
Purdue University

Fall 2016

CS 448: Introduction to Relational Database Systems

Project 3: Partitioning in Apache Hive

/**********
* Overview
**********/

This project will provide an introduction to Hive, a big data tool
that makes it simple to query structured data. Hive is built on top
of MapReduce, which is in turn built on top of HDFS. Hive accepts SQL
queries and converts them into MapReduce jobs.

Read through this page for an overview of Hive's architecture:
http://www.tutorialspoint.com/hive/hive_introduction.htm

/**********

* Environment and setup:

**********/

We will use Purdue's OpenStack cluster for this assignment. The

master node for this cluster is openstack-vm-11-251. You can SSH into

this node with username:[PurdueID]_ostack,

password:[PurdueID]_ostackpwd.

To see a list of all the nodes in the cluster, run:

$ cat /etc/hosts

NOTE: Be sure to change your password after you have logged in:

$ passwd

NOTE: This cluster does not mount the CS department's NFS shared file

system, so your CS home directory is not available.

CAUTION: This cluster is temporary. It will be wiped after the lab is

graded. If you have any codes or results that you wish to save, move

them to permanent storage on another system.

http://www.tutorialspoint.com/hive/hive_introduction.htm

/**********

* Basic commands for HDFS

**********/

To list the contents of your HDFS directory, use:

$ hdfs dfs -ls /user/[PurdueID]_ostack

To move files to HDFS and back:

$ hdfs dfs -mkdir /user/[PurdueID]_ostack/new_dir

$ hdfs dfs -put file.txt /user/[PurdueID]_ostack/new_dir

$ hdfs dfs -get /user/[PurdueID]_ostack/new_dir/file.txt ./

$ hdfs dfs -getmerge /user/[PurdueID]_ostack/dir_with_multiple_files

/**********
* Background
**********/

The Research and Innovative Technology Administration (RITA) has made
available 22 years worth of flight departure and arrival data. The
total dataset, when uncompressed, is approximately 10 GB.
http://stat-computing.org/dataexpo/2009/the-data.html

We wish to query this data. An example query might be, "How many
flights departed on February 3, 1990?"

When we query this data, we wish to do so efficiently. If we can
split the data into partitions based on year, month, or day, then
perhaps we will not have to read all of the data every time we run a
query.

Of course, we could accomplish these goals by distributing the data
across our cluster with HDFS and then writing MapReduce jobs to
partition and query our data. Instead, we will use Hive, which
simplifies this process immensely.

/**********
* Setup
**********/

http://stat-computing.org/dataexpo/2009/the-data.html

Use wget to download the dataset for 1996. Uncompress the dataset
with bunzip2. Remove the first line (column names) and then load the
data into your personal HDFS directory:

$ wget http://stat-computing.org/dataexpo/2009/1996.csv.bz2
$ bunzip2 1996.csv.bz2
$ tail -n +2 1996.csv > 1996_noheader.csv
$ hdfs dfs -mkdir -p /user/[PurdueID]_ostack/rita/input
$ hdfs dfs -put 1996_noheader.csv /user/[PurdueID]_ostack/rita/input

Start the Hive CLI, create a personal database, and use that
database:
$ hive
hive> create database [PurdueID]_ostack;
hive> use [PurdueID]_ostack;

NOTE: If you restart the Hive CLI, you will begin in the default
database. In that case you must again switch to your database with
"hive> use [PurdueID]_ostack".

We need to declare some structure for our data. We will use a command
from Hive's data definition language. Notice that the command
specifies a comma as the field delimiter.

hive> create table flights(Year int, Month int, dayOfMonth int,
dayOfWeek int, depTime int, CRSDepTime int, arrTime int, CRSArrTime
int, uniqueCarrier string, flightNum int, tailNum int,
actualElapsedTime int, CRSElapsedTime int, airTime int, arrDelay int,
depDelay int, origin string, dest string, distance int, taxiIn int,
taxiOut int, cancelled int, cancellationCode string, diverted int,
carrierDelay int, weatherDelay int, NASDelay int, securityDelay int,
lateAircraftDelay int) row format delimited fields terminated by ',';

Next we need to import the data into our table. Note that when we
import an HDFS file into a Hive table, Hive does not copy the data.
It simply changes the name of the file and moves it to another HDFS
directory (a Hive directory).

hive> load data inpath '/user/<username>/rita/input/1996.csv'
overwrite into table flights;

We are now ready to query our data. You can experiment if you like.
The following queries might be interesting to you:

hive> show tables;

hive> describe flights;

hive> select * from flights limit 3;

hive> select count(*) from flights where month=3;

hive> select count(*) from flights where carrierdelay is null;

/**********
* Task
**********/

/* Task 1 */

Execute the queries below, and after each query completes, record the
following performance metrics, which appear under "MapReduce Jobs
Launched":

Cumulative CPU (for each stage)
HDFS Read (for each stage)
HDFS Write (for each stage)
Time Taken (total)

Query 1
hive> select count(*) from flights where month = 3;

Query 2
hive> select count(*) from flights where month = 6 and dayofmonth =
12;

Query 3
hive> select count(*) from flights where month = 8 and dayofmonth >
10 and dayofmonth < 20;

As a beneficial exercise, you might try to sketch out how you think
Hive should configure the map and reduce jobs to accomplish each of
these queries. You can also type "explain" before any query to see
some details about how Hive plans to process the query.

