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IntroductionIntroduction
Alternative ways of evaluating a given query

Equivalent expressions
Different algorithms for each operation
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Introduction (Cont.)Introduction (Cont.)

An evaluation plan defines exactly what algorithm is used for each 
operation, and how the execution of the operations is coordinated.
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Introduction (Cont.)Introduction (Cont.)

Cost difference between evaluation plans for a query can be enormous
E.g. seconds vs. days in some cases

Steps in cost-based query optimization
1. Generate logically equivalent expressions using equivalence rules
2. Annotate resultant expressions to get alternative query plans
3. Choose the cheapest plan based on estimated cost

Estimation of plan cost based on:
Statistical information about relations. Examples:

number of tuples, number of distinct values for an attribute
Statistics estimation for intermediate results

to compute cost of complex expressions
Cost formulae for algorithms, computed using statistics
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Generating Equivalent ExpressionsGenerating Equivalent Expressions
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Transformation of Relational ExpressionsTransformation of Relational Expressions

Two relational algebra expressions are said to be equivalent if the 
two expressions generate the same set of tuples on every legal 
database instance

Note: order of tuples is irrelevant
In SQL, inputs and outputs are multisets of tuples

Two expressions in the multiset version of the relational algebra 
are said to be equivalent if the two expressions generate the same 
multiset of tuples on every legal database instance. 

An equivalence rule says that expressions of two forms are 
equivalent

Can replace expression of first form by second, or vice versa
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Equivalence RulesEquivalence Rules

1. Conjunctive selection operations can be deconstructed into a 
sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is needed, the 
others can be omitted.

4. Selections can be combined with Cartesian products and theta joins.
a. σθ(E1 X E2) =  E1 θ E2

b. σθ1(E1 θ2 E2) =  E1 θ1∧ θ2 E2
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Equivalence Rules (Cont.)Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.
E1      θ E2 = E2 θ E1

6. (a) Natural join operations are associative:
(E1      E2)    E3 = E1      (E2 E3)

(b) Theta joins are associative in the following manner:

(E1       θ1 E2)     θ2∧ θ3 E3 = E1        θ1∧ θ3 (E2 θ2 E3)

where θ2 involves attributes from only E2 and E3.



©Silberschatz, Korth and Sudarshan14.10Database System Concepts - 5th Edition, Oct 5,  2006.

Pictorial Depiction of Equivalence RulesPictorial Depiction of Equivalence Rules
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Equivalence Rules (Cont.)Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation under 
the following two conditions:
(a)  When all the attributes in θ0 involve only the attributes of one 

of the expressions (E1) being joined.

σθ0(E1  θ E2) = (σθ0(E1))    θ E2

(b) When θ 1 involves only the attributes of E1 and θ2 involves  
only the attributes of E2.

σθ1∧θ2 (E1 θ E2) =  (σθ1(E1))    θ (σθ2 (E2))
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Equivalence Rules (Cont.)Equivalence Rules (Cont.)

8. The projection operation distributes over the theta join operation as 
follows:
(a) if θ involves only attributes from L1 ∪ L2:

(b) Consider a join E1      θ E2. 
Let L1 and L2 be sets of attributes from E1 and E2, respectively.  
Let L3 be attributes of E1 that are involved in join condition θ, but are 
not in L1 ∪ L2, and
let L4 be attributes of E2 that are involved in join condition θ, but are 
not in L1 ∪ L2.
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Equivalence Rules (Cont.)Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative 
E1 ∪ E2 = E2 ∪ E1
E1 ∩ E2 = E2 ∩ E1

(set difference is not commutative).
10. Set union and intersection are associative.

(E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)
(E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)

11. The selection operation distributes over ∪, ∩ and –. 
σθ (E1 – E2) = σθ (E1) – σθ(E2)

and similarly for ∪ and ∩ in place of  –
Also:           σθ (E1 – E2) = σθ(E1) – E2

and similarly for ∩ in place of  –, but not for ∪

12. The projection operation distributes over union
ΠL(E1 ∪ E2) = (ΠL(E1)) ∪ (ΠL(E2)) 



©Silberschatz, Korth and Sudarshan14.14Database System Concepts - 5th Edition, Oct 5,  2006.

