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/********** 
* Overview 
**********/ 
 
This project will provide an introduction to Hive, a big data tool  
that makes it simple to query structured data. Hive is built on top  
of MapReduce, which is in turn built on top of HDFS. Hive accepts SQL  
queries and converts them into MapReduce jobs.  
 
Read through this page for an overview of Hive's architecture:  
http://www.tutorialspoint.com/hive/hive_introduction.htm  
 
/********** 

* Environment and setup:  

**********/ 

 
We will use Purdue's OpenStack cluster for this assignment. The  

master node for this cluster is openstack-vm-11-251. You can SSH into  

this node with username:[PurdueID]_ostack,  

password:[PurdueID]_ostackpwd.   

 

To see a list of all the nodes in the cluster, run:  

$ cat /etc/hosts  

 

NOTE: Be sure to change your password after you have logged in:  

$ passwd 

 

NOTE: This cluster does not mount the CS department's NFS shared file  

system, so your CS home directory is not available.  

 
CAUTION: This cluster is temporary. It will be wiped after the lab is  

graded. If you have any codes or results that you wish to save, move  

them to permanent storage on another system.  

 

http://www.tutorialspoint.com/hive/hive_introduction.htm


/********** 

* Basic commands for HDFS  

**********/ 

 

To list the contents of your HDFS directory, use:  

$ hdfs dfs -ls /user/[PurdueID]_ostack  

 

To move files to HDFS and back:  

$ hdfs dfs -mkdir /user/[PurdueID]_ostack/new_dir  

$ hdfs dfs -put file.txt /user/[PurdueID]_ostack/new_dir  

$ hdfs dfs -get /user/[PurdueID]_ostack/new_dir/file.txt ./  

$ hdfs dfs -getmerge /user/[PurdueID]_ostack/dir_with_multiple_files  

 
/********** 
* Background 
**********/ 
 
The Research and Innovative Technology Administration (RITA) has made  
available 22 years worth of flight departure and arrival data. The  
total dataset, when uncompressed, is approximately 10 GB.  
http://stat-computing.org/dataexpo/2009/the-data.html  
 
We wish to query this data. An example query might be, "How many  
flights departed on February 3, 1990?"  
 
When we query this data, we wish to do so efficiently. If we can  
split the data into partitions based on year, month, or day, then  
perhaps we will not have to read all of the data every time we run a  
query. 
 
Of course, we could accomplish these goals by distributing the data  
across our cluster with HDFS and then writing MapReduce jobs to  
partition and query our data. Instead, we will use Hive, which  
simplifies this process immensely.  
 
/********** 
* Setup 
**********/ 
 

http://stat-computing.org/dataexpo/2009/the-data.html


Use wget to download the dataset for 1996. Uncompress the dataset  
with bunzip2. Remove the first line (column names) and then load the  
data into your personal HDFS directory:  
 
$ wget http://stat-computing.org/dataexpo/2009/1996.csv.bz2  
$ bunzip2 1996.csv.bz2  
$ tail -n +2 1996.csv > 1996_noheader.csv  
$ hdfs dfs -mkdir -p /user/[PurdueID]_ostack/rita/input  
$ hdfs dfs -put 1996_noheader.csv /user/[PurdueID]_ostack/rita/input  
 
Start the Hive CLI, create a personal database, and use that  
database: 
$ hive 
hive> create database [PurdueID]_ostack;  
hive> use [PurdueID]_ostack;  
 
NOTE: If you restart the Hive CLI, you will begin in the default  
database. In that case you must again switch to your database with  
"hive> use [PurdueID]_ostack".  
 
