Chapter 2: Relational Model

Database System Concepts, $5^{\text {th }}$ Ed.
©Silberschatz, Korth and Sudarshan
See www.dlb-book.com for conditions on re-use

Chapter 2: Relational Model

- Structure of Relational Databases
- Fundamental Relational-Algebra-Operations
- Additional Relational-Algebra-Operations
- Extended Relational-Algebra-Operations
- Null Values
- Modification of the Database

Example of a Relation

account_number	branch_name	balance
A-101	Downtown	500
A-102	Perryridge	400
A-201	Brighton	900
A-215	Mianus	700
A-217	Brighton	750
A-222	Redwood	700
A-305	Round Hill	350

Basic Structure

- Formally, given sets $D_{1}, D_{2}, \ldots D_{n}$ a relation r is a subset of

$$
D_{1} \times D_{2} \times \ldots \times D_{n}
$$

Thus, a relation is a set of n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where each $a_{i} \in D_{i}$

- Example: If
customer_name $=$ \{Jones, Smith, Curry, Lindsay $\}$
customer_street $=\{$ Main, North, Park $\}$
customer_city = \{Harrison, Rye, Pittsfield\}
Then $r=\{$ (Jones, Main, Harrison),
(Smith, North, Rye),
(Curry, North, Rye),
(Lindsay, Park, Pittsfield) \}
is a relation over
customer_name x customer_street x customer_city

Attribute Types

- Each attribute of a relation has a name
- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be atomic; that is, indivisible
- Note: multivalued attribute values are not atomic
- Note: composite attribute values are not atomic
- The special value null is a member of every domain
- The null value causes complications in the definition of many operations
- We shall ignore the effect of null values in our main presentation and consider their effect later

Relation Schema

- $A_{1}, A_{2}, \ldots, A_{n}$ are attributes
- $R=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is a relation schema

Example:
Customer_schema = (customer_name, customer_street, customer_city)

- $r(R)$ is a relation on the relation schema R Example:
customer (Customer_schema)

Relation Instance

- The current values (relation instance) of a relation are specified by a table
- An element t of r is a tuple, represented by a row in a table

Relations are Unordered

■ Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

- Example: account relation with unordered tuples

account_number branch_name balance

A-101	Downtown	500
A-215	Mianus	700
A-102	Perryridge	400
A-305	Round Hill	350
A-201	Brighton	900
A-222	Redwood	700
A-217	Brighton	750

Database

- A database consists of multiple relations
- Information about an enterprise is broken up into parts, with each relation storing one part of the information

account: stores information about accounts

depositor : stores information about which customer owns which account
customer : stores information about customers

- Storing all information as a single relation such as bank(account_number, balance, customer_name, ..) results in
- repetition of information (e.g., two customers own an account)
- the need for null values (e.g., represent a customer without an account)
- Normalization theory (Chapter 7) deals with how to design relational schemas

The customer Relation

customer_name	customer_street	customer_city
Adams	Spring	Pittsfield
Brooks	Senator	Brooklyn
Curry	North	Rye
Glenn	Sand Hill	Woodside
Green	Walnut	Stamford
Hayes	Main	Harrison
Johnson	Alma	Palo Alto
Jones	Main	Harrison
Lindsay	Park	Pittsfield
Smith	North	Rye
Turner	Putnam	Stamford
Williams	Nassau	Princeton

The depositor Relation

$$
\begin{array}{c|c}
\hline \text { customer_name } & \text { account_number } \\
\hline \hline \text { Hayes } & \text { A-102 } \\
\text { Johnson } & \text { A-101 } \\
\text { Johnson } & \text { A-201 } \\
\text { Jones } & \text { A-217 } \\
\text { Lindsay } & \text { A-222 } \\
\text { Smith } & \text { A-215 } \\
\text { Turner } & \text { A-305 }
\end{array}
$$

Keys

- Let $\mathrm{K} \subseteq \mathrm{R}$
- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation $r(R)$
- by "possible r " we mean a relation r that could exist in the enterprise we are modeling.
- Example: \{customer_name, customer_street\} and \{customer_name\}
are both superkeys of Customer, if no two customers can possibly have the same name.
- K is a candidate key if K is minimal

Example: \{customer_name\} is a candidate key for Customer, since it is a superkey (assuming no two customers can possibly have the same name), and no subset of it is a superkey.