Transformation Example: Pushing SelectionsTransformation Example: Pushing Selections

Query:  Find the names of all customers who have an account at 
some branch located in Brooklyn.
Πcustomer_name(σbranch_city = “Brooklyn”

(branch     (account      depositor)))
Transformation using rule 7a.
Πcustomer_name

((σbranch_city =“Brooklyn” (branch)) 
(account depositor))

Performing the selection as early as possible reduces the size of the 
relation to be joined. 
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Example with Multiple TransformationsExample with Multiple Transformations

Query:  Find the names of all customers with an account at a 
Brooklyn branch whose account balance is over $1000.
Πcustomer_name((σbranch_city = “Brooklyn” ∧ balance > 1000

(branch     (account      depositor)))
Transformation using join associatively (Rule 6a):
Πcustomer_name((σbranch_city = “Brooklyn” ∧ balance > 1000

(branch     account))      depositor)

Second form provides an opportunity to apply the “perform 
selections early” rule, resulting in the subexpression

σbranch_city = “Brooklyn” (branch)     σ balance > 1000 (account)
Thus a sequence of transformations can be useful
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Multiple Transformations (Cont.)Multiple Transformations (Cont.)
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Transformation Example: Pushing ProjectionsTransformation Example: Pushing Projections

When we compute
(σbranch_city = “Brooklyn” (branch)    account )

we obtain a relation whose schema is:
(branch_name, branch_city, assets, account_number, balance)
Push projections using equivalence rules 8a and 8b; eliminate unneeded 
attributes from intermediate results to get:
Πcustomer_name ((
Πaccount_number ( (σbranch_city = “Brooklyn” (branch)     account ))    

depositor )
Performing the projection as early as possible reduces the size of the 
relation to be joined. 

Πcustomer_name((σbranch_city = “Brooklyn” (branch)     account)     depositor)
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Join Ordering ExampleJoin Ordering Example

For all relations r1, r2, and r3,
(r1 r2)    r3  = r1 (r2 r3 )

(Join Associativity)
If r2 r3 is quite large and r1 r2 is small, we choose

(r1 r2)    r3 

so that we compute and store a smaller temporary relation.
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Join Ordering Example (Cont.)Join Ordering Example (Cont.)

Consider the expression
Πcustomer_name ((σbranch_city = “Brooklyn” (branch))

(account     depositor))
Could compute   account     depositor   first, and join result with 

σbranch_city = “Brooklyn” (branch)
but   account     depositor   is likely to be a large relation.
Only a small fraction of the bank’s customers are likely to have 
accounts in branches located in Brooklyn

it is better to compute
σbranch_city = “Brooklyn” (branch)    account

first.



©Silberschatz, Korth and Sudarshan14.20Database System Concepts - 5th Edition, Oct 5,  2006.

Enumeration of Equivalent ExpressionsEnumeration of Equivalent Expressions

Query optimizers use equivalence rules to systematically generate 
expressions equivalent to the given expression
Can generate all equivalent expressions as follows: 

Repeat
apply all applicable equivalence  rules on every equivalent 
expression found so far
add newly generated expressions to the set of equivalent 
expressions 

Until no new equivalent expressions are generated above
The above approach is very expensive in space and time

Two approaches
Optimized plan generation based on transformation rules
Special case approach for queries with only selections, projections 
and joins
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Implementing Transformation Based Implementing Transformation Based 
OptimizationOptimization

Space requirements reduced by sharing common sub-expressions:
when E1 is generated from E2 by an equivalence rule, usually only the top 
level of the two are different, subtrees below are the same and can be 
shared using pointers

E.g. when applying join commutativity

Same sub-expression may get generated multiple times
Detect duplicate sub-expressions and share one copy

Time requirements are reduced by not generating all expressions
Dynamic programming

