
Database System Concepts 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 14: Query OptimizationChapter 14: Query Optimization

©Silberschatz, Korth and Sudarshan14.2Database System Concepts - 5th Edition, Oct 5, 2006.

Chapter 14: Query OptimizationChapter 14: Query Optimization

Introduction
Transformation of Relational Expressions
Catalog Information for Cost Estimation
Statistical Information for Cost Estimation
Cost-based optimization
Dynamic Programming for Choosing Evaluation Plans
Materialized views

©Silberschatz, Korth and Sudarshan14.3Database System Concepts - 5th Edition, Oct 5, 2006.

IntroductionIntroduction
Alternative ways of evaluating a given query

Equivalent expressions
Different algorithms for each operation

©Silberschatz, Korth and Sudarshan14.4Database System Concepts - 5th Edition, Oct 5, 2006.

Introduction (Cont.)Introduction (Cont.)

An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated.

©Silberschatz, Korth and Sudarshan14.5Database System Concepts - 5th Edition, Oct 5, 2006.

Introduction (Cont.)Introduction (Cont.)

Cost difference between evaluation plans for a query can be enormous
E.g. seconds vs. days in some cases

Steps in cost-based query optimization
1. Generate logically equivalent expressions using equivalence rules
2. Annotate resultant expressions to get alternative query plans
3. Choose the cheapest plan based on estimated cost

Estimation of plan cost based on:
Statistical information about relations. Examples:

number of tuples, number of distinct values for an attribute
Statistics estimation for intermediate results

to compute cost of complex expressions
Cost formulae for algorithms, computed using statistics

Database System Concepts 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Generating Equivalent ExpressionsGenerating Equivalent Expressions

©Silberschatz, Korth and Sudarshan14.7Database System Concepts - 5th Edition, Oct 5, 2006.

Transformation of Relational ExpressionsTransformation of Relational Expressions

Two relational algebra expressions are said to be equivalent if the
two expressions generate the same set of tuples on every legal
database instance

Note: order of tuples is irrelevant
In SQL, inputs and outputs are multisets of tuples

Two expressions in the multiset version of the relational algebra
are said to be equivalent if the two expressions generate the same
multiset of tuples on every legal database instance.

An equivalence rule says that expressions of two forms are
equivalent

Can replace expression of first form by second, or vice versa

©Silberschatz, Korth and Sudarshan14.8Database System Concepts - 5th Edition, Oct 5, 2006.

Equivalence RulesEquivalence Rules

1. Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is needed, the
others can be omitted.

4. Selections can be combined with Cartesian products and theta joins.
a. σθ(E1 X E2) = E1 θ E2

b. σθ1(E1 θ2 E2) = E1 θ1∧ θ2 E2

))(())((
1221

EE θθθθ σσσσ =

))(()(
2121

EE θθθθ σσσ =∧

)())))((((
121

EE LLnLL Π=ΠΠΠ KK

©Silberschatz, Korth and Sudarshan14.9Database System Concepts - 5th Edition, Oct 5, 2006.

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.
E1 θ E2 = E2 θ E1

6. (a) Natural join operations are associative:
(E1 E2) E3 = E1 (E2 E3)

(b) Theta joins are associative in the following manner:

(E1 θ1 E2) θ2∧ θ3 E3 = E1 θ1∧ θ3 (E2 θ2 E3)

where θ2 involves attributes from only E2 and E3.

©Silberschatz, Korth and Sudarshan14.10Database System Concepts - 5th Edition, Oct 5, 2006.

Pictorial Depiction of Equivalence RulesPictorial Depiction of Equivalence Rules

©Silberschatz, Korth and Sudarshan14.11Database System Concepts - 5th Edition, Oct 5, 2006.

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation under
the following two conditions:
(a) When all the attributes in θ0 involve only the attributes of one

of the expressions (E1) being joined.

σθ0(E1 θ E2) = (σθ0(E1)) θ E2

(b) When θ 1 involves only the attributes of E1 and θ2 involves
only the attributes of E2.

σθ1∧θ2 (E1 θ E2) = (σθ1(E1)) θ (σθ2 (E2))

©Silberschatz, Korth and Sudarshan14.12Database System Concepts - 5th Edition, Oct 5, 2006.

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

8. The projection operation distributes over the theta join operation as
follows:
(a) if θ involves only attributes from L1 ∪ L2:

(b) Consider a join E1 θ E2.
Let L1 and L2 be sets of attributes from E1 and E2, respectively.
Let L3 be attributes of E1 that are involved in join condition θ, but are
not in L1 ∪ L2, and
let L4 be attributes of E2 that are involved in join condition θ, but are
not in L1 ∪ L2.

))(())(()(2121 2121 EEEE LLLL ∏∏=∏ ∪ θθ

)))(())((()(2121 42312121
EEEE LLLLLLLL ∪∪∪∪ ∏∏∏=∏ θθ

©Silberschatz, Korth and Sudarshan14.13Database System Concepts - 5th Edition, Oct 5, 2006.

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative
E1 ∪ E2 = E2 ∪ E1
E1 ∩ E2 = E2 ∩ E1

(set difference is not commutative).
10. Set union and intersection are associative.