- Primary Key

Query Languages

- Language in which user requests information from the database.
- Categories of languages
- Procedural
- Non-procedural, or declarative
- "Pure" languages:
- Relational algebra
- Tuple relational calculus
- Domain relational calculus
- Pure languages form underlying basis of query languages that people use.

Relational Algebra

- Procedural language
- Six basic operators
- select: σ
- project: П
- union: \cup
- set difference: -
- Cartesian product: x
- rename: ρ
- The operators take one or two relations as inputs and produce a new relation as a result.

Select Operation - Example

- Relation r

A	B	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- $\sigma_{A=B \wedge D>5}(r)$

A	B	C	D
α	α	1	7
β	β	23	10

Select Operation

- Notation: $\sigma_{p}(r)$
- p is called the selection predicate
- Defined as:

$$
\sigma_{p}(\boldsymbol{r})=\{t \mid t \in r \text { and } p(t)\}
$$

Where p is a formula in propositional calculus consisting of terms connected by : ^ (and), \vee (or), \neg (not)
Each term is one of:
<attribute> op <attribute> or <constant>
where $o p$ is one of: $=, \neq,>, \geq .<. \leq$

- Example of selection:

$$
\sigma_{\text {branch_name="Perryridge"(account) }}
$$

Project Operation - Example

- Relation r :		A	B	C	
		$\begin{aligned} & \alpha \\ & \alpha \\ & \beta \\ & \beta \end{aligned}$	10 20 30 40	1 1 1 2	
$\prod_{\mathrm{A}, \mathrm{C}}(r)$	A	c		A	C
	α α β β	1 1 1 2	$=$	α β β	1 1 2

Project Operation

- Notation:

$$
\prod_{A_{1}, A_{2}, \ldots, A_{k}}(r)
$$

where A_{1}, A_{2} are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Example: To eliminate the branch_name attribute of account

$$
\Pi_{a c c o u n t _n u m b e r, ~ b a l a n c e ~} \text { (account) }
$$

Union Operation - Example

- Relations r, s :

- \quad U $:$

A	B
α	1
α	2
β	1
β	3

Union Operation

- Notation: $r \cup s$
- Defined as:

$$
r \cup s=\{t \mid t \in r \text { or } t \in s\}
$$

- For $r \cup s$ to be valid.

1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (example: $2^{\text {nd }}$ column of r deals with the same type of values as does the $2^{\text {nd }}$ column of s)

- Example: to find all customers with either an account or a loan

$$
\Pi_{\text {customer_name }}(\text { depositor }) \cup \prod_{\text {customer_name }} \text { (borrower) }
$$

Set Difference Operation - Example

- Relations r, s :

- r - s :

Set Difference Operation

- Notation $r-s$
- Defined as:

$$
r-s=\{t \mid t \in r \text { and } t \notin s\}
$$

- Set differences must be taken between compatible relations.
- r and s must have the same arity
- attribute domains of r and s must be compatible

Cartesian-Product Operation - Example

- Relations r, s :

A	B
α	1
β	2
r	

C	D	E
α	10	a
β	10	a
β	20	b
γ	10	b

S

- $r \times s$:

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Cartesian-Product Operation

- Notation $r \times s$
- Defined as:

$$
r \times s=\{t q \mid t \in r \text { and } q \in s\}
$$

- Assume that attributes of $r(R)$ and $s(S)$ are disjoint. (That is, $R \cap S=\varnothing$).
- If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{\mathrm{A}=\mathrm{C}}(r \times s)$
- $r x s$

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

- $\sigma_{\mathrm{A}=\mathrm{C}}(r \times s)$

A	B	C	D	E
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

Rename Operation

- Allows us to name, and therefore to refer to, the results of relationalalgebra expressions.
- Allows us to refer to a relation by more than one name.
- Example:

$$
\rho_{X}(E)
$$

returns the expression E under the name X

- If a relational-algebra expression E has arity n, then

$$
\rho_{x\left(A_{1}, A_{2}, \ldots, A_{n}\right)}(E)
$$

returns the result of expression E under the name X, and with the attributes renamed to $A_{1}, A_{2}, \ldots, A_{n}$.