We will study only the special case of dynamic programming for join 
order optimization

E1 E2
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Cost EstimationCost Estimation

Cost of each operator computer as described in Chapter 13
Need statistics of input relations

E.g. number of tuples, sizes of tuples
Inputs can be results of sub-expressions

Need to estimate statistics of expression results
To do so, we require additional statistics

E.g. number of distinct values for an attribute
More on cost estimation later
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Choice of Evaluation PlansChoice of Evaluation Plans

Must consider the interaction of evaluation techniques when choosing 
evaluation plans

choosing the cheapest algorithm for each operation independently
may not yield best overall algorithm.  E.g.

merge-join may be costlier than hash-join, but may provide a 
sorted output which reduces the cost for an outer level 
aggregation.
nested-loop join may provide opportunity for pipelining

Practical query optimizers incorporate elements of the following two 
broad approaches:
1. Search all the plans and choose the best plan in a 

cost-based fashion.
2. Uses heuristics to choose a plan.
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CostCost--Based OptimizationBased Optimization

Consider finding the best join-order for r1 r2      . . . rn.
There are (2(n – 1))!/(n – 1)! different join orders for above expression.  
With n = 7, the number is 665280, with n = 10, the number is greater 
than 176 billion!
No need to generate all the join orders.  Using dynamic programming, 
the least-cost join order for any subset of 
{r1, r2, . . . rn} is computed only once and stored for future use. 
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Dynamic Programming in OptimizationDynamic Programming in Optimization

To find best join tree for a set of n relations:
To find best plan for a set S of n relations, consider all possible 
plans of the form:  S1 (S – S1) where S1 is any non-empty 
subset of S.
Recursively compute costs for joining subsets of S to find the cost 
of each plan.  Choose the cheapest of the 2n – 1 alternatives.
Base case for recursion:  single relation access plan

Apply all selections on Ri using best choice of indices on Ri

When plan for any subset is computed, store it and reuse it when it 
is required again, instead of recomputing it

Dynamic programming
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Join Order Optimization AlgorithmJoin Order Optimization Algorithm

procedure findbestplan(S)
if (bestplan[S].cost ≠ ∞)

return bestplan[S]
// else bestplan[S] has not been computed earlier, compute it now
if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on the best way 
of accessing S  /* Using selections on S and indices on S */

else for each non-empty subset S1 of S such that S1 ≠ S
P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost

bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”
return bestplan[S]
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Left Deep Join TreesLeft Deep Join Trees

In left-deep join trees, the right-hand-side input for each join is 
a relation, not the result of an intermediate join.
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Cost of OptimizationCost of Optimization

With dynamic programming time complexity of optimization with bushy 
trees is O(3n).  

With n = 10, this number is 59000 instead of 176 billion!
Space complexity is O(2n) 
To find best left-deep join tree for a set of n relations:

Consider n alternatives with one relation as right-hand side input 
and the other relations as left-hand side input.
Modify optimization algorithm:

Replace “for each non-empty subset S1 of S such that S1 ≠ S”
By:   for each relation r in S

let S1 = S – r .
If only left-deep trees are considered, time complexity of finding best join 
order is O(n 2n)

Space complexity remains at O(2n) 
Cost-based optimization is expensive, but worthwhile for queries on 
large datasets (typical queries have small n, generally < 10)
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Interesting Sort OrdersInteresting Sort Orders

Consider the expression (r1 r2)     r3 (with A as common attribute)
An interesting sort order is a particular sort order of tuples that could 
be useful for a later operation

Using merge-join to compute r1 r2 may be costlier than hash join 
but generates result sorted on A
Which in turn may make merge-join with r3 cheaper, which may 
reduce cost of join with r3 and minimizing overall cost 
Sort order may also be useful for order by and for grouping

Not sufficient to find the best join order for each subset of the set of n
given relations

must find the best join order for each subset, for each interesting sort 
order
Simple extension of earlier dynamic programming algorithms
Usually, number of interesting orders is quite small and doesn’t 
affect time/space complexity significantly



©Silberschatz, Korth and Sudarshan14.30Database System Concepts - 5th Edition, Oct 5,  2006.