(E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)
(E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)

11. The selection operation distributes over ∪, ∩ and –.
σθ (E1 – E2) = σθ (E1) – σθ(E2)

and similarly for ∪ and ∩ in place of –
Also: σθ (E1 – E2) = σθ(E1) – E2

and similarly for ∩ in place of –, but not for ∪

12. The projection operation distributes over union
ΠL(E1 ∪ E2) = (ΠL(E1)) ∪ (ΠL(E2))

©Silberschatz, Korth and Sudarshan14.14Database System Concepts - 5th Edition, Oct 5, 2006.

Transformation Example: Pushing SelectionsTransformation Example: Pushing Selections

Query: Find the names of all customers who have an account at
some branch located in Brooklyn.
Πcustomer_name(σbranch_city = “Brooklyn”

(branch (account depositor)))
Transformation using rule 7a.
Πcustomer_name

((σbranch_city =“Brooklyn” (branch))
(account depositor))

Performing the selection as early as possible reduces the size of the
relation to be joined.

©Silberschatz, Korth and Sudarshan14.15Database System Concepts - 5th Edition, Oct 5, 2006.

Example with Multiple TransformationsExample with Multiple Transformations

Query: Find the names of all customers with an account at a
Brooklyn branch whose account balance is over $1000.
Πcustomer_name((σbranch_city = “Brooklyn” ∧ balance > 1000

(branch (account depositor)))
Transformation using join associatively (Rule 6a):
Πcustomer_name((σbranch_city = “Brooklyn” ∧ balance > 1000

(branch account)) depositor)

Second form provides an opportunity to apply the “perform
selections early” rule, resulting in the subexpression

σbranch_city = “Brooklyn” (branch) σ balance > 1000 (account)
Thus a sequence of transformations can be useful

©Silberschatz, Korth and Sudarshan14.16Database System Concepts - 5th Edition, Oct 5, 2006.

Multiple Transformations (Cont.)Multiple Transformations (Cont.)

©Silberschatz, Korth and Sudarshan14.17Database System Concepts - 5th Edition, Oct 5, 2006.

Transformation Example: Pushing ProjectionsTransformation Example: Pushing Projections

When we compute
(σbranch_city = “Brooklyn” (branch) account)

we obtain a relation whose schema is:
(branch_name, branch_city, assets, account_number, balance)
Push projections using equivalence rules 8a and 8b; eliminate unneeded
attributes from intermediate results to get:
Πcustomer_name ((
Πaccount_number ((σbranch_city = “Brooklyn” (branch) account))

depositor)
Performing the projection as early as possible reduces the size of the
relation to be joined.

Πcustomer_name((σbranch_city = “Brooklyn” (branch) account) depositor)

©Silberschatz, Korth and Sudarshan14.18Database System Concepts - 5th Edition, Oct 5, 2006.

Join Ordering ExampleJoin Ordering Example

For all relations r1, r2, and r3,
(r1 r2) r3 = r1 (r2 r3)

(Join Associativity)
If r2 r3 is quite large and r1 r2 is small, we choose

(r1 r2) r3

so that we compute and store a smaller temporary relation.

©Silberschatz, Korth and Sudarshan14.19Database System Concepts - 5th Edition, Oct 5, 2006.

Join Ordering Example (Cont.)Join Ordering Example (Cont.)

Consider the expression
Πcustomer_name ((σbranch_city = “Brooklyn” (branch))

(account depositor))
Could compute account depositor first, and join result with

σbranch_city = “Brooklyn” (branch)
but account depositor is likely to be a large relation.
Only a small fraction of the bank’s customers are likely to have
accounts in branches located in Brooklyn

it is better to compute
σbranch_city = “Brooklyn” (branch) account

first.

©Silberschatz, Korth and Sudarshan14.20Database System Concepts - 5th Edition, Oct 5, 2006.

Enumeration of Equivalent ExpressionsEnumeration of Equivalent Expressions

Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression
Can generate all equivalent expressions as follows:

Repeat
apply all applicable equivalence rules on every equivalent
expression found so far
add newly generated expressions to the set of equivalent
expressions

Until no new equivalent expressions are generated above
The above approach is very expensive in space and time

Two approaches
Optimized plan generation based on transformation rules
Special case approach for queries with only selections, projections
and joins

©Silberschatz, Korth and Sudarshan14.21Database System Concepts - 5th Edition, Oct 5, 2006.

Implementing Transformation Based Implementing Transformation Based
OptimizationOptimization

Space requirements reduced by sharing common sub-expressions:
when E1 is generated from E2 by an equivalence rule, usually only the top
level of the two are different, subtrees below are the same and can be
shared using pointers

E.g. when applying join commutativity

Same sub-expression may get generated multiple times
Detect duplicate sub-expressions and share one copy

Time requirements are reduced by not generating all expressions
Dynamic programming

We will study only the special case of dynamic programming for join
order optimization

E1 E2

©Silberschatz, Korth and Sudarshan14.22Database System Concepts - 5th Edition, Oct 5, 2006.