Banking Example

```
branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)
```


Example Queries

- Find all loans of over $\$ 1200$

$$
\sigma_{\text {amount }>1200}(l o a n)
$$

- Find the loan number for each loan of an amount greater than \$1200

$$
\Pi_{\text {loan_number }}\left(\sigma_{\text {amount }>1200}(\text { loan })\right)
$$

Example Queries

- Find the names of all customers who have a loan, an account, or both, from the bank

$$
\Pi_{\text {customer_name }}(\text { borrower }) \cup \Pi_{\text {customer_name }} \text { (depositor) }
$$

- Find the names of all customers who have a loan and an account at bank.

$$
\Pi_{\text {customer_name }} \text { (borrower) } \cap \Pi_{\text {customer_name }} \text { (depositor) }
$$

Example Queries

- Find the names of all customers who have a loan at the Perryridge branch.
$\prod_{\text {customer_name }}\left(\sigma_{\text {branch_name="Perryridge" }}\right.$
$\left(\sigma_{\text {borrower.loan_number }=\text { loan.loan_number }}(\right.$ borrower x
loan $)))$
- Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank.
$\Pi_{\text {Customer_name }}\left(\sigma_{\text {branch_name }}=\right.$ "Perryridge"
$\left(\sigma_{\text {borrower.loan_number }=\text { loan.loan_number }}(\right.$ borrower x loan) $\left.)\right)$ $\Pi_{\text {customer_name }}$ (depositor)

Example Queries

- Find the names of all customers who have a loan at the Perryridge branch.
- Query 1
$\Pi_{\text {customer_name }}\left(\sigma_{\text {branch_name }}=\right.$ "Perryridge" $($
$\sigma_{\text {borrower.loan_number }}=$ loan.loan_number $($ borrower x loan)))
- Query 2
$\Pi_{\text {customer_name }}\left(\sigma_{\text {loan.loan_number }}=\right.$ borrower.loan_number $($

$$
\left.\left.\left(\sigma_{\text {branch_name }}=\text { "Perryridge" }(\text { loan })\right) \times \text { borrower }\right)\right)
$$

Example Queries

- Find the largest account balance
- Strategy:
- Find those balances that are not the largest
- Rename account relation as d so that we can compare each account balance with all others
- Use set difference to find those account balances that were not found in the earlier step.
- The query is:
$\Pi_{\text {balance }}($ account $)-\prod_{\text {account.balance }}$
$\quad\left(\sigma_{\text {account.balance }}<\right.$ d.balance $\left(\right.$ account $\times \rho_{d}($ account $\left.\left.)\right)\right)$

Formal Definition

- A basic expression in the relational algebra consists of either one of the following:
- A relation in the database
- A constant relation
- Let E_{1} and E_{2} be relational-algebra expressions; the following are all relational-algebra expressions:
- $E_{1} \cup E_{2}$
- $E_{1}-E_{2}$
- $E_{1} \times E_{2}$
- $\sigma_{p}\left(E_{1}\right), P$ is a predicate on attributes in E_{1}
- $\Pi_{s}\left(E_{1}\right), S$ is a list consisting of some of the attributes in E_{1}
- $\rho_{x}\left(E_{1}\right), \mathrm{x}$ is the new name for the result of E_{1}

Additional Operations

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Division
- Assignment

Set-Intersection Operation

- Notation: $r \cap s$
- Defined as:
- $r \cap s=\{t \mid t \in r$ and $t \in s\}$
- Assume:
- r, s have the same arity
- attributes of r and s are compatible
- Note: $r \cap s=r-(r-s)$

Set-Intersection Operation - Example

- Relation r, s :