Heuristic OptimizationHeuristic Optimization

Cost-based optimization is expensive, even with dynamic programming.
Systems may use heuristics to reduce the number of choices that must 
be made in a cost-based fashion.
Heuristic optimization transforms the query-tree by using a set of rules 
that typically (but not in all cases) improve execution performance:

Perform selection early (reduces the number of tuples)
Perform projection early (reduces the number of attributes)
Perform most restrictive selection and join operations (i.e. with 
smallest result size) before other similar operations.
Some systems use only heuristics, others combine heuristics with
partial cost-based optimization.
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Structure of Query OptimizersStructure of Query Optimizers

Many optimizers considers only left-deep join orders.
Plus heuristics to push selections and projections down the query 
tree
Reduces optimization complexity and generates plans amenable to 
pipelined evaluation.

Heuristic optimization used in some versions of Oracle:
Repeatedly pick “best” relation to join next 

Starting from each of n starting points.  Pick best among these
Intricacies of SQL complicate query optimization

E.g. nested subqueries
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Structure of Query Optimizers (Cont.)Structure of Query Optimizers (Cont.)

Some query optimizers integrate heuristic selection and the 
generation of alternative access plans.

Frequently used approach
heuristic rewriting of nested block structure and aggregation
followed by cost-based join-order optimization for each block

Some optimizers (e.g. SQL Server) apply transformations to 
entire query and do not depend on block structure

Even with the use of heuristics, cost-based query optimization 
imposes a substantial overhead.

But is worth it for expensive queries
Optimizers often use simple heuristics for very cheap queries, 
and perform exhaustive enumeration for more expensive 
queries 
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Statistics for Cost EstimationStatistics for Cost Estimation
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Statistical Information for Cost EstimationStatistical Information for Cost Estimation

nr:  number of tuples in a relation r.
br: number of blocks containing tuples of r.
lr: size of a tuple of r.
fr: blocking factor of r — i.e., the number of tuples of r that fit into one block.
V(A, r): number of distinct values that appear in r for attribute A; same as 
the size of ∏A(r).
If tuples of r are stored together physically in a file, then: 
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HistogramsHistograms

Histogram on attribute age of relation person

Equi-width histograms
Equi-depth histograms
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Selection Size EstimationSelection Size Estimation

σA=v(r)
nr / V(A,r) : number of records that will satisfy the selection
Equality condition on a key attribute: size estimate = 1

σA≤V(r) (case of σA ≥ V(r) is symmetric)
Let c denote  the estimated number of tuples satisfying the condition. 
If min(A,r) and max(A,r) are available in catalog

c = 0 if v < min(A,r)

c =

If histograms available, can refine above estimate
In absence of statistical information c is assumed to be nr / 2.
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Size Estimation of Complex SelectionsSize Estimation of Complex Selections

The selectivity of a condition θi is the probability that a tuple in the 
relation r satisfies θi . 

If si is the number of satisfying tuples in r, the selectivity of θi is 
given by si /nr.

Conjunction:  σθ1∧ θ2∧. . . ∧ θn (r).  Assuming indepdence, estimate of

tuples in the result is:

Disjunction:σθ1∨ θ2 ∨. . . ∨ θn (r). Estimated number of tuples:

Negation:  σ¬θ(r). Estimated number of tuples:
nr – size(σθ(r))
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Join Operation:  Running ExampleJoin Operation:  Running Example

Running example: 
depositor customer

Catalog information for join examples:
ncustomer = 10,000.
fcustomer = 25, which implies that 

bcustomer =10000/25 = 400.
ndepositor = 5000.
fdepositor = 50, which implies that 

bdepositor = 5000/50 = 100.
V(customer_name, depositor) = 2500, which implies that , on 
average, each customer has two accounts.