Cost EstimationCost Estimation

Cost of each operator computer as described in Chapter 13
Need statistics of input relations

E.g. number of tuples, sizes of tuples
Inputs can be results of sub-expressions

Need to estimate statistics of expression results
To do so, we require additional statistics

E.g. number of distinct values for an attribute
More on cost estimation later

©Silberschatz, Korth and Sudarshan14.23Database System Concepts - 5th Edition, Oct 5, 2006.

Choice of Evaluation PlansChoice of Evaluation Plans

Must consider the interaction of evaluation techniques when choosing
evaluation plans

choosing the cheapest algorithm for each operation independently
may not yield best overall algorithm. E.g.

merge-join may be costlier than hash-join, but may provide a
sorted output which reduces the cost for an outer level
aggregation.
nested-loop join may provide opportunity for pipelining

Practical query optimizers incorporate elements of the following two
broad approaches:
1. Search all the plans and choose the best plan in a

cost-based fashion.
2. Uses heuristics to choose a plan.

©Silberschatz, Korth and Sudarshan14.24Database System Concepts - 5th Edition, Oct 5, 2006.

CostCost--Based OptimizationBased Optimization

Consider finding the best join-order for r1 r2 . . . rn.
There are (2(n – 1))!/(n – 1)! different join orders for above expression.
With n = 7, the number is 665280, with n = 10, the number is greater
than 176 billion!
No need to generate all the join orders. Using dynamic programming,
the least-cost join order for any subset of
{r1, r2, . . . rn} is computed only once and stored for future use.

©Silberschatz, Korth and Sudarshan14.25Database System Concepts - 5th Edition, Oct 5, 2006.

Dynamic Programming in OptimizationDynamic Programming in Optimization

To find best join tree for a set of n relations:
To find best plan for a set S of n relations, consider all possible
plans of the form: S1 (S – S1) where S1 is any non-empty
subset of S.
Recursively compute costs for joining subsets of S to find the cost
of each plan. Choose the cheapest of the 2n – 1 alternatives.
Base case for recursion: single relation access plan

Apply all selections on Ri using best choice of indices on Ri

When plan for any subset is computed, store it and reuse it when it
is required again, instead of recomputing it

Dynamic programming

©Silberschatz, Korth and Sudarshan14.26Database System Concepts - 5th Edition, Oct 5, 2006.

Join Order Optimization AlgorithmJoin Order Optimization Algorithm

procedure findbestplan(S)
if (bestplan[S].cost ≠ ∞)

return bestplan[S]
// else bestplan[S] has not been computed earlier, compute it now
if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on the best way
of accessing S /* Using selections on S and indices on S */

else for each non-empty subset S1 of S such that S1 ≠ S
P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost

bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”
return bestplan[S]

©Silberschatz, Korth and Sudarshan14.27Database System Concepts - 5th Edition, Oct 5, 2006.

Left Deep Join TreesLeft Deep Join Trees

In left-deep join trees, the right-hand-side input for each join is
a relation, not the result of an intermediate join.

©Silberschatz, Korth and Sudarshan14.28Database System Concepts - 5th Edition, Oct 5, 2006.

Cost of OptimizationCost of Optimization

With dynamic programming time complexity of optimization with bushy
trees is O(3n).

With n = 10, this number is 59000 instead of 176 billion!
Space complexity is O(2n)
To find best left-deep join tree for a set of n relations:

Consider n alternatives with one relation as right-hand side input
and the other relations as left-hand side input.
Modify optimization algorithm:

Replace “for each non-empty subset S1 of S such that S1 ≠ S”
By: for each relation r in S

let S1 = S – r .
If only left-deep trees are considered, time complexity of finding best join
order is O(n 2n)

Space complexity remains at O(2n)
Cost-based optimization is expensive, but worthwhile for queries on
large datasets (typical queries have small n, generally < 10)

©Silberschatz, Korth and Sudarshan14.29Database System Concepts - 5th Edition, Oct 5, 2006.

Interesting Sort OrdersInteresting Sort Orders

Consider the expression (r1 r2) r3 (with A as common attribute)
An interesting sort order is a particular sort order of tuples that could
be useful for a later operation

Using merge-join to compute r1 r2 may be costlier than hash join
but generates result sorted on A
Which in turn may make merge-join with r3 cheaper, which may
reduce cost of join with r3 and minimizing overall cost
Sort order may also be useful for order by and for grouping

Not sufficient to find the best join order for each subset of the set of n
given relations

must find the best join order for each subset, for each interesting sort
order
Simple extension of earlier dynamic programming algorithms
Usually, number of interesting orders is quite small and doesn’t
affect time/space complexity significantly

©Silberschatz, Korth and Sudarshan14.30Database System Concepts - 5th Edition, Oct 5, 2006.

Heuristic OptimizationHeuristic Optimization

Cost-based optimization is expensive, even with dynamic programming.
Systems may use heuristics to reduce the number of choices that must
be made in a cost-based fashion.
Heuristic optimization transforms the query-tree by using a set of rules
that typically (but not in all cases) improve execution performance:

Perform selection early (reduces the number of tuples)
Perform projection early (reduces the number of attributes)
Perform most restrictive selection and join operations (i.e. with
smallest result size) before other similar operations.
Some systems use only heuristics, others combine heuristics with
partial cost-based optimization.