A	B
α	1
α	2
β	1

r

S

- $r \cap s$

Natural-Join Operation

- Notation: $\mathrm{r} \bowtie \mathrm{s}$
- Let r and s be relations on schemas R and S respectively. Then, $r \bowtie s$ is a relation on schema $R \cup S$ obtained as follows:
- Consider each pair of tuples t_{r} from r and t_{S} from s.
- If t_{r} and t_{s} have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
- t has the same value as t_{r} on r
, t has the same value as t_{s} on s
- Example:

$$
\begin{aligned}
& R=(A, B, C, D) \\
& S=(E, B, D)
\end{aligned}
$$

- Result schema $=(A, B, C, D, E)$
- $r \bowtie s$ is defined as:

$$
\Pi_{r . A, r . B, r . C, r . D, s . E}\left(\sigma_{r . B=s . B} \wedge_{r . D=s . D}(r \times s)\right)
$$

Natural Join Operation - Example

- Relations r, s :

A	B	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b
r			

B	D	E
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	ϵ
s		

- $r \bowtie s$

A	B	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

Division Operation

- Notation: $r \div s$
- Suited to queries that include the phrase "for all".
- Let r and s be relations on schemas R and S respectively where
- $R=\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)$
- $S=\left(B_{1}, \ldots, B_{n}\right)$

The result of $r \div s$ is a relation on schema

$$
\begin{aligned}
& R-S=\left(A_{1}, \ldots, A_{m}\right) \\
& r \div s=\left\{t \mid t \in \Pi_{R-S}(r) \wedge \forall u \in s(t u \in r)\right\}
\end{aligned}
$$

Where tu means the concatenation of tuples t and u to produce a single tuple

Division Operation - Example

- Relations r, s :
- $r \div s$:

A	B
α	α 1 α 2 α 3 β 1 γ 1 δ 1 δ 3 δ 4 \in 6 \in 1 β 2

B
1
2
s

Another Division Example

- Relations r, s :

A	B	C	D	E
α	a	α	a	1
α	a	γ	a	1
α	a	γ	b	1
β	a	γ	a	1
β	a	γ	b	3
γ	a	γ	a	1
γ	a	γ	b	1
γ	a	β	b	1

- $r \div s$:

A	B	C
α	a	γ
γ	a	γ

Division Operation (Cont.)

- Property
- Let $q=r \div s$
- Then q is the largest relation satisfying $q \times s \subseteq r$
- Definition in terms of the basic algebra operation

Let $r(R)$ and $s(S)$ be relations, and let $S \subseteq R$

$$
r \div s=\Pi_{R-S}(r)-\Pi_{R-S}\left(\left(\Pi_{R-S}(r) \times s\right)-\Pi_{R-S, S}(r)\right)
$$

To see why

- $\Pi_{R-S, S}(r)$ simply reorders attributes of r
- $\left.\quad \Pi_{R-S}\left(\Pi_{R-S}(r) \times s\right)-\Pi_{R-S, S}(r)\right)$ gives those tuples t in $\Pi_{R-S}(r)$ such that for some tuple $u \in s, t u \notin r$.

Assignment Operation

- The assignment operation (\leftarrow) provides a convenient way to express complex queries.
- Write query as a sequential program consisting of
- a series of assignments
- followed by an expression whose value is displayed as a result of the query.
- Assignment must always be made to a temporary relation variable.
- Example: Write $r \div s$ as

$$
\begin{aligned}
& \text { temp1 } \leftarrow \Pi_{R-S}(r) \\
& \text { temp2 } \leftarrow \Pi_{R-S}\left((\text { temp1 xs })-\Pi_{R-S, S}(r)\right) \\
& \text { result }=\text { temp1 }- \text { temp2 }
\end{aligned}
$$

- The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow.
- May use variable in subsequent expressions.

Bank Example Queries

- Find the names of all customers who have a loan and an account at bank.

$$
\Pi_{\text {customer_name }} \text { (borrower) } \cap \Pi_{\text {customer_name }} \text { (depositor) }
$$

- Find the name of all customers who have a loan at the bank and the loan amount
$\prod_{\text {Customer-name, loan-number, amount }}$ (borrower \bowtie loan)

