
Cloud Monitoring Framework

Hitesh Khandelwal, Ramana Rao Kompella, Rama Ramasubramanian
Email: {hitesh, kompella}@cs.purdue.edu, rama@microsoft.com

December 8, 2010

1 Introduction

With the increasing popularity of public cloud computing platforms like Amazon EC2 1, Microsoft Azure
2, etc, more and more applications are now being deployed to leverage the scalability and free manage-
ability provided by them. This flexibility comes at the expense of giving up control over the network.
Cloud providers do not expose the network topology to cloud users. Applications deployed on clouds are
agnostic to the internal topology and assumes all network links to be homogeneous.

Cloud owners provide few monitoring tools(like Amazon CloudWatch[1]) to provide customers with
visibility into resource utilization and operational performance from end-host perspective. Metrics ex-
posed such as CPU utilization, disk reads and writes, and network traffic are measured from end-host’s
usage pattern. What cloud users really want is measurements from network’s perspective. Metrics such as
latency, available bandwidth of a network-link would be more informative and beneficial. Unfortunately,
because of security reasons cloud owners do not provide any information about the location of a VM in-
stance or network topology, and hence currently it is infeasible to know how a network-link is performing.

We took an intermediate approach by measuring performance of end-to-end path between two VM
instances, rather than each link between them. In this work, we envision to build a monitoring framework
which continuously provides measurement information to the cloud user. To build such a framework, we
have combined various measurement tools and proposed few techniques to adopt them in high speed cloud
environment. We can easily modify most of the popular applications that run in cloud environment to
take advantage of such a framework. Here we describe some of the scenarios which can leverage additional
network information:

• Load balancer in 3-Tiered web architecture can use the latency information provided by the frame-
work to distribute the queries across different links connected to application and database servers.
Using uncongested links will result into smaller end-to-end latency and better end-user experience.

• Master in Map-reduce[2] can use available bandwidth information provided by the framework to
appropriately choose mapper and corresponding reducer. Using mapper and reducer connected by
high bandwidth path will result into better throughput for the system.

• Using traffic and latency measurements between each pair of VM, we can single out poorly per-
forming VMs. Continuously releasing such bad VMs and demanding new VMs from the cloud
provider, will result into an optimal set of VMs, with good network connectivity between them.
After many number of iterations we may be able to find VMs co-located in the same rack.

Though building such a framework is part of a bigger vision, in this work, we will try to equip ourselves
with appropriate tools, and presents a preliminary experimental results of performance of Amazon EC2
platform. We conducted measurements on Amazon EC2, using iperf for estimating available bandwidth
and Ping for estimating round trip time. Section 2 discusses requirements of an appropriate framework
and measurement tools in high speed data center network. In section 3 we evaluates performance of EC2
using 19 small instances. Finally we conclude in section 4.

1http://aws.amazon.com/ec2/
2http://www.microsoft.com/windowsazure/

1



2 Framework design and measurement tools

We designed a framework that performs end-to-end measurements at VM instances. Different applica-
tions are sensitive to different performance metrics. A 3-tier web application have numerous small flows
with strict latency requirements, while batch processing systems like map-reduce have large and fat flows
that demands for high throughput. Commonly measured metrics are latency and throughput, although
both availability and reliability metrics have started to gain popularity. In this work we will focus on
bandwidth(related to achievable TCP throughput) and latency(related to Round trip time) of path be-
tween VM instances. Through an API, cloud applications will have access to this information, and as
discussed earlier they can exploit it to improve their performance. Before we divulge into details about
measurement of available bandwidth and latency, we list some of the requirements for our framework:

• Lightweight: It should be lightweight and non-intrusive to the flows of normal applications. Also
a measurement flow should not interfere with other measurements, this may result into wrong
readings.

• Scalable: It should be scalable to thousands of VM instances, without using high CPU on each
instance.

• Up-to-date: It should continuously monitor the network and report up-to-date performance metrics
to the cloud user. Measurements should performed frequently without being intrusive to the normal
traffic.

• Accurate: It should be accurate with appropriate metric resolution.

We started building the framework as a standalone daemon, which provides applications with mea-
surement results. To reduce interference with normal application traffic, we can piggyback measurement
packets on application data. Ideally we would like to export measurement API, which applications like
web-servers and map-reduce, can extend to piggyback the measurement packets. To solve the problem
of interference between measurement flows, we will use a centralized scheduler. For scalability purposes,
it is also possible to use a distributed consensus algorithm at each participating VM. In the subsequent
sections we will discuss about tools and techniques for bandwidth and latency measurement.