Also assume that customer_name in depositor is a foreign key 
on customer.
V(customer_name, customer) = 10000 (primary key!)
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Estimation of the Size of JoinsEstimation of the Size of Joins

The Cartesian product r x s contains nr .ns tuples; each tuple occupies 
sr + ss bytes.
If R ∩ S = ∅, then r s is the same as r  x s. 
If R ∩ S is a key for R, then a tuple of s will join with at most one tuple 
from r

therefore, the number of tuples in r     s is no greater than the 
number of tuples in s.

If R ∩ S in S is a foreign key in S referencing R, then the number of 
tuples in r s is exactly the same as the number of tuples in s.

The case for R ∩ S being a foreign key referencing S is 
symmetric.

In the example query depositor     customer, customer_name in 
depositor is a foreign key of customer

hence, the result has exactly ndepositor tuples, which is 5000
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Estimation of the Size of Joins (Cont.)Estimation of the Size of Joins (Cont.)

If R ∩ S = {A} is not a key for R or S.
If we assume that every tuple t in R produces tuples in R    S, the 
number of tuples in R S is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more accurate one.
Can improve on above if histograms are available

Use formula similar to above, for each cell of histograms on the
two relations 

),( sAV
nn sr ∗

),( rAV
nn sr ∗
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Estimation of the Size of Joins (Cont.)Estimation of the Size of Joins (Cont.)

Compute the size estimates for depositor    customer without using 
information about foreign keys:

V(customer_name, depositor) = 2500, and
V(customer_name, customer) = 10000
The two estimates are 5000 * 10000/2500 - 20,000 and 5000 * 
10000/10000 = 5000
We choose the lower estimate, which in this case, is the same as
our earlier computation using foreign keys.
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Size Estimation for Other OperationsSize Estimation for Other Operations

Projection:  estimated size of ∏A(r)   =   V(A,r)
Aggregation : estimated size of AgF(r)   = V(A,r)

Set operations
For unions/intersections of selections on the same relation: 
rewrite and use size estimate for selections

E.g. σθ1 (r) ∪ σθ2 (r)  can be rewritten as σθ1 σθ2 (r)
For operations on different relations:

estimated size of r ∪ s = size of r + size of s.   
estimated size of r ∩ s  = minimum size of r and size of s.
estimated size of r – s = r.
All the three estimates may be quite inaccurate, but provide 
upper bounds on the sizes.
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Size Estimation (Cont.)Size Estimation (Cont.)

Outer join:  
Estimated size of r        s  = size of  r      s  + size of r

Case of right outer join is symmetric
Estimated size of r          s  = size of r      s + size of r + size of s
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Estimation of Number of Distinct ValuesEstimation of Number of Distinct Values

Selections: σθ (r) 
If θ forces A to take a specified value: V(A,σθ (r)) = 1.

e.g., A = 3
If θ forces A to take on one of a specified set of values: 

V(A,σθ (r)) = number of specified values.
(e.g., (A = 1 V A = 3 V A = 4 )), 

If the selection condition θ is of the form A op r
estimated V(A,σθ (r)) = V(A.r) * s

where s is the selectivity of the selection.
In all the other cases: use approximate estimate of

min(V(A,r), nσθ (r) )
More accurate estimate can be got using probability theory, but 
this one works fine generally
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Estimation of Distinct Values (Cont.)Estimation of Distinct Values (Cont.)

Joins: r      s
If all attributes in A are from r

estimated V(A, r     s) = min (V(A,r), n r    s)
If A contains attributes A1 from r and A2 from s, then estimated 
V(A,r s) = 

min(V(A1,r)*V(A2 – A1,s), V(A1 – A2,r)*V(A2,s), nr     s)
More accurate estimate can be got using probability theory, but
this one works fine generally
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Estimation of Distinct Values (Cont.)Estimation of Distinct Values (Cont.)

Estimation of distinct values are straightforward for projections.
They are the same in ∏A (r) as in r. 