Bank Example Queries

- Find all customers who have an account from at least the "Downtown" and the Uptown" branches.
- Query 1

$$
\begin{gathered}
\Pi_{\text {customer_name }}\left(\sigma_{\text {branch_name }}=\text { "Downtown" }\left(\text { depositor } \bowtie_{\text {account }}\right)\right) \cap \\
\Pi_{\text {customer_name }}\left(\sigma_{\text {branch_name }}=\text { "Uptown" }(\text { depositor } \bowtie \text { account })\right)
\end{gathered}
$$

- Query 2

$$
\begin{aligned}
& \Pi_{\text {customer_name, branch_name }}(\text { depositor } \bowtie \text { account }) \\
& \quad \div \rho_{\text {temp(branch_name) }}(\{\text { ("Downtown"), ("Uptown") })
\end{aligned}
$$

Note that Query 2 uses a constant relation.

Example Queries

- Find all customers who have an account at all branches located in Brooklyn city.

$$
\begin{aligned}
& \prod_{\text {customer_name, branch_name }}(\text { depositor凶 account }) \\
& \div \prod_{\text {branch_name }}\left(\sigma_{\text {branch_city }}=\right.\text { "Brooklyn" } \\
& (\text { branch }))
\end{aligned}
$$

Extended Relational-Algebra-Operations

- Generalized Projection
- Aggregate Functions
- Outer Join

Generalized Projection

- Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$
\prod_{F_{1}, F_{2}, \ldots, F_{n}}(E)
$$

- E is any relational-algebra expression
- Each of $F_{1}, F_{2}, \ldots, F_{n}$ are are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation credit_info(customer_name, limit, credit_balance), find how much more each person can spend:

$$
\Pi_{\text {customer_name, limit - credit_balance }} \text { (credit_info) }
$$

Aggregate Functions and Operations

- Aggregation function takes a collection of values and returns a single value as a result.
avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values
- Aggregate operation in relational algebra

$$
G_{1}, G_{2}, \ldots, G_{n} \vartheta_{F_{1}\left(A_{1}\right), F_{2}\left(A_{2}, \ldots, F_{n}\left(A_{n}\right)\right.}(E)
$$

E is any relational-algebra expression

- $G_{1}, G_{2} \ldots, G_{n}$ is a list of attributes on which to group (can be empty)
- Each F_{i} is an aggregate function
- Each A_{i} is an attribute name

Aggregate Operation - Example

- Relation r :

A	B	C
α	α	7
α	β	7
β	β	3
β	β	10

- $g_{\text {sum(c) }}(\mathrm{r})$
sum(c)

Aggregate Operation - Example

- Relation account grouped by branch-name:

branch_name	account_number	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

branch_name $g_{\text {sum(balance) }}$ (account)

branch_name	sum(balance)
Perryridge	1300
Brighton	1500
Redwood	700

Aggregate Functions (Cont.)

- Result of aggregation does not have a name
- Can use rename operation to give it a name
- For convenience, we permit renaming as part of aggregate operation
branch_name 9 sum(balance) as sum_balance (account)

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses null values:
- null signifies that the value is unknown or does not exist
- All comparisons involving null are (roughly speaking) false by definition.
- We shall study precise meaning of comparisons with nulls later

Outer Join - Example

- Relation loan

loan_number	branch_name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

- Relation borrower

Customer_name	loan_number
Jones	$\mathrm{L}-170$
Smith	$\mathrm{L}-230$
Hayes	$\mathrm{L}-155$

Outer Join - Example

- Inner Join

Ioan \bowtie Borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith

■ Left Outer Join
Ioan $\triangle \mathbb{X}$ Borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null

Outer Join - Example

- Right Outer Join
loan \bowtie borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-155	null	null	Hayes

■ Full Outer Join
loan $\triangle \bigvee_{-}$borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null
L-155	null	null	Hayes

Null Values

- It is possible for tuples to have a null value, denoted by null, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving null is null.
- Aggregate functions simply ignore null values (as in SQL)
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same (as in SQL)

Null Values

- Comparisons with null values return the special truth value: unknown
- If false was used instead of unknown, then not $(A<5)$ would not be equivalent to $\quad A>=5$
- Three-valued logic using the truth value unknown:
- OR: (unknown or true) = true, (unknown or false) = unknown (unknown or unknown) = unknown
- AND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown
- NOT: (not unknown) = unknown
- In SQL " P is unknown" evaluates to true if predicate P evaluates to unknown
- Result of select predicate is treated as false if it evaluates to unknown

Modification of the Database

- The content of the database may be modified using the following operations:
- Deletion
- Insertion
- Updating
- All these operations are expressed using the assignment operator.

