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Abstract—Autonomous cyber systems continuously receive
large streams of diverse data from numerous entities operating
and interacting in their environment. It is imperative that the
learning models in autonomous systems to scale up to process
the new and unknown data items. Scalable learning is nothing
but a method to achieve maximum classification without reject-
ing any unknown data item that were not present in the training
or testing datasets as anomalies. In this paper, we present Bit-
wise Fuzzy-based Clustering (BFC) technique through error-
correcting codes to address the problem. Through BFC, we can
approximate the classes of multidimensional features of data
items by reversing standard forward error-correction coding.
Approximating classes problems generally arise in autonomous
systems that are processing fuzzily cataloged data items. These
data items can be classified by applying binary vectors to their
corresponding features (1: feature is present or 0: feature is
absent) to obtain message words. These codewords can be used
as cluster centers. In BFC technique, binary vectors of 23 bits
are mapped into codewords (labels or indices) of 12 bits. Two
different 23-bit binary vectors with the Hamming distance of
2 will have a few common labels. This setting enables the
clustering of neighboring 23-bit binary vectors with at most
2-bit variation (mismatch) from a given input. BFC technique
has 223 codeword space, which makes it ideal for scalability
in clustering of millions of categories and their associated
features. With reasonable redundancy, the clustering can be
accomplished in O(N) time.
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I. INTRODUCTION

Intelligent Autonomous Systems (IAS) have four fun-
damental characteristics [1]: They are (1) cognizant of
their own behavior as well as the environment in which
they operate, (2) highly reflexive where they are adapt to
unknown situations, (3) effective in knowledge discovery,
and (4) trustworthy (i.e.) adheres to the principles of resilient
security and privacy. Classification problems generally arise
in dynamic environments with many classes [2], in which
IAS operate. The large data streams can only be analyzed in
indirect ways where they can be either sampled or classified
into clusters. But sometimes, sampling may produce very
skewed results [3] since it heavily depends on the size
of the data and number of samples that can be derived
from that data. Hence, clustering can be a right option

to organize large amounts of data and learn from it. One
well-known example is recognizing thousands of visual data
items—one of the biggest challenges in computer vision
and big data processing. The vast number of classes make
the conventional one-verses-all multi-class paradigm to be
very expensive in terms of time and space. The time com-
plexity grows linearly with number of categories, which
makes training and testing prohibitive for real-time practical
applications such as autonomous robots. These autonomous
systems require high throughput with low latency.

The proposed BFC technique’s near matching proce-
dure employs hashing method to label the data. The data
items are compared and organized in clusters based on
the indices obtained through hash transformation of the
input data. Hence searching a particular cluster becomes
a O(1) operation. The duplicate indices can be handled
with approximate matching, which has a significantly low
overhead. The approximation is a two-step process. First,
the dimensionality of the data is reduced to expected mis-
matches. Second, this dimensionality reduced data is sent to
the hashing function. A similar approximation technique is
proposed in the well-known Soundex Encoding [4] where
it gives the dimensionality reduced form of phonetically
similar words—fuzzy matching. Soundex retains the first
alphabet and drops the vowels from the remaining sequence.
But Soundex technique does not have a robust encoding
mechanism to encode different type of featured sequences
[5]. An effective method for approximation must rely on data
items that are represented through binary bit vectors of fixed
length. In BFC technique, the binary vectors are clustered
together based on the hamming distance from one vector to
another, which is accomplished through fuzzy matching by
reversing the traditional error-correcting codes.

The rest of the paper is organized as follows. Section II
presents the related work, section III summarizes the BFC
technique with the explanation of perfect codes and presents
proof to show the effectiveness of the encoding, section
IV evaluates the scheme based on recall as well as CPU
performance and compares the time complexities with other
clustering techniques, section V introduces the extension of
BFC through CNN application on clustered data, and we



finally conclude our work in section VI.

II. RELATED WORK

Employing hamming distance for unsupervised learning
is widely used in computer vision based research and appli-
cations. K-means Hashing (KMH) simultaneously computes
k-means clusters at the same time learns the binary indicies
of a particular block of pixels (or cell) [6]. In [7], the authors
have developed an algorithm to compute hash functions base
on minimizing reconstruction error between the Hamming
distances and the original distances of the appropriate binary
embeddings. The algorithm perfectly preserves the distances
when mapping with Hamming space through hashing. Hash-
ing technique with considerably minimal loss for binary
codes has been proposed in [8]. The technique is designed
based on structured prediction of latent variables and loss
function with Hamming distance parameter that is similar
to the hinge loss used in the SVM. Due to the hashing and
Hamming space application, the algorithm becomes online,
efficient, and scalable. BFC technique employees hashing
technique and Hamming space to perform clustering as well.