The same holds for grouping attributes of aggregation.
For aggregated values 

For min(A) and max(A), the number of distinct values can be 
estimated as min(V(A,r), V(G,r))  where G denotes grouping attributes
For other aggregates, assume all values are distinct, and use V(G,r)



Database System Concepts 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Additional Optimization TechniquesAdditional Optimization Techniques

Nested Subqueries
Materialized Views
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Optimizing Nested Subqueries**Optimizing Nested Subqueries**

Nested query example:
select customer_name
from borrower
where exists (select *

from depositor
where depositor.customer_name =                            

borrower.customer_name)
SQL conceptually treats nested subqueries in the where clause as 
functions that take parameters and return a single value or set of values

Parameters are variables from outer level query that are used in the 
nested subquery; such variables are called correlation variables

Conceptually, nested subquery is executed once for each tuple in the 
cross-product generated by the outer level from clause

Such evaluation is called correlated evaluation 
Note: other conditions in where clause may be used to compute a join 
(instead of a cross-product) before executing the nested subquery
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Optimizing Nested Subqueries (Cont.)Optimizing Nested Subqueries (Cont.)
Correlated evaluation may be quite inefficient since 

a large number of calls may be made to the nested query 
there may be unnecessary random I/O as a result

SQL optimizers attempt to transform nested subqueries to joins where 
possible, enabling use of efficient join techniques
E.g.: earlier nested query can be rewritten as 
select customer_name
from   borrower, depositor
where depositor.customer_name = borrower.customer_name

Note: the two queries generate different numbers of duplicates (why?)
Borrower can have duplicate customer-names
Can be modified to handle duplicates correctly as we will see

In general, it is not possible/straightforward to move the entire nested 
subquery from clause into the outer level query from clause

A temporary relation is created instead, and used in body of outer 
level query
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Optimizing Nested Subqueries (Cont.)Optimizing Nested Subqueries (Cont.)

In general, SQL queries of the form below can be rewritten as shown
Rewrite:  select …

from L1
where P1 and exists (select *

from L2
where P2)

To:           create table t1 as
select distinct V
from L2
where P2

1

select …
from L1, t1
where P1 and P2

2

P2
1 contains predicates in P2 that do not involve any correlation 

variables
P2

2 reintroduces predicates involving correlation variables, with 
relations renamed appropriately
V contains all attributes used in predicates with correlation 
variables
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Optimizing Nested Subqueries (Cont.)Optimizing Nested Subqueries (Cont.)

In our example, the original nested query would be transformed to
create table t1 as

select distinct customer_name
from depositor

select customer_name
from borrower, t1
where t1.customer_name = borrower.customer_name

The process of replacing a nested query by a query with a join (possibly 
with a temporary relation) is called decorrelation.
Decorrelation is more complicated when

the nested subquery uses aggregation, or
when the result of the nested subquery is used to test for equality, or 
when the condition linking the nested subquery to the other 
query is not exists, 
and so on.
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Materialized Views**Materialized Views**

A materialized view is a view whose contents are computed and 
stored.
Consider the view
create view branch_total_loan(branch_name, total_loan) as
select branch_name, sum(amount)
from loan
group by branch_name
Materializing the above view would be very useful if the total loan 
amount is required frequently

Saves the effort of finding multiple tuples and adding up their 
amounts
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Materialized View MaintenanceMaterialized View Maintenance

The task of keeping a materialized view up-to-date with the underlying 
data is known as materialized view maintenance
Materialized views can be maintained by recomputation on every 
update
A better option is to use incremental view maintenance

Changes to database relations are used to compute changes 
to the materialized view, which is then updated

View maintenance can be done by
Manually defining triggers on insert, delete, and update of each
relation in the view definition
Manually written code to update the view whenever database 
relations are updated
Periodic recomputation (e.g. nightly)
Above methods are directly supported by many database systems

Avoids manual effort/correctness issues
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Incremental View MaintenanceIncremental View Maintenance

The changes (inserts and deletes) to a relation or expressions are 
referred to as its differential

Set of tuples inserted to and deleted from r are denoted ir and dr
To simplify our description, we only consider inserts and deletes

