
Introduction to
Hadoop
CS 448 - Relational DB Management Systems

What is Hadoop?
● A collection of tools used to process data that

is distributed across a large number of
machines (sometimes thousands).

● Written in Java.
● Fault tolerant.
● Two of the most important tools in Hadoop

are HDFS and YARN, discussed below.
○ These tools enable MapReduce jobs.
○ A MapReduce job is composed of tasks.

MapReduce jobs run on top of HDFS (Hadoop
Distributed File System). What is HDFS?
● A tool for distributing files across a cluster.
● Accepts a file as input. Fragments the file

into blocks, duplicates the blocks (for
redundancy), and distributes the blocks
across the cluster.

● Imitates many of the same functions offered
by a local file system: mkdir, rm, cat, etc.

file.txt

Master

Java process:
NameNode

Stores file metadata,
block locations, etc.

Slave 1

Java process:
DataNode

Slave 2

Java Process:
DataNode

Slave 3

Java process:
DataNode

A

B

C

A B

A C B C

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9

blocks

HDFS:

$ hadoop fs -put ...

MapReduce jobs are distributed by YARN. What
is YARN (also known as MapReduce version 2)?
● "Yet Another Resource Negotiator."
● Monitors the workload on each cluster node.
● Allocates compute resources.

○ Allocates resources to ApplicationMasters.
○ ApplicationMasters then manage job tasks.

● Supports other workflows in addition to
MapReduce (an improvement from
MapReduce version 1).

Master

Java processes:
ResourceManager,
ApplicationMaster1,
ApplicationMaster2

Slave 1

Java process:
NodeManager

Slave 2

Java Process:
NodeManager

Slave 3

Java process:
NodeManager

YARN:

MapTask A

ReduceTask A

MapTask B

ReduceTask B

MapReduce Job A

MapReduce Job B

MapTask A

ReduceTask A

MapTask A

ReduceTask A

MapTask B

ReduceTask B

$ hadoop jar ...

What is MapReduce?
● A workflow for processing distributed data.
● Four phases: Map, Combine, Shuffle, Reduce
● (Note: Hadoop is not the only platform that implements the

MapReduce workflow. See MPI, Spark.)
Example: Suppose we have three text files and that we wish to count
the number of times each letter of the alphabet appears in these files:

ford
chevy
toyota
tesla

apple
pear
peach
mango

red
black
blue
green

cars.txt fruits.txt colors.txt

Suppose further that we have two slave nodes
in our Hadoop cluster. Let's load our files into
HDFS to distribute them across the cluster:*

Slave 1 Slave 2

ford
chevy

apple
pear

red
black

toyota
tesla

peach
mango

blue
green

*duplicate blocks not shown

Now we begin the map phase:
● We write a java map task and run the task across our cluster. We run

multiple map tasks on each node.
● Each map task takes a local block as input (processing it one line at a

time) and generates key-value pairs as output. For example, letter counts:

Slave 1 Slave 2

ford
chevy

apple
pear

red
black

peach
mango

blue
green

toyota
tesla

Key Val
f 1
o 1
r 1
d 1
c 1
h 1
e 1
v 1
y 1
a 1
p 2
...

Key Val
t 2
o 2
y 1
a 1
t 1
e 1
s 1
l 1
a 1
p 1
e 1
...

Next, K-V pairs with matching keys are grouped locally (combine phase). These
groups are then redistributed across the cluster (shuffle phase) such that any
K-V pairs with the same key will appear on the same node. The destination
node for each key is determined by a hash.

Slave 1 Slave 2
f 1

o 1

r 1

d 1

c 1

h 1
...

t 3

o 1

y 1

a 2
...

Slave 1 Slave 2
f 1

o 1
o 1

r 1
...

d 1

c 1

h 1
...

y 1

a 2

t 2
t 1

shuffle

combine

Finally, the reduce phase: We write a java reduce task and run multiple
instances of this task on each node in our cluster. Each reduce task will take as
input a number of K-V pair groups, iterate over the K-V pairs in those groups,
and compute output K-V pairs (for example, total letter counts):*

Slave 1 Slave 2
f 1

o 1
o 1

d 1

c 1

h 1
...

y 1

a 1
a 1

t 2
t 1

r 1
...

f 1
o 2
d 1
c 1
h 1
...

t 3
y 1
a 2
r 1
...

*The terminology is subtle. Do not confuse a reduce task (processes K-V pairs for multiple keys) with a single
call to the reduce() function in the job .java file (processes K-V pairs for only a single key). A single reduce task
makes multiple calls to reduce().

The end result is that we have total letter counts for all 3 of our input files. Note
that our two output files are distributed across our cluster, stored in HDFS. We
can merge them into a single file on our local file system, if we wish.

Slave 1 Slave 2
f 1
o 2
d 1
c 1
h 1
...

t 3
y 1
a 2
r 1
...

Further Resources:
● The Hadoop materials on the Yahoo

Developer's Network are quite informative:
https://developer.yahoo.com/hadoop/tutorial/

● The Apache Hadoop website also has
materials: https://hadoop.apache.org/

● For a good overview of YARN:
http://www.ibm.com/developerworks/library/b
d-hadoopyarn/

https://developer.yahoo.com/hadoop/tutorial/
https://developer.yahoo.com/hadoop/tutorial/
https://hadoop.apache.org/
http://www.ibm.com/developerworks/library/bd-hadoopyarn/
http://www.ibm.com/developerworks/library/bd-hadoopyarn/
http://www.ibm.com/developerworks/library/bd-hadoopyarn/