2.1 Bandwidth measurement

Estimating available bandwidth along a network path has received considerable attention in recent years
and multiple tool have been proposed [9] [7] [8] [5] [6] [4] [3]. Informally an end-to-end available band-
width of a path is defined as the capacity of the link with minimum unused capacity(tight link).

Spruce and Pathload represents two different class of techniques employed by all the measurement
tools. Spruce estimates bandwidth by sending packet pairs spaced back to back according to the capacity
of the tight link. Amount of packet dispersion at receiver end determines the amount of cross-traffic
in the tight link. Pathload estimates bandwidth by creating short-lived congestion in the tight link. It
detects the congestion by finding trends in one way probe packet delays.

All the methods of measurement assume simplified homogeneous network conditions. Some of the
other assumptions are:

1. FIFO queuing at routers, with no reordering of packets.

2. Cross-traffic is fluid, with infinitely small packet size.

3. Cross-traffic rate is stable during measurement period.

4. They ignore the network compression that may happen just after congestion is cleared.

5. Assuming uniform per packet processing and timing. Network adapter interrupt coalesce breaks
this assumption.

2



Moreover, all the tools were designed for low speed Internet links and are unsuitable for high speed
data center network. In new environment various assumptions become invalid and tools are stretched
to their limits. [7] conducted an experimental study on high speed Gigabit network and benchmarked
majority of the popular tools. They found that Pathload and Pathchirp are the most accurate tools
under such conditions. They also discussed about other challenges in high speed networks, like the issue
of time precision, interrupt coalesce etc. Here we list some of the other limitations of Spruce like tools,
and why we chose Pathload for our measurement framework.

• It needs supplementary tool for absolute capacity estimation, making it useless for DCs where we
dont have any information about network topology.

• It assumes the same link to be both narrow and tight along the path.

• It requires system clock sync across all the machines.

• UNIX timestamp resolution is not sensitive enough for high speed paths.

2.2 Latency measurement

Ping is the most popular tool available on all the OSs to measure round trip time of a path. Ping uses
ICMP ECHO messages to get an estimate of the round trip time(approximately 2× latency). Measuring
latency at milli-seconds level, in data centers is not much challenging. Ping can very well serve our
purpose of measuring RTT.

3 Evaluation

3.1 Setup

We performed all the measurements on Amazon Elastic Compute Cloud(EC2). In all our experiments
we used small instances with Ubuntu 10.04 server version running on them. We also used a single micro
instance for control and management purposes. As mentioned in section 2.1 measurements in our frame-
work are centrally coordinated by a scheduler which defines the order of measurements. To emulate the
centralized scheduler we used a predefined serialized schedule file at each VM instance. This schedule
identifies a timestamp, along with the nodes that should communicate to produce a single reading of
the appropriate metric. Serial schedule ensures that no two measurement flows are interfering with each
other.

Similar to most of the other cloud providers, Amazon EC2 also do not provide any information about
the location of the VM instances or network topology connecting them. Each instance have a private IP
to communicate with other VMs, over internal Data-center network.

3.2 Pathload accuracy

We used Pathload(with bw resolution = 25Mbps) to measure available bandwidth. We also ran iperf in
conjunction with Pathload, for each path, to get achievable TCP throughput. Achievable TCP through-
put is always less than available bandwidth, because of slow start and congestion control mechanisms
in TCP. Iperf is a popular tool for end-to-end performance measurement, and its results are widely ac-
cepted by research community. To quantify the accuracy of Pathload in high speed data center network,
we ran experiments on 5 small instances. There are 20 links(read paths) between 5 instances, and we
generated a serial schedule for running Pathload and iperf alternatively on each such link. We started
Pathload sender and iperf server on each of the 5 VMs. Framework daemon reads the schedule file and
appropriately starts Pathload receiver or iperf client, to get a reading for the link.

It takes 15 seconds for Pathload before its algorithm converges or terminates due to an error. Just
after taking reading for Pathload we ran iperf for 12 secs with default client buffer of 16K and default
server buffer of 85.3K. We repeated the experiment 5 times to avoid any transitory losses or hypervisor
scheduling issues. Each round lasts for approximately 540 secs(20*(15+12)), and after each round we

3



output two 5× 5 matrices corresponding to pathload’s available bandwidth and iperf’s achievable TCP
throughput estimations each.