We replace updates to a tuple by deletion of the tuple followed by 
insertion of the update tuple 

We describe how to compute the change to the result of each 
relational operation, given changes to its inputs
We then outline how to handle relational algebra expressions 
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Join OperationJoin Operation

Consider the materialized view v = r     s and an update to r
Let rold and rnew denote the old and new states of relation r
Consider the case of an insert to r:  

We can write rnew s as (rold ∪ ir)     s
And rewrite the above to  (rold s) ∪ (ir s)
But (rold s) is simply the old value of the materialized view, so 
the incremental change to the view is just      ir s

Thus, for inserts     vnew = vold∪(ir s)
Similarly for deletes    vnew = vold – (dr s)

A, 1
B, 2

1, p
2, r
2, s

A, 1, p
B, 2, r
B, 2, s

C,2
C, 2, r
C, 2, s
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Selection and Projection OperationsSelection and Projection Operations

Selection: Consider a view v = σθ(r).
vnew = vold ∪σθ(ir)
vnew = vold - σθ(dr)

Projection is a more difficult operation 
R = (A,B), and r(R) = { (a,2), (a,3)}
∏A(r) has a single tuple (a). 
If we delete the tuple (a,2) from r, we should not delete the tuple (a) 
from ∏A(r), but if we then delete (a,3) as well, we should delete the 
tuple

For each tuple in a projection ∏A(r) , we will keep a count of how many 
times it was derived

On insert of a tuple to r, if the resultant tuple is already in ∏A(r) we 
increment its count, else we add a new tuple with count = 1
On delete of a tuple from r, we decrement the count of the 
corresponding tuple in ∏A(r) 

if the count becomes 0, we delete the tuple from ∏A(r)
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Aggregation OperationsAggregation Operations

count : v = Agcount(B)
(r). 

When a set of tuples ir is inserted 
For each tuple r in ir, if the corresponding group is already present in v, 
we increment its count, else we add a new tuple with count = 1

When a set of tuples dr is deleted
for each tuple t in ir.we look for the group t.A in v, and subtract 1 from 
the count for the group. 

– If the count becomes 0, we delete from v the tuple for the group t.A

sum: v = Agsum (B)
(r) 

We maintain the sum in a manner similar to count, except we add/subtract 
the B value instead of adding/subtracting 1 for the count
Additionally we maintain the count in order to detect groups with no tuples.  
Such groups are deleted from v

Cannot simply test for sum = 0 (why?)
To handle the case of avg, we maintain the sum and count 
aggregate values separately, and divide at the end
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Aggregate Operations (Cont.)Aggregate Operations (Cont.)

min, max: v = Agmin (B) (r).  

Handling insertions on r is straightforward.
Maintaining the aggregate values min and max on deletions may 
be more expensive. We have to look at the other tuples of r that 
are in the same group to find the new minimum



©Silberschatz, Korth and Sudarshan14.59Database System Concepts - 5th Edition, Oct 5,  2006.

Other OperationsOther Operations

Set intersection: v = r ∩ s
when a tuple is inserted in r we check if it is present in s, and if so 
we add it to v. 
If the tuple is deleted from r, we delete it from the intersection if it 
is present. 
Updates to s are symmetric
The other set operations, union and set difference are handled in 
a similar fashion.

Outer joins are handled in much the same way as joins but with some 
extra work 

we leave details to you.
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Handling ExpressionsHandling Expressions

To handle an entire expression, we derive expressions for computing 
the incremental change to the result of each sub-expressions, starting 
from the smallest sub-expressions.
E.g. consider  E1 E2 where each of E1 and E2 may be a complex 
expression

Suppose the set of tuples to be inserted into E1 is given by D1 

Computed earlier, since smaller sub-expressions are handled 
first

Then  the set of tuples to be inserted into E1 E2 is given by
D1       E2

This is just the usual way of maintaining joins
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Query Optimization and Materialized ViewsQuery Optimization and Materialized Views

Rewriting queries to use materialized views:
A materialized view v = r       s is available 
A user submits a query    r      s     t
We can rewrite the query as v      t