Deletion

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

$$
r \leftarrow r-E
$$

where r is a relation and E is a relational algebra query.

Deletion Examples

- Delete all account records in the Perryridge branch. account \leftarrow account $-\sigma_{\text {branch_name }=\text { "Perryridge" (account }) ~}^{\text {(}}$)
- Delete all loan records with amount in the range of 0 to 50
- Delete all accounts at branches located in Needham.

$$
\begin{aligned}
& r_{1} \leftarrow \sigma_{\text {branch_city }}=\text { "Needham" }(\text { account } \bowtie \text { branch }) \\
& r_{2} \leftarrow \Pi_{\text {branch_name, account_number, balance }}\left(r_{1}\right) \\
& r_{3} \leftarrow \Pi_{\text {customer_name, account_number }}\left(r_{2} \bowtie \text { depositor }\right) \\
& \text { account } \leftarrow \text { account }-r_{2} \\
& \text { depositor } \leftarrow \text { depositor }-r_{3}
\end{aligned}
$$

Insertion

- To insert data into a relation, we either:
- specify a tuple to be inserted
- write a query whose result is a set of tuples to be inserted
- in relational algebra, an insertion is expressed by:

$$
r \leftarrow r \cup E
$$

where r is a relation and E is a relational algebra expression.

- The insertion of a single tuple is expressed by letting E be a constant relation containing one tuple.

Insertion Examples

- Insert information in the database specifying that Smith has $\$ 1200$ in account A-973 at the Perryridge branch.

```
account }\leftarrow\mathrm{ account }\cup{("Perryridge", A-973, 1200)
depositor }\leftarrow depositor \cup {("Smith", A-973)
```

- Provide as a gift for all loan customers in the Perryridge branch, a $\$ 200$ savings account. Let the loan number serve as the account number for the new savings account.

$$
\begin{aligned}
& r_{1} \leftarrow\left(\sigma_{\text {branch_name }}=\right.\text { "Perryridge" } \\
& \text { account } \leftarrow \text { account } \cup \prod_{\text {branch_name, loan_number,_200 }}\left(r_{1}\right) \\
& \text { depositor } \leftarrow \text { depositor } \cup \prod_{\text {customer_name, loan_number }}\left(r_{1}\right)
\end{aligned}
$$

Updating

- A mechanism to change a value in a tuple without charging all values in the tuple
- Use the generalized projection operator to do this task

$$
r \leftarrow \prod_{F_{1}, F_{2}, \ldots, F_{1},}(r)
$$

- Each F_{i} is either
- the $I^{\text {th }}$ attribute of r, if the $l^{\text {th }}$ attribute is not updated, or,
- if the attribute is to be updated F_{i} is an expression, involving only constants and the attributes of r, which gives the new value for the attribute

Update Examples

- Make interest payments by increasing all balances by 5 percent.

```
account }\leftarrow\mp@subsup{\Pi}{\mathrm{ account_number, branch_name, balance * 1.05 (account)}}{
```

- Pay all accounts with balances over $\$ 10,0006$ percent interest and pay all others 5 percent

$\cup \Pi_{\text {account_number, branch_name, balance } * 1.05}\left(\sigma_{\text {BAL }} \leq 10000(\right.$ account $\left.)\right)$

End of Chapter 2

Database System Concepts, $5^{\text {th }}$ Ed.