©Silberschatz, Korth and Sudarshan14.31Database System Concepts - 5th Edition, Oct 5, 2006.

Structure of Query OptimizersStructure of Query Optimizers

Many optimizers considers only left-deep join orders.
Plus heuristics to push selections and projections down the query
tree
Reduces optimization complexity and generates plans amenable to
pipelined evaluation.

Heuristic optimization used in some versions of Oracle:
Repeatedly pick “best” relation to join next

Starting from each of n starting points. Pick best among these
Intricacies of SQL complicate query optimization

E.g. nested subqueries

©Silberschatz, Korth and Sudarshan14.32Database System Concepts - 5th Edition, Oct 5, 2006.

Structure of Query Optimizers (Cont.)Structure of Query Optimizers (Cont.)

Some query optimizers integrate heuristic selection and the
generation of alternative access plans.

Frequently used approach
heuristic rewriting of nested block structure and aggregation
followed by cost-based join-order optimization for each block

Some optimizers (e.g. SQL Server) apply transformations to
entire query and do not depend on block structure

Even with the use of heuristics, cost-based query optimization
imposes a substantial overhead.

But is worth it for expensive queries
Optimizers often use simple heuristics for very cheap queries,
and perform exhaustive enumeration for more expensive
queries

Database System Concepts 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Statistics for Cost EstimationStatistics for Cost Estimation

©Silberschatz, Korth and Sudarshan14.34Database System Concepts - 5th Edition, Oct 5, 2006.

Statistical Information for Cost EstimationStatistical Information for Cost Estimation

nr: number of tuples in a relation r.
br: number of blocks containing tuples of r.
lr: size of a tuple of r.
fr: blocking factor of r — i.e., the number of tuples of r that fit into one block.
V(A, r): number of distinct values that appear in r for attribute A; same as
the size of ∏A(r).
If tuples of r are stored together physically in a file, then:

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡
=

rf
rn

rb

©Silberschatz, Korth and Sudarshan14.35Database System Concepts - 5th Edition, Oct 5, 2006.

HistogramsHistograms

Histogram on attribute age of relation person

Equi-width histograms
Equi-depth histograms

©Silberschatz, Korth and Sudarshan14.36Database System Concepts - 5th Edition, Oct 5, 2006.

Selection Size EstimationSelection Size Estimation

σA=v(r)
nr / V(A,r) : number of records that will satisfy the selection
Equality condition on a key attribute: size estimate = 1

σA≤V(r) (case of σA ≥ V(r) is symmetric)
Let c denote the estimated number of tuples satisfying the condition.
If min(A,r) and max(A,r) are available in catalog

c = 0 if v < min(A,r)

c =

If histograms available, can refine above estimate
In absence of statistical information c is assumed to be nr / 2.

),min(),max(
),min(.

rArA
rAvnr −

−

©Silberschatz, Korth and Sudarshan14.37Database System Concepts - 5th Edition, Oct 5, 2006.

Size Estimation of Complex SelectionsSize Estimation of Complex Selections

The selectivity of a condition θi is the probability that a tuple in the
relation r satisfies θi .

If si is the number of satisfying tuples in r, the selectivity of θi is
given by si /nr.

Conjunction: σθ1∧ θ2∧. . . ∧ θn (r). Assuming indepdence, estimate of

tuples in the result is:

Disjunction:σθ1∨ θ2 ∨. . . ∨ θn (r). Estimated number of tuples:

Negation: σ¬θ(r). Estimated number of tuples:
nr – size(σθ(r))

n
r

n
r n

sssn ∗∗∗
∗

 . . . 21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∗∗−∗−−∗)1(...)1()1(1 21

r

n

rr
r n

s
n
s

n
sn

©Silberschatz, Korth and Sudarshan14.38Database System Concepts - 5th Edition, Oct 5, 2006.

Join Operation: Running ExampleJoin Operation: Running Example

Running example:
depositor customer

Catalog information for join examples:
ncustomer = 10,000.
fcustomer = 25, which implies that

bcustomer =10000/25 = 400.
ndepositor = 5000.
fdepositor = 50, which implies that

bdepositor = 5000/50 = 100.
V(customer_name, depositor) = 2500, which implies that , on
average, each customer has two accounts.

Also assume that customer_name in depositor is a foreign key
on customer.
V(customer_name, customer) = 10000 (primary key!)

©Silberschatz, Korth and Sudarshan14.39Database System Concepts - 5th Edition, Oct 5, 2006.

Estimation of the Size of JoinsEstimation of the Size of Joins

The Cartesian product r x s contains nr .ns tuples; each tuple occupies
sr + ss bytes.
If R ∩ S = ∅, then r s is the same as r x s.
If R ∩ S is a key for R, then a tuple of s will join with at most one tuple
from r

therefore, the number of tuples in r s is no greater than the
number of tuples in s.

If R ∩ S in S is a foreign key in S referencing R, then the number of
tuples in r s is exactly the same as the number of tuples in s.

The case for R ∩ S being a foreign key referencing S is
symmetric.