Whether to do so depends on cost estimates for the two alternative
Replacing a use of a materialized view by the view definition:

A materialized view v = r       s is available, but without any index on it
User submits a query σA=10(v). 
Suppose also that s has an index on the common attribute B, and r has 
an index on attribute A. 
The best plan for this query may be to replace v by r      s, which can 
lead to the query plan σA=10(r)      s

Query optimizer should be extended to consider all above 
alternatives and  choose the best overall plan 
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Materialized View SelectionMaterialized View Selection

Materialized view selection: “What is the best set of views to 
materialize?”. 
Index selection: “what is  the best set of indices to create”

closely related, to materialized view selection
but simpler

Materialized view selection and index selection based on typical
system workload (queries and updates)

Typical goal: minimize time to execute workload , subject to 
constraints on space and time taken for some critical 
queries/updates
One of the steps in database tuning 

more on tuning in later chapters
Commercial database systems provide tools (called “tuning 
assistants” or “wizards”) to help the database administrator choose 
what indices and materialized views to create 
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TopTop--K QueriesK Queries

Top-K queries
select * 
from r, s
where r.B = s.B
order by r.A ascending
limit 10
Alternative 1: Indexed nested loops join with r as outer
Alternative 2: estimate highest r.A value in result and add 
selection (and r.A <= H) to where clause  

If < 10 results, retry with larger H
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Optimization of UpdatesOptimization of Updates

Halloween problem
update R set A = 5 * A 
where A > 10
If index on A is used to find tuples satisfying A > 10, and tuples 
updated immediately, same tuple may be found (and updated) 
multiple times
Solution 1: Always defer updates

collect the updates (old and new values of tuples) and update 
relation and indices in second pass
Drawback: extra overhead even if e.g. update is only on R.B, 
not on attributes in selection condition

Solution 2: Defer only if required
Perform immediate update if update does not affect attributes 
in where clause, and deferred updates otherwise.
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Parametric Query OptimizationParametric Query Optimization

Example 
select * 
from r natural join s
where r.a < $1

value of parameter $1 not known at compile time
known only at run time

different plans may be optimal for different values of $1
Solution 1: optimize at run time, each time query is submitted

can be expensive 
Solution 2: Parametric Query Optimization:

optimizer generates a set of plans, optimal for different values of $1
Set of optimal plans usually small for 1 to 3 parameters
Key issue: how to do find set of optimal plans efficiently

best one from this set is chosen at run time when $1 is known
Solution 3: Query Plan Caching

If optimizer decides that same plan is likely to be optimal for all parameter 
values, it caches plan and reuses it, else reoptimize each time
Implemented in many database systems
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Join MinimizationJoin Minimization

Join minimization
select r.A, r.B
from r, s
where r.B = s.B

Check if join with s is redundant, drop it 
E.g. join condition is on foreign key from r to s, no selection on s
Other sufficient conditions possible

select r.A, s1.B 
from r, s as s1, s as s2
where r.B=s1.B and r.B = s2.B and s1.A < 20 and s2.A < 10

join with s2 is redundant and can be dropped (along with 
selection on s2)

Lots of research in this area since 70s/80s!
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MultiqueryMultiquery OptimizationOptimization
Example

Q1: select * from (r natural join t) natural join s
Q2: select * from (r natural join u) natural join s

Both queries share common subexpression (r natural join s)
May be useful to compute (r natural join s) once and use it in both queries

But this may be more expensive in some situations
– e.g. (r natural join s) may be expensive, plans as shown in queries 

may be cheaper
Multiquery optimization: find best overall plan for a set of queries, expoiting
sharing of common subexpressions between queries where it is useful
Simple heuristic used in some database systems:

optimize each query separately
detect and exploiting common subexpressions in the individual optimal 
query plans

May not always give best plan, but is cheap to implement
Set of materialized views may share common subexpressions

As a result, view maintenance plans may share subexpressions
Multiquery optimization can be useful in such situations
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