©Silberschatz, Korth and Sudarshan
See www.dlb-book.com for conditions on re-use

Figure 2.3. The branch relation

branch_name	branch_city	assets
Brighton	Brooklyn	7100000
Downtown	Brooklyn	9000000
Mianus	Horseneck	400000
North Town	Rye	3700000
Perryridge	Horseneck	1700000
Pownal	Bennington	300000
Redwood	Palo Alto	2100000
Round Hill	Horseneck	8000000

Figure 2.6: The loan relation

loan_number	branch_name	amount
L-11	Round Hill	900
L-14	Downtown	1500
L-15	Perryridge	1500
L-16	Perryridge	1300
L-17	Downtown	1000
L-23	Redwood	2000
L-93	Mianus	500

Figure 2.7: The borrower relation

customer_name loan_number

Adams
Curry
Hayes
Jackson
Jones
Smith
Smith
Williams
\[\begin{aligned} \& \hline L-16
\& L-93
\& L-15
\& L-14
\& L-17
\& L-11
\& L-23
\& L-17 \end{aligned} \]

Figure 2.8: Schema diagram

Figure 2.9

Result of $\sigma_{\text {branch_name }}=$ "Perryridge" $($ loan $)$

loan_number branch_name amount

$$
\begin{aligned}
& \mathrm{L}-15 \\
& \mathrm{~L}-16
\end{aligned}
$$

Perryridge
 1500 Perryridge
 1300

Figure 2.10:

Loan number and the amount of the Ioan

loan_number	amount
$\mathrm{L}-11$	900
$\mathrm{~L}-14$	1500
$\mathrm{~L}-15$	1500
$\mathrm{~L}-16$	1300
$\mathrm{~L}-17$	1000
$\mathrm{~L}-23$	2000
$\mathrm{~L}-93$	500

Figure 2.11: Names of all customers who have either an account or an loan

Adams
Curry
Hayes
Jackson
Jones
Smith
Williams
Lindsay
Johnson
Turner

Figure 2.12:

Customers with an account but no loan

customer_name

Johnson Lindsay

 Turner
Figure 2.13: Result of borrower |X| loan

customer_name	borrower. loan_number	loan. loan_number	branch_name	amount
Adams	L-16	L-11	Round Hill	900
Adams	L-16	L-14	Downtown	1500
Adams	L-16	L-15	Perryridge	1500
Adams	L-16	L-16	Perryridge	1300
Adams	L-16	L-17	Downtown	1000
Adams	L-16	L-23	Redwood	2000
Adams	L-16	L-93	Mianus	500
Curry	L-93	L-11	Round Hill	900
Curry	L-93	L-14	Downtown	1500
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Curry	L-93	L-17	Downtown	1000
Curry	L-93	L-23	Redwood	2000
Curry	L-93	L-93	Mianus	500
Hayes	L-15	L-11		900
Hayes	L-15	L-14		1500
Hayes	L-15	L-15		1500
Hayes	L-15	L-16		1300
Hayes	L-15	L-17		1000
Hayes	L-15	L-23		2000
Hayes	L-15	L-93		500
-••	-••	-••	*	\cdots
. .	. \cdot	.	\cdots	. \cdot
Smith	. ${ }^{\text {c }}$	\cdots	Round Hill	\cdots
Smith	L-23	L-11	Round Hill	900
Smith	L-23	L-14	Downtown	1500
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge	1300
Smith	L-23	L-17	Downtown	1000
Smith	L-23	L-23	Redwood	2000
Smith	L-23	L-93	Mianus	500
Williams	L-17	L-11	Round Hill	900
Williams	L-17	L-14	Downtown	1500
Williams	L-17	L-15	Perryridge	1500
Williams	L-17	L-16	Perryridge	1300
Williams	L-17	L-17	Downtown	1000
Williams	L-17	L-23	Redwood	2000
Williams	L-17	L-93	Mianus	500