In the example query depositor customer, customer_name in
depositor is a foreign key of customer

hence, the result has exactly ndepositor tuples, which is 5000

©Silberschatz, Korth and Sudarshan14.40Database System Concepts - 5th Edition, Oct 5, 2006.

Estimation of the Size of Joins (Cont.)Estimation of the Size of Joins (Cont.)

If R ∩ S = {A} is not a key for R or S.
If we assume that every tuple t in R produces tuples in R S, the
number of tuples in R S is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more accurate one.
Can improve on above if histograms are available

Use formula similar to above, for each cell of histograms on the
two relations

),(sAV
nn sr ∗

),(rAV
nn sr ∗

©Silberschatz, Korth and Sudarshan14.41Database System Concepts - 5th Edition, Oct 5, 2006.

Estimation of the Size of Joins (Cont.)Estimation of the Size of Joins (Cont.)

Compute the size estimates for depositor customer without using
information about foreign keys:

V(customer_name, depositor) = 2500, and
V(customer_name, customer) = 10000
The two estimates are 5000 * 10000/2500 - 20,000 and 5000 *
10000/10000 = 5000
We choose the lower estimate, which in this case, is the same as
our earlier computation using foreign keys.

©Silberschatz, Korth and Sudarshan14.42Database System Concepts - 5th Edition, Oct 5, 2006.

Size Estimation for Other OperationsSize Estimation for Other Operations

Projection: estimated size of ∏A(r) = V(A,r)
Aggregation : estimated size of AgF(r) = V(A,r)

Set operations
For unions/intersections of selections on the same relation:
rewrite and use size estimate for selections

E.g. σθ1 (r) ∪ σθ2 (r) can be rewritten as σθ1 σθ2 (r)
For operations on different relations:

estimated size of r ∪ s = size of r + size of s.
estimated size of r ∩ s = minimum size of r and size of s.
estimated size of r – s = r.
All the three estimates may be quite inaccurate, but provide
upper bounds on the sizes.

©Silberschatz, Korth and Sudarshan14.43Database System Concepts - 5th Edition, Oct 5, 2006.

Size Estimation (Cont.)Size Estimation (Cont.)

Outer join:
Estimated size of r s = size of r s + size of r

Case of right outer join is symmetric
Estimated size of r s = size of r s + size of r + size of s

©Silberschatz, Korth and Sudarshan14.44Database System Concepts - 5th Edition, Oct 5, 2006.

Estimation of Number of Distinct ValuesEstimation of Number of Distinct Values

Selections: σθ (r)
If θ forces A to take a specified value: V(A,σθ (r)) = 1.

e.g., A = 3
If θ forces A to take on one of a specified set of values:

V(A,σθ (r)) = number of specified values.
(e.g., (A = 1 V A = 3 V A = 4)),

If the selection condition θ is of the form A op r
estimated V(A,σθ (r)) = V(A.r) * s

where s is the selectivity of the selection.
In all the other cases: use approximate estimate of

min(V(A,r), nσθ (r))
More accurate estimate can be got using probability theory, but
this one works fine generally

©Silberschatz, Korth and Sudarshan14.45Database System Concepts - 5th Edition, Oct 5, 2006.

Estimation of Distinct Values (Cont.)Estimation of Distinct Values (Cont.)

Joins: r s
If all attributes in A are from r

estimated V(A, r s) = min (V(A,r), n r s)
If A contains attributes A1 from r and A2 from s, then estimated
V(A,r s) =

min(V(A1,r)*V(A2 – A1,s), V(A1 – A2,r)*V(A2,s), nr s)
More accurate estimate can be got using probability theory, but
this one works fine generally

©Silberschatz, Korth and Sudarshan14.46Database System Concepts - 5th Edition, Oct 5, 2006.

Estimation of Distinct Values (Cont.)Estimation of Distinct Values (Cont.)

Estimation of distinct values are straightforward for projections.
They are the same in ∏A (r) as in r.

The same holds for grouping attributes of aggregation.
For aggregated values

For min(A) and max(A), the number of distinct values can be
estimated as min(V(A,r), V(G,r)) where G denotes grouping attributes
For other aggregates, assume all values are distinct, and use V(G,r)

Database System Concepts 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Additional Optimization TechniquesAdditional Optimization Techniques

Nested Subqueries
Materialized Views

©Silberschatz, Korth and Sudarshan14.48Database System Concepts - 5th Edition, Oct 5, 2006.

Optimizing Nested Subqueries**Optimizing Nested Subqueries**

Nested query example:
select customer_name
from borrower
where exists (select *

from depositor
where depositor.customer_name =

borrower.customer_name)
SQL conceptually treats nested subqueries in the where clause as
functions that take parameters and return a single value or set of values

Parameters are variables from outer level query that are used in the
nested subquery; such variables are called correlation variables

Conceptually, nested subquery is executed once for each tuple in the
cross-product generated by the outer level from clause

Such evaluation is called correlated evaluation
Note: other conditions in where clause may be used to compute a join
(instead of a cross-product) before executing the nested subquery

©Silberschatz, Korth and Sudarshan14.49Database System Concepts - 5th Edition, Oct 5, 2006.