– (599.20,631.58) (1500.00,1714.29) (0.00,1500.00) (596.40,666.67)
(0.00, Error) – (750.00,750.00) (600.00,631.58) (631.58,666.67)

(750.00,800.00) (516.17,534.55) – (571.43,530.08) (666.67,705.88)
(496.00,513.04) (600.00,631.58) (375.00,600.00) – (631.58,705.88)
(600.00,800.00) (750.00,672.73) (428.57,705.88) (666.67,705.88) –

(a) Pathload available bandwidth matrix

– (494) (443) (469) (551)
(584) – (333) (469) (596)
(722) (686) – (507) (685)
(521) (637) (275) – (636)
(550) (616) (335) (465) –

(b) Iperf available bandwidth matrix

Figure 1: Available bandwidth estimation

Pathload analysis:
Figure 1 shows available bandwidth(in Mbps) matrix for Pathload and iperf, for round 5 only. We chose
round 5 because Pathload results are most correct in this round.

• Experiment terminates prematurely and code is buggy(eg. element (2,1) of the matrix). The
problem is even more prevalent in other rounds.

• Pathload returns arbitrary bandwidth estimations for some of the links(eg. elements (1,3) (1,4)).

• It takes a long time before its algorithm converges. In our setup Pathload took 15 secs on average,
while iperf can reach steady state in 2-3 seconds only. Long convergence time demotivates the use
of Pathload to measure link bandwidth in serial fashion.

• Most of the readings are unstable with large variation in each link’s bandwidth estimation across
5 rounds. While iperf have a stable reading across all the rounds, for each link.

• Resolution is too large and insensitive to small changes in the bandwidth. In high speed data
center network, it takes approx. 12 usecs to transmit a packet of size 1500 bytes at the rate of
1000 Mbps. Next feasible transmission rate is 923 Mbps corresponding to 13 usecs. Because of
UNIX timestamp granularity of 1 usecs it is infeasible to achieve resolution of less than 100 Mbps.
Pathload was designed to work on low speed Internet links with bandwidth 100 times smaller than
those in data center network.

• Contrary to the findings of previous work [?], we found that iperf’s estimation are lower than
Pathload bandwidth estimations.

We conclude that Pathload is un-suitable for bandwidth estimation in data center network.

3.3 Available bandwidth

Based on our experience with Pathload on 5 instances in section 3.2, we decided to use only iperf for rest
of the measurements. Although iperf eats a lot of bandwidth for measuring throughput, we sacrifice on
efficiency for accuracy of results. For rest of the section, we will interchangeably use the term achievable
throughput with available bandwidth. Next we conducted measurements on 19 instances with 342 links
between them. As before, we generated a serial schedule for starting iperf clients. We ran iperf for 6
seconds to get a reading for a link. Each round lasts for approximately 30 minutes.

4



(a) CDF of link bandwidth estimation for all the
rounds

(b) CDF of link bandwidth variation across all the
rounds

Figure 2: Iperf Bandwidth estimation

Figure 2(a) plots CDF of achievable TCP throughput estimation for each round. For each round
we use corresponding throughput matrix, having 342 estimated values. We can observe that only less
than 10% links have available bandwidth less than 400 Mbps, hence Amazon EC2 platform is optimally
utilized with plenty of bandwidth available to each user. Also there is no long lasting congestion in links.

We define range as the difference between maximum and minimum value of the metric measured
across all the rounds. Figure 2(b) shows CDF of link’s available bandwidth range across 5 rounds. We
can conclude, that for more than 80% of the links, available bandwidth is consistent across the time.
Only around 20% links have variation of more than 200 Mbps.

(a) Average and variation in download/upload band-
width across all the rounds

(b) Average download/upload bandwidth for round-1

Figure 3: VM instance download and upload bandwidth

Figure 3(a) shows average download/upload available bandwidth and its range(max-min), for each
instance, across all rounds. Consistent with observation in 2(a) almost all the instances have average
download/upload bandwidth more than 400 Mbps. There are some instances that we can single out for
poor performance, based on range in bandwidth(like 1, 4, 7, 19..). Figure 3(b) shows average down-
load/upload available bandwidth for each instance, for round 1 only. Graph is similar to above fig
3(a).

5



3.4 Latency

We used ping to measure RTT between any two VMs.One important difference between latency and
bandwidth measurement techniques, is that, due to small number and size of Ping packets they do not
interfere with each other and normal application traffic. Hence, we generated a parallel schedule than a
serialized one. We conducted parallel measurements on 19 instances and one control instance. We used
6 ICMP ECHO messages in each Ping measurement with an interval of 1 seconds between them. There
are 30 rounds of experiments and each round lasts for 6 seconds.