Figure 2.14

customer_name	borrower. loan_number	loan. loan_number	branch_name	amount
Adams	$\mathrm{L}-16$	$\mathrm{~L}-15$	Perryridge	1500
Adams	$\mathrm{L}-16$	$\mathrm{~L}-16$	Perryridge	1300
Curry	$\mathrm{L}-93$	$\mathrm{~L}-15$	Perryridge	1500
Curry	$\mathrm{L}-93$	$\mathrm{~L}-16$	Perryridge	1300
Hayes	$\mathrm{L}-15$	$\mathrm{~L}-15$	Perryridge	1500
Hayes	$\mathrm{L}-15$	$\mathrm{~L}-16$	Perryridge	1300
Jackson	$\mathrm{L}-14$	$\mathrm{~L}-15$	Perryridge	1500
Jackson	$\mathrm{L}-14$	$\mathrm{~L}-16$	Perryridge	1300
Jones	$\mathrm{L}-17$	$\mathrm{~L}-15$	Perryridge	1500
Jones	$\mathrm{L}-17$	$\mathrm{~L}-16$	Perryridge	1300
Smith	$\mathrm{L}-11$	$\mathrm{~L}-15$	Perryridge	1500
Smith	$\mathrm{L}-11$	$\mathrm{~L}-16$	Perryridge	1300
Smith	$\mathrm{L}-23$	$\mathrm{~L}-15$	Perryridge	1500
Smith	$\mathrm{L}-23$	$\mathrm{~L}-16$	Perryridge	1300
Williams	$\mathrm{L}-17$	$\mathrm{~L}-15$	Perryridge	1500
Williams	$\mathrm{L}-17$	$\mathrm{~L}-16$	Perryridge	1300

Figure 2.15

customer_name

Adams

Hayes

Figure 2.16

balance
500
400
700
750
350

Figure 2.17
 Largest account balance in the bank

Figure 2.18: Customers who live on the same street and in the same city as Smith

customer_name

Curry Smith

Figure 2.19: Customers with both an account and a loan at the bank

customer_name

Hayes
 Jones Smith

Figure 2.20

customer_name	loan_number	amount
Adams	$\mathrm{L}-16$	1300
Curry	$\mathrm{L}-93$	500
Hayes	$\mathrm{L}-15$	1500
Jackson	$\mathrm{L}-14$	1500
Jones	$\mathrm{L}-17$	1000
Smith	$\mathrm{L}-23$	2000
Smith	$\mathrm{L}-11$	900
Williams	$\mathrm{L}-17$	1000

Figure 2.21

branch_name

Brighton

Perryridge

Figure 2.22

branch_name

Brighton
Downtown

Figure 2.23

customer_name branch_name

Hayes Johnson Johnson Jones Lindsay Smith Turner
Perryridge
Downtown
Brighton
Brighton
Redwood
Mianus
Round Hill

Figure 2.24: The credit_info relation

customer_name	limit	credit_balance
Curry	2000	1750
Hayes	1500	1500
Jones	6000	700
Smith	2000	400

Figure 2.25

customer_name	credit_available
Curry	250
Jones	5300
Smith	1600
Hayes	0

Figure 2.26: The pt_works relation

employee_name	branch_name	salary
Adams	Perryridge	1500
Brown	Perryridge	1300
Gopal	Perryridge	5300
Johnson	Downtown	1500
Loreena	Downtown	1300
Peterson	Downtown	2500
Rao	Austin	1500
Sato	Austin	1600

Figure 2.27

The pt_works relation after regrouping

employee_name	branch_name	salary
Rao	Austin	1500
Sato	Austin	1600
Johnson	Downtown	1500
Loreena	Downtown	1300
Peterson	Downtown	2500
Adams	Perryridge	1500
Brown	Perryridge	1300
Gopal	Perryridge	5300

Figure 2.28

branch_name sum of salary
 Austin
 Downtown Perryridge
 3100 5300 8100

Figure 2.29

\section*{| branch_name | sum_salary | max_salary |
| :--- | :--- | :--- |
 | Austin | 3100 | 1600 |
| :--- | :--- | :--- |
| Downtown | 5300 | 2500 |
| Perryridge | 8100 | 5300 |}

Figure 2.30

The employee and fitworks relations

employee_name	street	city
Coyote	Toon	Hollywood
Rabbit	Tunnel	Carrotville
Smith	Revolver	Death Valley
Williams	Seaview	Seattle
employee_name branch_name salary Coyote Mesa 1500 Rabbit Mesa 1300 Gates Redmond 5300 Williams Redmond 1500		

Figure 2.31

employee_name	street	city	branch_name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500

Figure 2.32

employee_name	street	city	branch_name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null

Figure 2.33

employee_name	street	city	branch_name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Gates	null	null	Redmond	5300

Figure 2.34

employee_name	street	city	branch_name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null
Gates	null	null	Redmond	5300