Optimizing Nested Subqueries (Cont.)Optimizing Nested Subqueries (Cont.)
Correlated evaluation may be quite inefficient since

a large number of calls may be made to the nested query
there may be unnecessary random I/O as a result

SQL optimizers attempt to transform nested subqueries to joins where
possible, enabling use of efficient join techniques
E.g.: earlier nested query can be rewritten as
select customer_name
from borrower, depositor
where depositor.customer_name = borrower.customer_name

Note: the two queries generate different numbers of duplicates (why?)
Borrower can have duplicate customer-names
Can be modified to handle duplicates correctly as we will see

In general, it is not possible/straightforward to move the entire nested
subquery from clause into the outer level query from clause

A temporary relation is created instead, and used in body of outer
level query

©Silberschatz, Korth and Sudarshan14.50Database System Concepts - 5th Edition, Oct 5, 2006.

Optimizing Nested Subqueries (Cont.)Optimizing Nested Subqueries (Cont.)

In general, SQL queries of the form below can be rewritten as shown
Rewrite: select …

from L1
where P1 and exists (select *

from L2
where P2)

To: create table t1 as
select distinct V
from L2
where P2

1

select …
from L1, t1
where P1 and P2

2

P2
1 contains predicates in P2 that do not involve any correlation

variables
P2

2 reintroduces predicates involving correlation variables, with
relations renamed appropriately
V contains all attributes used in predicates with correlation
variables

©Silberschatz, Korth and Sudarshan14.51Database System Concepts - 5th Edition, Oct 5, 2006.

Optimizing Nested Subqueries (Cont.)Optimizing Nested Subqueries (Cont.)

In our example, the original nested query would be transformed to
create table t1 as

select distinct customer_name
from depositor

select customer_name
from borrower, t1
where t1.customer_name = borrower.customer_name

The process of replacing a nested query by a query with a join (possibly
with a temporary relation) is called decorrelation.
Decorrelation is more complicated when

the nested subquery uses aggregation, or
when the result of the nested subquery is used to test for equality, or
when the condition linking the nested subquery to the other
query is not exists,
and so on.

©Silberschatz, Korth and Sudarshan14.52Database System Concepts - 5th Edition, Oct 5, 2006.

Materialized Views**Materialized Views**

A materialized view is a view whose contents are computed and
stored.
Consider the view
create view branch_total_loan(branch_name, total_loan) as
select branch_name, sum(amount)
from loan
group by branch_name
Materializing the above view would be very useful if the total loan
amount is required frequently

Saves the effort of finding multiple tuples and adding up their
amounts

©Silberschatz, Korth and Sudarshan14.53Database System Concepts - 5th Edition, Oct 5, 2006.

Materialized View MaintenanceMaterialized View Maintenance

The task of keeping a materialized view up-to-date with the underlying
data is known as materialized view maintenance
Materialized views can be maintained by recomputation on every
update
A better option is to use incremental view maintenance

Changes to database relations are used to compute changes
to the materialized view, which is then updated

View maintenance can be done by
Manually defining triggers on insert, delete, and update of each
relation in the view definition
Manually written code to update the view whenever database
relations are updated
Periodic recomputation (e.g. nightly)
Above methods are directly supported by many database systems

Avoids manual effort/correctness issues

©Silberschatz, Korth and Sudarshan14.54Database System Concepts - 5th Edition, Oct 5, 2006.

Incremental View MaintenanceIncremental View Maintenance

The changes (inserts and deletes) to a relation or expressions are
referred to as its differential

Set of tuples inserted to and deleted from r are denoted ir and dr
To simplify our description, we only consider inserts and deletes

We replace updates to a tuple by deletion of the tuple followed by
insertion of the update tuple

We describe how to compute the change to the result of each
relational operation, given changes to its inputs
We then outline how to handle relational algebra expressions

©Silberschatz, Korth and Sudarshan14.55Database System Concepts - 5th Edition, Oct 5, 2006.

Join OperationJoin Operation

Consider the materialized view v = r s and an update to r
Let rold and rnew denote the old and new states of relation r
Consider the case of an insert to r:

We can write rnew s as (rold ∪ ir) s
And rewrite the above to (rold s) ∪ (ir s)
But (rold s) is simply the old value of the materialized view, so
the incremental change to the view is just ir s

Thus, for inserts vnew = vold∪(ir s)
Similarly for deletes vnew = vold – (dr s)

A, 1
B, 2

1, p
2, r
2, s

A, 1, p
B, 2, r
B, 2, s

C,2
C, 2, r
C, 2, s

©Silberschatz, Korth and Sudarshan14.56Database System Concepts - 5th Edition, Oct 5, 2006.

