
CS448 - Project 1 (7%)

Submission Date: September 9, 2016, 11:59p.m.

Overview:
In this project, you'll create a simple Oracle database1 & perform some common database
operations. The schema of the database is almost the same as that you used in the first
project.

Information about getting your Oracle account and general initial configuration is
available at: http://www.cs.purdue.edu/oracle. The department has already setup Oracle
accounts for you. You can get your password by logging into the CS portal (top right
corner of http://www.cs.purdue.edu) and clicking on “My Accounts”. As soon as you
start working on the project, check that your account exists and you are able to run the
sqlplus command in a terminal (make sure you follow the setup instructions at
http://www.cs.purdue.edu/oracle to get sqlplus to work). Keep in mind you will need to
use “x@csora” as the username when logging into your Oracle account (after entering the
sqlplus command), where “x” is your Purdue username. If you have problems with your
account, please email oracle@cs.purdue.edu or software@cs.purdue.edu as appropriate to
get the problem fixed ASAP. If you would like to work on the project remotely, you can
ssh to any of the lab machines (the lab machines are named sslabnn.cs.purdue.edu, e.g.
sslab11.cs.purdue.edu).

Step 1: Create the tables
The schema for the database is as follows:
1. STUDENT(*snum: integer, sname: string, deptid: integer, slevel: string, age: integer)
2. CLASS(*cname: string, meets_at: date, room: string, fid: integer)
3. ENROLLED(*snum:integer, *cname: string)
4. FACULTY(*fid: integer, fname: string, deptid: integer)
5. DEPARTMENT (*deptid: integer, dname: string, location:string)

The fields marked with '*' are primary key.

The meaning of these relations is straightforward:

STUDENT contains one record per student identified by snum;
CLASS contains one record per class uniquely defined by its name; the fid field of the
class gives the instructor of the class;
ENROLLED contains a record for each student enrolled in each course;
FACULTY contains one record per faculty member uniquely identified by the fid;
DEPARTMENT contains one record per department identified by deptid.

Create all the key and referential integrity constraints necessary to model the
application. Make sure that your field & table names correspond to those listed above.
For this project, we’re not asking you to create domain constraints or indices on any of
the tables (although you will not lose any points for creating them).

Your task:
Create a file called tables.sql, which contains five create ... statements corresponding to
the tables listed above.
If you’re in the directory containing tables.sql, you can create your database tables as
follows:

$ sqlplus
...
SQL> @ tables.sql

Remember the ‘@’ operator forces SQL to execute commands from a file.

Step 2: Read data files
You are given a sample data file data.sql that you can use to populate your database for
your own tests.

Your task:
Check that all data insertion runs without any problem.
If you’re in the directory containing data.sql, you can insert the given data as follows:

$ sqlplus
...
SQL> @ data.sql

Step 3: Query your database
Queries:
Write SQL queries that answer the questions below (one query per question) and run
them on the Oracle system. The query answers should be duplicate-free, but you should
use distinct only when necessary. If you are making any assumptions, state them clearly,
and document your queries. We will run your queries on a different dataset from the one
provided with the assignment, so be careful not to hardcode values to produce correct
answers

1. For the department with deptid=1, print the number of faculty affiliated with the
department.

2. Print the names of the oldest students in the university.
3. Print the name, department id and age of the students enrolled in a class taught by

a faculty member affiliated with the Computer Sciences department (i.e. dname is
Computer Sciences).

4. Print the name and department id of the student(s) who take at least one class OR
are younger than 20.

5. Print the ids (snum) of the students who have at least one classmate.
6. Print the names of (distinct) faculty who teach 2 or more classes in the same

room.

7. For each department, print the names of faculty affiliated with that department,
ordered by department name (ascending).

8. Print the department id, name (sname) and age of students enrolled in at least 2
different classes.

9. Print the ids of faculty who teach classes E.Cho takes.
10. For the class ENG400, print the number of students enrolled in that class, who are

younger than 21.

Hints:
Query 1: The “COUNT” operator will help here.
Query 2: The “ALL” operator will help here. Keep in mind you need to find the students
with an age greater than or equal to everyone else’s age.
Query 3: You will need a join of many tables for this query.
Query 4: You can use the UNION operator here.
Query 5: Remember, the set of classmates of a student does not include the student
himself. This really means you need to find students for whom there is at least one
student with a different id and who is enrolled in the same class. You don’t need to use
counts for this query.
Query 6: Remember “2 or more” really means more than 1. You don’t need to use
COUNT for this query. Of course if you have a way using COUNT, that’s acceptable too.
Query 7: This is a simple join ended with the ORDER BY operator. The result will be
one row for each department name-faculty name pair.
Query 8: This is similar to Query 6.
Query 9: You first need to find the classes taken by the student named E.Cho and do a
join with the class.
Query 10: A simple count with the specified conditions on the student will suffice.

General Hints:

• For comparison with a string such as Computer Sciences, you can use the LIKE
operator followed by the string in single quotes.

• There might be multiple ways to form a query and all of them will be acceptable
as long as they result in the same record list.

Your task:
Create a file called queries.sql, which contains the queries listed above, in the order they
are listed (jumbling the order of queries may cost you points). Before each query i,
please put the following comment: rem Query i. If you are not able to provide a specific
query, just type “rem Query i”, where i is the query number. So, your file should look
something like this:

rem Query 1
select ...

rem Query 2
select

...
Don’t forget to add a semicolon at the end of each query in the file, which is what
actually runs them.

Step 4: Views
Here, you'll create some simple views. Create two views (Please name them VIEWA and
VIEWB) and print their contents.

A. A view that shows the faculty name followed by the classes taught by that
faculty, ordered by faculty name.
B. A view that shows the names of people (students and faculty) that are expected
to be present in a room each time that a relevant class is taught there. This should
be one view with both faculty and student names. A student enrolled in a class is
"expected" to be present for each session of the class, and a faculty member
teaching a class is "expected" to be present for each session of the class. Hence,
the view should contain three fields: name, room, and time.

Your task:
Create a file called views.sql, which contains SQL commands (create view FOO as ...) to
create the views listed above and the SELECT statements that list all the data of both
views, i.e. your file should contain two view creation statements followed by two query
statements (all of which are ended with semicolons).

Evaluation:
Your project will mostly be evaluated based on the correctness of your output for the
queries and views. Some points will also be allocated for the proper creation of the
database tables. Make sure you comply with the database schema provided above when
creating the tables and writing the queries. If your table creation fails somehow, we will
test your queries on a database populated with the correct tables and the table field names
in your queries have to match those given in the assignment to produce correct output.

Submission Instructions:
Please create a README file that contains identifying information.
For example:

CS448 - Project 1

Author: John Doe
Login: jdoe
Email: jdoe@cs.purdue.edu

Include here anything you might want us to know when grading your project.

To turn in your project, ssh to lore.cs.purdue.edu, create a folder named project1 in your
home directory and copy your .sql files and your README.txt to that folder.

After copying your files (tables.sql, queries.sql, views.sql) in the folder project1, execute
the following command in your home directory:

turnin -c cs448 -p proj1 project1

To verify the contents of your submission, execute the following command right after
submission:

turnin -c cs448 -p proj1 –v
	

