

 A minimal superkey is also a key

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 25

Key Constraints (continued)

 If a relation has several candidate keys, one is chosen
arbitrarily to be the primary key.
 The primary key attributes are underlined.

 Example: Consider the CAR relation schema:
 CAR(State, Reg#, SerialNo, Make, Model, Year)

 We chose SerialNo as the primary key

 The primary key value is used to uniquely identify each
tuple in a relation
 Provides the tuple identity

 Also used to reference the tuple from another tuple
 General rule: Choose as primary key the smallest of the

candidate keys (in terms of size)

 Not always applicable – choice is sometimes subjective

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 26

CAR table with two candidate keys –

LicenseNumber chosen as Primary Key

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 27

Relational Database Schema

 Relational Database Schema:

 A set S of relation schemas that belong to the

same database.

 S is the name of the whole database schema

 S = {R1, R2, ..., Rn} and a set IC of integrity

constraints.

 R1, R2, …, Rn are the names of the individual
relation schemas within the database S

 Following slide shows a COMPANY database

schema with 6 relation schemas

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 28

COMPANY Database Schema

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Relational Database State

 A relational database state DB of S is a set of

relation states DB = {r1, r2, ..., rm} such that each ri is

a state of Ri and such that the ri relation states satisfy

the integrity constraints specified in IC.

 A relational database state is sometimes called a

relational database snapshot or instance.

 We will not use the term instance since it also applies

to single tuples.

 A database state that does not meet the constraints

is an invalid state

Slide 5- 29

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 30

Populated database state

 Each relation will have many tuples in its current relation

state

 The relational database state is a union of all the

individual relation states

 Whenever the database is changed, a new state arises

 Basic operations for changing the database:

 INSERT a new tuple in a relation

 DELETE an existing tuple from a relation

 MODIFY an attribute of an existing tuple

 Next slide (Fig. 5.6) shows an example state for the

COMPANY database schema shown in Fig. 5.5.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 31

Populated database state for COMPANY

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 32

Entity Integrity

 Entity Integrity:

 The primary key attributes PK of each relation schema

R in S cannot have null values in any tuple of r(R).

 This is because primary key values are used to identify the

individual tuples.

 t[PK] null for any tuple t in r(R)

 If PK has several attributes, null is not allowed in any of these

attributes

 Note: Other attributes of R may be constrained to

disallow null values, even though they are not

members of the primary key.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 33

Referential Integrity

 A constraint involving two relations

 The previous constraints involve a single relation.

 Used to specify a relationship among tuples in

two relations:

 The referencing relation and the referenced

relation.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 34

Referential Integrity

 Tuples in the referencing relation R1 have

attributes FK (called foreign key attributes) that

reference the primary key attributes PK of the

referenced relation R2.

 A tuple t1 in R1 is said to reference a tuple t2 in

R2 if t1[FK] = t2[PK].

 A referential integrity constraint can be displayed

in a relational database schema as a directed arc

from R1.FK to R2.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 35

Referential Integrity (or foreign key)

Constraint

 Statement of the constraint

 The value in the foreign key column (or columns)

FK of the the referencing relation R1 can be

either:

 (1) a value of an existing primary key value of a

corresponding primary key PK in the referenced

relation R2, or

 (2) a null.

 In case (2), the FK in R1 should not be a part of

its own primary key.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 36

Displaying a relational database

schema and its constraints

 Each relation schema can be displayed as a row of
attribute names

 The name of the relation is written above the attribute
names

 The primary key attribute (or attributes) will be underlined

 A foreign key (referential integrity) constraints is displayed
as a directed arc (arrow) from the foreign key attributes to
the referenced table

 Can also point the the primary key of the referenced relation
for clarity

 Next slide shows the COMPANY relational schema
diagram with referential integrity constraints

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 37

Referential Integrity Constraints for COMPANY database

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 38

Other Types of Constraints

 Semantic Integrity Constraints:

 based on application semantics and cannot be

expressed by the model per se

 Example: “the max. no. of hours per employee for all

projects he or she works on is 56 hrs per week”
 A constraint specification language may have to be

used to express these

 SQL-99 allows CREATE TRIGGER and CREATE

ASSERTION to express some of these semantic

constraints

 Keys, Permissibility of Null values, Candidate Keys

(Unique in SQL), Foreign Keys, Referential Integrity etc.

are expressed by the CREATE TABLE statement in SQL.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 39

Update Operations on Relations

 INSERT a tuple.

 DELETE a tuple.

 MODIFY a tuple.

 Integrity constraints should not be violated by the

update operations.

 Several update operations may have to be

grouped together.

 Updates may propagate to cause other updates

automatically. This may be necessary to maintain

integrity constraints.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 40

Update Operations on Relations

 In case of integrity violation, several actions can

be taken:

 Cancel the operation that causes the violation

(RESTRICT or REJECT option)

 Perform the operation but inform the user of the

violation

 Trigger additional updates so the violation is

corrected (CASCADE option, SET NULL option)

 Execute a user-specified error-correction routine

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 41

Possible violations for each operation

 INSERT may violate any of the constraints:

 Domain constraint:

 if one of the attribute values provided for the new tuple is not

of the specified attribute domain

 Key constraint:

 if the value of a key attribute in the new tuple already exists in

another tuple in the relation

 Referential integrity:

 if a foreign key value in the new tuple references a primary key

value that does not exist in the referenced relation

 Entity integrity:

 if the primary key value is null in the new tuple

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 42

Possible violations for each operation

 DELETE may violate only referential integrity:

 If the primary key value of the tuple being deleted is

referenced from other tuples in the database

 Can be remedied by several actions: RESTRICT, CASCADE,

SET NULL (see Chapter 6 for more details)

 RESTRICT option: reject the deletion

 CASCADE option: propagate the new primary key value into the

foreign keys of the referencing tuples

 SET NULL option: set the foreign keys of the referencing tuples

to NULL

 One of the above options must be specified during

database design for each foreign key constraint

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 43

Possible violations for each operation

 UPDATE may violate domain constraint and NOT NULL

constraint on an attribute being modified

 Any of the other constraints may also be violated,

depending on the attribute being updated:

 Updating the primary key (PK):

 Similar to a DELETE followed by an INSERT

 Need to specify similar options to DELETE

 Updating a foreign key (FK):

 May violate referential integrity

 Updating an ordinary attribute (neither PK nor FK):

 Can only violate domain constraints

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 44

Summary

 Presented Relational Model Concepts

 Definitions

 Characteristics of relations

 Discussed Relational Model Constraints and Relational

Database Schemas

 Domain constraints

 Key constraints

 Entity integrity

 Referential integrity

 Described the Relational Update Operations and Dealing

with Constraint Violations

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 5- 45

In-Class Exercise

(Taken from Exercise 5.15)

Consider the following relations for a database that keeps track of student

enrollment in courses and the books adopted for each course:

STUDENT(SSN, Name, Major, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(SSN, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_ISBN)

TEXT(Book_ISBN, Book_Title, Publisher, Author)

Draw a relational schema diagram specifying the foreign keys for this

schema.