Selection and Projection OperationsSelection and Projection Operations

Selection: Consider a view v = σθ(r).
vnew = vold ∪σθ(ir)
vnew = vold - σθ(dr)

Projection is a more difficult operation
R = (A,B), and r(R) = { (a,2), (a,3)}
∏A(r) has a single tuple (a).
If we delete the tuple (a,2) from r, we should not delete the tuple (a)
from ∏A(r), but if we then delete (a,3) as well, we should delete the
tuple

For each tuple in a projection ∏A(r) , we will keep a count of how many
times it was derived

On insert of a tuple to r, if the resultant tuple is already in ∏A(r) we
increment its count, else we add a new tuple with count = 1
On delete of a tuple from r, we decrement the count of the
corresponding tuple in ∏A(r)

if the count becomes 0, we delete the tuple from ∏A(r)

©Silberschatz, Korth and Sudarshan14.57Database System Concepts - 5th Edition, Oct 5, 2006.

Aggregation OperationsAggregation Operations

count : v = Agcount(B)
(r).

When a set of tuples ir is inserted
For each tuple r in ir, if the corresponding group is already present in v,
we increment its count, else we add a new tuple with count = 1

When a set of tuples dr is deleted
for each tuple t in ir.we look for the group t.A in v, and subtract 1 from
the count for the group.

– If the count becomes 0, we delete from v the tuple for the group t.A

sum: v = Agsum (B)
(r)

We maintain the sum in a manner similar to count, except we add/subtract
the B value instead of adding/subtracting 1 for the count
Additionally we maintain the count in order to detect groups with no tuples.
Such groups are deleted from v

Cannot simply test for sum = 0 (why?)
To handle the case of avg, we maintain the sum and count
aggregate values separately, and divide at the end

©Silberschatz, Korth and Sudarshan14.58Database System Concepts - 5th Edition, Oct 5, 2006.

Aggregate Operations (Cont.)Aggregate Operations (Cont.)

min, max: v = Agmin (B) (r).

Handling insertions on r is straightforward.
Maintaining the aggregate values min and max on deletions may
be more expensive. We have to look at the other tuples of r that
are in the same group to find the new minimum

©Silberschatz, Korth and Sudarshan14.59Database System Concepts - 5th Edition, Oct 5, 2006.

Other OperationsOther Operations

Set intersection: v = r ∩ s
when a tuple is inserted in r we check if it is present in s, and if so
we add it to v.
If the tuple is deleted from r, we delete it from the intersection if it
is present.
Updates to s are symmetric
The other set operations, union and set difference are handled in
a similar fashion.

Outer joins are handled in much the same way as joins but with some
extra work

we leave details to you.

©Silberschatz, Korth and Sudarshan14.60Database System Concepts - 5th Edition, Oct 5, 2006.

Handling ExpressionsHandling Expressions

To handle an entire expression, we derive expressions for computing
the incremental change to the result of each sub-expressions, starting
from the smallest sub-expressions.
E.g. consider E1 E2 where each of E1 and E2 may be a complex
expression

Suppose the set of tuples to be inserted into E1 is given by D1

Computed earlier, since smaller sub-expressions are handled
first

Then the set of tuples to be inserted into E1 E2 is given by
D1 E2

This is just the usual way of maintaining joins

©Silberschatz, Korth and Sudarshan14.61Database System Concepts - 5th Edition, Oct 5, 2006.

Query Optimization and Materialized ViewsQuery Optimization and Materialized Views

Rewriting queries to use materialized views:
A materialized view v = r s is available
A user submits a query r s t
We can rewrite the query as v t

Whether to do so depends on cost estimates for the two alternative
Replacing a use of a materialized view by the view definition:

A materialized view v = r s is available, but without any index on it
User submits a query σA=10(v).
Suppose also that s has an index on the common attribute B, and r has
an index on attribute A.
The best plan for this query may be to replace v by r s, which can
lead to the query plan σA=10(r) s

Query optimizer should be extended to consider all above
alternatives and choose the best overall plan

©Silberschatz, Korth and Sudarshan14.62Database System Concepts - 5th Edition, Oct 5, 2006.

Materialized View SelectionMaterialized View Selection

Materialized view selection: “What is the best set of views to
materialize?”.
Index selection: “what is the best set of indices to create”

closely related, to materialized view selection
but simpler

Materialized view selection and index selection based on typical
system workload (queries and updates)

Typical goal: minimize time to execute workload , subject to
constraints on space and time taken for some critical
queries/updates
One of the steps in database tuning

more on tuning in later chapters
Commercial database systems provide tools (called “tuning
assistants” or “wizards”) to help the database administrator choose
what indices and materialized views to create

Database System Concepts 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Extra Slides:Extra Slides:
Additional Optimization TechniquesAdditional Optimization Techniques

(see bibliographic notes)

©Silberschatz, Korth and Sudarshan14.64Database System Concepts - 5th Edition, Oct 5, 2006.

TopTop--K QueriesK Queries

Top-K queries
select *
from r, s
where r.B = s.B
order by r.A ascending
limit 10
Alternative 1: Indexed nested loops join with r as outer
Alternative 2: estimate highest r.A value in result and add
selection (and r.A <= H) to where clause

If < 10 results, retry with larger H

©Silberschatz, Korth and Sudarshan14.65Database System Concepts - 5th Edition, Oct 5, 2006.