We need to declare some structure for our data. We will use a command  
from Hive's data definition language. Notice that the command  
specifies a comma as the field delimiter.  
 
hive> create table flights(Year int, Month int, dayOfMonth int,  
dayOfWeek int, depTime int, CRSDepTime int, arrTime int, CRSArrTime  
int, uniqueCarrier string, flightNum int, tailNum int,  
actualElapsedTime int, CRSElapsedTime int, airTime int, arrDelay int,  
depDelay int, origin string, dest string, distance int, taxiIn int,  
taxiOut int, cancelled int, cancellationCode string, diverted int,  
carrierDelay int, weatherDelay int, NASDelay int, securityDelay int,  
lateAircraftDelay int) row format delimited fields terminated by ',';  
 
Next we need to import the data into our table. Note that when we  
import an HDFS file into a Hive table, Hive does not copy the data.  
It simply changes the name of the file and moves it to another HDFS  
directory (a Hive directory).  
 
hive> load data inpath '/user/<username>/rita/input/1996.csv'  
overwrite into table flights;  
 
We are now ready to query our data. You can experiment if you like.  
The following queries might be interesting to you:  



 

hive> show tables;  

hive> describe flights;  

hive> select * from flights limit 3;  

hive> select count(*) from flights where month=3;  

hive> select count(*) from flights where carrierdelay is null;  

 
/********** 
* Task 
**********/ 
 
/* Task 1 */ 
 
Execute the queries below, and after each query completes, record the  
following performance metrics, which appear under "MapReduce Jobs  
Launched": 

Cumulative CPU (for each stage)  
HDFS Read (for each stage)  
HDFS Write (for each stage)  
Time Taken (total)  

 
# Query 1 
hive> select count(*) from flights where month = 3;  
 
# Query 2 
hive> select count(*) from flights where month = 6 and dayofmonth =  
12; 
 
# Query 3 
hive> select count(*) from flights where month = 8 and dayofmonth >  
10 and dayofmonth < 20;  
 
As a beneficial exercise, you might try to sketch out how you think  
Hive should configure the map and reduce jobs to accomplish each of  
these queries. You can also type "explain" before any query to see  
some details about how Hive plans to process the query.  
 
/* Task 2 */ 
 
Next, we would like to make our queries more efficient by making a  
copy of our table and dividing the copy into partitions. Our table  



currently lives in HDFS, and once we create the partitions, those  
partitions will also live in HDFS.  
 
First, we instruct Hive to automatically determine which partitions  
to create when given a partition column. Next, we increase the  
maximum number of partitions allowed.  
 
NOTE: Some of these values do not persist, so you should set them  
again if you restart your Hive shell.  
 
hive> set hive.exec.dynamic.partition=true;  
hive> set hive.exec.dynamic.partition.mode=nonstrict;  
hive> set hive.exec.max.dynamic.partitions=1000;  
hive> set hive.exec.max.dynamic.partitions.pernode=1000;  
 
Next we declare a new table with the same columns as "flights," but  
we indicate to Hive that the data should be partitioned on the  
"Month" column:  
 
hive> create table flights_partitioned_month(Year int, dayOfMonth  
int, dayOfWeek int, depTime int, CRSDepTime int, arrTime int,  
CRSArrTime int, uniqueCarrier string, flightNum int, tailNum int,  
actualElapsedTime int, CRSElapsedTime int, airTime int, arrDelay int,  
depDelay int, origin string, dest string, distance int, taxiIn int,  
taxiOut int, cancelled int, cancellationCode string, diverted int,  
carrierDelay int, weatherDelay int, NASDelay int, securityDelay int,  
lateAircraftDelay int) partitioned by (Month int);  
 
Notice that we have omitted "Month" from the long list of fields in  
our table. Instead, we have included it as a partition column at the  
end of our statement.  
 
After you have created the month partition table, describe it with:  
hive> describe flights_partitioned_month;  
 
Notice that the "Month" field comes last. This is how Hive chooses to  
order partition columns.  
 