/* Task 2 */

Next, we would like to make our queries more efficient by making a
copy of our table and dividing the copy into partitions. Our table

currently lives in HDFS, and once we create the partitions, those
partitions will also live in HDFS.

First, we instruct Hive to automatically determine which partitions
to create when given a partition column. Next, we increase the
maximum number of partitions allowed.

NOTE: Some of these values do not persist, so you should set them
again if you restart your Hive shell.

hive> set hive.exec.dynamic.partition=true;
hive> set hive.exec.dynamic.partition.mode=nonstrict;
hive> set hive.exec.max.dynamic.partitions=1000;
hive> set hive.exec.max.dynamic.partitions.pernode=1000;

Next we declare a new table with the same columns as "flights," but
we indicate to Hive that the data should be partitioned on the
"Month" column:

hive> create table flights_partitioned_month(Year int, dayOfMonth
int, dayOfWeek int, depTime int, CRSDepTime int, arrTime int,
CRSArrTime int, uniqueCarrier string, flightNum int, tailNum int,
actualElapsedTime int, CRSElapsedTime int, airTime int, arrDelay int,
depDelay int, origin string, dest string, distance int, taxiIn int,
taxiOut int, cancelled int, cancellationCode string, diverted int,
carrierDelay int, weatherDelay int, NASDelay int, securityDelay int,
lateAircraftDelay int) partitioned by (Month int);

Notice that we have omitted "Month" from the long list of fields in
our table. Instead, we have included it as a partition column at the
end of our statement.

After you have created the month partition table, describe it with:
hive> describe flights_partitioned_month;

Notice that the "Month" field comes last. This is how Hive chooses to
order partition columns.

Next we will copy data from our "flights" table to our
"flights_partitioned_month" table. Use this command:

hive> insert into table flights_partitioned_month partition(month)

select year, dayofmonth, dayofweek, deptime, crsdeptime, arrtime,

crsarrtime, uniquecarrier, flightnum, tailnum, actualelapsedtime,

crselapsedtime, airtime, arrdelay, depdelay, origin, dest, distance,

taxiin, taxiout, cancelled, cancellationcode, diverted, carrierdelay,

weatherdelay, nasdelay, securitydelay, lateaircraftdelay, month from

flights;

Here, the ordering of columns in our insert statement matches the

order of columns in "flights_partitioned_month", not "flights".

Notice that when we begin our partition, Hive informs us that "Number

of reduce tasks is set to 0 since there's no reduce operator." Why do

we not need a reduce operator?

Run Task 1 queries #1-#3 on your partitioned table and record their

performance metrics. What do you observe for cumulative CPU time

compared to our queries on the unpartitioned data? What do you

observe for the wall clock time ("Time taken")? Why do you think this

is?

/* Task 3 */

We ask you to create two more partitioned tables: one partitioned on

dayOfMonth and one partitioned on two columns: month first, and

dayOfMonth second. Re-run queries #1-#3 on these partitioned tables

and record their performance metrics.

As you work through your task, periodically examine your files in

HDFS to understand how HDFS handles Hive tables and Hive partitioned

tables. This command should help:

$ hdfs dfs -ls -R / | grep [your_table_name]

/* Task 4 */

Now you have some practice creating and partitioning tables in Hive.

Next we want to let our data set grow large so that we can begin to

see some improvement in wall clock time when we use partitioned

datasets.

To save on time and space, we have already downloaded the entire RITA

dataset, loaded it into HDFS, and partitioned it. We have created 4

tables (1 base table and 3 partitioned tables):

flights_all

flights_all_partitioned_year

flights_all_partitioned_month

flights_all_partitioned_year_month

To access these tables, you must switch databases:

hive> use common;

CAUTION: Do not run any commands in database common that will modify

the data.

Run the queries below on all four of these tables and record their

performance metrics.

Query #4

hive> select count(*) from flights_all where year = 2002;

Query #5

hive> select count(*) from flights_all where month = 8;

Query #6

hive> select count(*) from flights_all where year = 2004 and month =

6;

/* Task 5 */

Now is a good time for you to begin considering how to identify good

use cases for big data tools like Hive and MapReduce. How big does

our data have to be before it becomes faster on a cluster than on a

single machine? Let's do a quick experiment.

Run the following command on the 1996 dataset that you downloaded to

your home directory on the master node:

$ date +"%T"; cat 1996_noheaders.csv | awk -F',' '$2 == "8" {print

$1}' | wc -l; date +"%T"

This command will count how many flights occurred in August of 1996.

Run a query on your Hive table that accomplishes the same query. (For

this comparison, don't use one of the shared Hive tables, and don't

use a partitioned Hive table.) How does the runtime compare to our

local job?

/**********

* Deliverables

**********/

Please turn in the following:

* A .txt file containing the commands that you used to create and

populate the partitioned tables in Task 1;

* A .txt file containing the metrics which you recorded for all steps

of the project;

* A .txt file containing the row counts obtained in Task 5 and the

runtimes of the two approaches;

To turn your work in, create a directory labeled with your username.

For example, if you are working in

/home/[PurdueID]_ostack/cs448/proj3,

$ mkdir /home/[PurdueID]_ostack/cs448/proj3/[PurdueID]

Place your three text files in this directory, so that ls gives:

$ ls /home/[PurdueID]_ostack/cs448/proj3/[PurdueID]

commands.txt

metrics.txt

runtimes.txt

Submit the folder with turnin. Do not tar the directory.

$ turnin -c cs448 -p proj3 [PurdueID]