Optimization of UpdatesOptimization of Updates

Halloween problem
update R set A = 5 * A
where A > 10
If index on A is used to find tuples satisfying A > 10, and tuples
updated immediately, same tuple may be found (and updated)
multiple times
Solution 1: Always defer updates

collect the updates (old and new values of tuples) and update
relation and indices in second pass
Drawback: extra overhead even if e.g. update is only on R.B,
not on attributes in selection condition

Solution 2: Defer only if required
Perform immediate update if update does not affect attributes
in where clause, and deferred updates otherwise.

©Silberschatz, Korth and Sudarshan14.66Database System Concepts - 5th Edition, Oct 5, 2006.

Parametric Query OptimizationParametric Query Optimization

Example
select *
from r natural join s
where r.a < $1

value of parameter $1 not known at compile time
known only at run time

different plans may be optimal for different values of $1
Solution 1: optimize at run time, each time query is submitted

can be expensive
Solution 2: Parametric Query Optimization:

optimizer generates a set of plans, optimal for different values of $1
Set of optimal plans usually small for 1 to 3 parameters
Key issue: how to do find set of optimal plans efficiently

best one from this set is chosen at run time when $1 is known
Solution 3: Query Plan Caching

If optimizer decides that same plan is likely to be optimal for all parameter
values, it caches plan and reuses it, else reoptimize each time
Implemented in many database systems

©Silberschatz, Korth and Sudarshan14.67Database System Concepts - 5th Edition, Oct 5, 2006.

Join MinimizationJoin Minimization

Join minimization
select r.A, r.B
from r, s
where r.B = s.B

Check if join with s is redundant, drop it
E.g. join condition is on foreign key from r to s, no selection on s
Other sufficient conditions possible

select r.A, s1.B
from r, s as s1, s as s2
where r.B=s1.B and r.B = s2.B and s1.A < 20 and s2.A < 10

join with s2 is redundant and can be dropped (along with
selection on s2)

Lots of research in this area since 70s/80s!

©Silberschatz, Korth and Sudarshan14.68Database System Concepts - 5th Edition, Oct 5, 2006.

MultiqueryMultiquery OptimizationOptimization
Example

Q1: select * from (r natural join t) natural join s
Q2: select * from (r natural join u) natural join s

Both queries share common subexpression (r natural join s)
May be useful to compute (r natural join s) once and use it in both queries

But this may be more expensive in some situations
– e.g. (r natural join s) may be expensive, plans as shown in queries

may be cheaper
Multiquery optimization: find best overall plan for a set of queries, expoiting
sharing of common subexpressions between queries where it is useful
Simple heuristic used in some database systems:

optimize each query separately
detect and exploiting common subexpressions in the individual optimal
query plans

May not always give best plan, but is cheap to implement
Set of materialized views may share common subexpressions

As a result, view maintenance plans may share subexpressions
Multiquery optimization can be useful in such situations

Database System Concepts 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of ChapterEnd of Chapter

	Chapter 14: Query Optimization
	Chapter 14: Query Optimization
	Introduction
	Introduction (Cont.)
	Introduction (Cont.)
	Generating Equivalent Expressions
	Transformation of Relational Expressions
	Equivalence Rules
	Equivalence Rules (Cont.)
	Pictorial Depiction of Equivalence Rules
	Equivalence Rules (Cont.)
	Equivalence Rules (Cont.)
	Equivalence Rules (Cont.)
	Transformation Example: Pushing Selections
	Example with Multiple Transformations
	Multiple Transformations (Cont.)
	Transformation Example: Pushing Projections
	Join Ordering Example
	Join Ordering Example (Cont.)
	Enumeration of Equivalent Expressions
	Implementing Transformation Based Optimization
	Cost Estimation
	Choice of Evaluation Plans
	Cost-Based Optimization
	Dynamic Programming in Optimization
	Join Order Optimization Algorithm
	Left Deep Join Trees
	Cost of Optimization
	Interesting Sort Orders
	Heuristic Optimization
	Structure of Query Optimizers
	Structure of Query Optimizers (Cont.)
	Statistics for Cost Estimation
	Statistical Information for Cost Estimation
	Histograms
	Selection Size Estimation
	Size Estimation of Complex Selections
	Join Operation: Running Example
	Estimation of the Size of Joins
	Estimation of the Size of Joins (Cont.)
	Estimation of the Size of Joins (Cont.)
	Size Estimation for Other Operations
	Size Estimation (Cont.)
	Estimation of Number of Distinct Values
	Estimation of Distinct Values (Cont.)
	Estimation of Distinct Values (Cont.)
	Additional Optimization Techniques
	Optimizing Nested Subqueries**
	Optimizing Nested Subqueries (Cont.)
	Optimizing Nested Subqueries (Cont.)
	Optimizing Nested Subqueries (Cont.)
	Materialized Views**
	Materialized View Maintenance
	Incremental View Maintenance
	Join Operation
	Selection and Projection Operations
	Aggregation Operations
	Aggregate Operations (Cont.)
	Other Operations
	Handling Expressions
	Query Optimization and Materialized Views
	Materialized View Selection
	Extra Slides:�Additional Optimization Techniques
	Top-K Queries		
	Optimization of Updates
	Parametric Query Optimization
	Join Minimization
	Multiquery Optimization
	End of Chapter