Next we will copy data from our "flights" table to our  
"flights_partitioned_month" table. Use this command:  
 
hive> insert into table flights_partitioned_month partition(month)  

select year, dayofmonth, dayofweek, deptime, crsdeptime, arrtime,  



crsarrtime, uniquecarrier, flightnum, tailnum, actualelapsedtime,  

crselapsedtime, airtime, arrdelay, depdelay, origin, dest, distance,  

taxiin, taxiout, cancelled, cancellationcode, diverted, carrierdelay,  

weatherdelay, nasdelay, securitydelay, lateaircraftdelay, month from  

flights; 

 

Here, the ordering of columns in our insert statement matches the  

order of columns in "flights_partitioned_month", not "flights".  

 

Notice that when we begin our partition, Hive informs us that "Number  

of reduce tasks is set to 0 since there's no reduce operator." Why do  

we not need a reduce operator?  

 

Run Task 1 queries #1-#3  on your partitioned table and record their  

performance metrics. What do you observe for cumulative CPU time  

compared to our queries on the unpartitioned data? What do you  

observe for the wall clock time ("Time taken")? Why do you think this  

is? 

 

/* Task 3 */ 

 

We ask you to create two more partitioned tables: one partitioned on  

dayOfMonth and one partitioned on two columns: month first, and  

dayOfMonth second. Re-run queries #1-#3 on these partitioned tables  

and record their performance metrics.  

 

As you work through your task, periodically examine your files in  

HDFS to understand how HDFS handles Hive tables and Hive partitioned  

tables. This command should help:  

$ hdfs dfs -ls -R / | grep [your_table_name]  

 

/* Task 4 */ 

 

Now you have some practice creating and partitioning tables in Hive.  

Next we want to let our data set grow large so that we can begin to  

see some improvement in wall clock time when we use partitioned  

datasets. 

 

To save on time and space, we have already downloaded the entire RITA  

dataset, loaded it into HDFS, and partitioned it. We have created 4  

tables (1 base table and 3 partitioned tables):  



flights_all 

flights_all_partitioned_year  

flights_all_partitioned_month  

flights_all_partitioned_year_month  

To access these tables, you must switch databases:  

hive> use common;  

 

CAUTION: Do not run any commands in database common that will modify  

the data. 

 

Run the queries below on all four of these tables and record their  

performance metrics.  

 

Query #4 

hive> select count(*) from flights_all where year = 2002;  

 

Query #5 

hive> select count(*) from flights_all where month = 8;  

 

Query #6 

hive> select count(*) from flights_all where year = 2004 and month =  

6; 

 

/* Task 5 */ 

 

Now is a good time for you to begin considering how to identify good  

use cases for big data tools like Hive and MapReduce. How big does  

our data have to be before it becomes faster on a cluster than on a  

single machine? Let's do a quick experiment.  

 

Run the following command on the 1996 dataset that you downloaded to  

your home directory on the master node:  

$ date +"%T"; cat 1996_noheaders.csv | awk -F',' '$2 == "8" {print  

$1}' | wc -l; date +"%T"  

 

This command will count how many flights occurred in August of 1996.  

Run a query on your Hive table that accomplishes the same query. (For  

this comparison, don't use one of the shared Hive tables, and don't  

use a partitioned Hive table.) How does the runtime compare to our  

local job? 

 



/********** 

* Deliverables  

**********/ 

 

Please turn in the following:  

* A .txt file containing the commands that you used to create and  

populate the partitioned tables in Task 1;  

* A .txt file containing the metrics which you recorded for all steps  

of the project;  

* A .txt file containing the row counts obtained in Task 5 and the  

runtimes of the two approaches;  

 

To turn your work in, create a directory labeled with your username.  

For example, if you are working in  

/home/[PurdueID]_ostack/cs448/proj3,   

$ mkdir /home/[PurdueID]_ostack/cs448/proj3/[PurdueID]  

 

Place your three text files in this directory, so that ls gives:  

$ ls /home/[PurdueID]_ostack/cs448/proj3/[PurdueID]  

commands.txt 

metrics.txt 

runtimes.txt 

 

Submit the folder with turnin. Do not tar the directory.  

$ turnin -c cs448 -p proj3 [PurdueID]  

 

 

 

 

 

 

 