(a) CDF of link RTT for rounds 1 (b) CDF of link RTT variation across all the rounds

Figure 4: Ping RTT estimation

Figure 4(a) plots a CDF of RTT for all the 342 links, for round 1 only. From our logs we found that
median RTT is 0.3 msecs and RTT for any link not facing congestion is less than 1 msec. Figure shows
that more than 20% of the links are facing congestion(RTT > 1 msec).

In figure 4(b) we show a CDF of link’s RTT range across 30 rounds. We can conclude that more than
80% links are facing congestion at some point. Reading the logs we found that absolute RTT values goes
as high as 14 msec. From figure 2(a) we concluded that there is no long lasting congestion in Amazon
EC2, but there is some transitory congestion which lasts only for few seconds. This transitory congestion
will affect the performance of applications having large number of small flows, by forcing them to abort.

Figure 5: Average RTT across all the rounds

Figure 5 shows average RTT of a link, for each instance, across all rounds. It is evident that con-
gestion is not specific to any particular instance, and all the instances are observing congestion at some

6



point in time. This shows that most of the traffic in EC2 is short lived and bursty in nature.

4 Conclusion

In this paper, we first enumerated all the requirements for a better cloud monitoring framework. Cur-
rently, we focused on popular metrics like available bandwidth and round trip time between each pair
of VM instances. Towards our goal of building such a framework, we combined various bandwidth and
latency estimation tools. Through experiments on 19 small instances on Amazon EC2, we found that
most of the bandwidth estimation tools proposed in past are inaccurate in high speed data center net-
work. Also Amazon EC2 platform is optimally utilized with ample bandwidth available to all the tenants.

Though there is a lot of temporal congestion in EC2, but very few long lasting congested links exist
in the network. A smart Web load balancer which not only takes computation resources but network
resources also into consideration will improve the end-user performance. For batch processing systems
like map-reduce, if network communication forms a substantial part of the total time, it makes sense to
place mapper and reduce along a well connected path. We envision that in future, public cloud providers
will also expose some of their networking details to cloud users. Our proposed framework could be
complemented by that information to improve performance of applications in public clouds.

7



References

[1] Amazon cloudwatch. http://aws.amazon.com/cloudwatch/.

[2] Dean, J., and Ghemawat, S. Mapreduce: simplified data processing on large clusters. Commun.
ACM 51 (January 2008), 107–113.

[3] Hu, N., Member, S., Steenkiste, P., and Member, S. Evaluation and characterization of
available bandwidth probing techniques. IEEE Journal on Selected Areas in Communications 21
(2003), 879–894.

[4] Jain, M., and Dovrolis, C. End-to-end available bandwidth: measurement methodology, dynam-
ics, and relation with tcp throughput. IEEE/ACM Trans. Netw. 11 (August 2003), 537–549.

[5] Kapoor, R., Chen, L.-J., Lao, L., Gerla, M., and Sanadidi, M. Y. Capprobe: a simple
and accurate capacity estimation technique. In Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer communications (New York, NY, USA, 2004),
SIGCOMM ’04, ACM, pp. 67–78.

[6] Ribeiro, V. J., Riedi, R. H., Baraniuk, R. G., Navratil, J., and Cottrell, L. pathchirp:
Efficient available bandwidth estimation for network paths. In In Passive and Active Measurement
Workshop (2003).

[7] Shriram, A., Murray, M., Hyun, Y., Brownlee, N., Broido, A., Fomenkov, M., and
Claffy, K. C. Comparison of public end-to-end bandwidth estimation tools on high-speed links.
In PAM (2005), pp. 306–320.

[8] Sommers, J., Barford, P., and Willinger, W. A proposed framework for calibration of available
bandwidth estimation tools. Computers and Communications, IEEE Symposium on 0 (2006), 709–
718.

[9] Strauss, J., Katabi, D., and Kaashoek, F. A measurement study of available bandwidth
estimation tools. In Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement
(New York, NY, USA, 2003), IMC ’03, ACM, pp. 39–44.

8

http://aws.amazon.com/cloudwatch/

	Introduction
	Framework design and measurement tools
	Bandwidth measurement
	Latency measurement

	Evaluation
	Setup
	Pathload accuracy
	Available bandwidth
	Latency

	Conclusion
	References