Categorizing large number of image data items has re-
ceived significant attention in computer vision after datasets
of very large object classes such as ImageNet [9] became
publicly available. One category of work focuses on efficient
feature categorization and achieving significant performance
increases [10] [11]. Another category focuses on optimiza-
tions using tree-based models [12] [13]. Recent advances in
deep learning has lead to the proposal of state-of-the-art per-
formance challenges [14]. These models assume that there is
always a prior probability available for entire training data.
These mechanisms work relatively well if the goal is just to
store maximum number of classes. Error-correcting codes
have played vital part in developing machine learning tools
[15]. A fault-tolerant indexing scheme has been proposed in
[16] that takes advantage of the perfect codes and our current
work is inspired from their project. These codes provide a
robust classification mechanisms when the data can only be
categorized in a fuzzy manner.

III. BITWISE FUZZY CLUSTERING (BFC)

In conventional forward error correction techniques, re-
dundant parity bits are joined with a data word to create a
codeword. In case of any discrepancies during transmission
of the codeword, parity bits are used to restore the initial
data word. In BFC scheme, we use a perfect (23, 12, 7)
error correction scheme [17]. It has the minimum hamming
distance of 7. So up to 3 bits of errors can be corrected if
there are discrepancies. Codewords become spheres (clus-
ters) with unique 23-bit binary vector as hash index. The
explanation of mapping data word space to codewords can
be found in [18].

A. Perfect Error-correcting Codes

Hamming bound for error correcting codes is defined as,
for any code E,

E = (Mn, Dk, Hd) (1)

Here Mn is the length of codeword, Dk is the dimension
(length of the data word), and Hd is the minimum Hamming
distance between two codewords and Hd ≤ 2e + 1. It
satisfies,

|E|
e∑

i=0

(
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i

)
≤ 2Mn (2)

PEC with (23, 12, 7) code satisfies the Hamming bound
equality as follows (Mn = 23, Dk = 12, and Hd = 7),
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The creation of hashing can be explained with the Ham-

ming code (7, 4, 3). The code has 16 datawords of size
4-bits. Each dataword correlates to a sphere of diameter 2
in a 7-dimensional binary cube. In order to transmit the 4-
bit message, the transmitter adds extra 3 bits to transmit the
message as a 7-bit message. For example, a message 1100
will be transformed into 1100101 and it will be the center of
the codeword sphere. The message can be decoded from the
7-bit codeword with the tolerance of a 1-bit distortion. In our
fault-tolerant hashing technique, the approach is reversed:
given a 7-bit message, the hash value (say, index) will
be computed by the message decoding method so that it
constitutes a dataword. For example, 1100101 will have
the hash value of 1100. Lets assume that there is a 1-bit
distortion such as 1100100. The decoding method will still
output the same dataword (i.e.) hash value: 1100. Hence,
with our hashing method, any 7-bit message at the Hamming
distance 1 (radius of the sphere) from the given message
1100101 can be recalled through the same hash value 1100.

But in this case, the given message must be the center
of the codeword sphere. Otherwise, the Hamming distance
1 can represent any neighboring sphere. So computing a
hash value need to be expanded. Usually, if there is a one-
bit distortion, it can be corrected by searching all the 8
hash buckets, where first is computed by the hash value of
the message and other 7 are computed by one-bit changes.
But our hashing scheme, using mod 2 addition, reduces
the complexity created by this 8 hash bucket brute force
approach. Consider a message 1001 with 3 extra bits 100,
yielding 1001100. One bit distortions such as 1001100

⊕
00000010 = 1001110 gives us 1000 as hash value. The
combinations one-bit distortions in 7-bit messages gives us



just 4 hash values: 1011, 0001, 1000, and 1101. This reduces
the brute-force bit bucket size in half.

B. BFC Technique

(23, 12, 7) has one-to-one relationship between codeword
and data word. There are 223 codewords and 212 data words.
If the codeword space assumed to be a binary cube with 23
dimensions, it can be split equally into 212 spheres. Thus
each codeword sphere will consists of 211 = 2048 binary
vectors of the size of 23 bits. Since PEC can correct mistakes
up to three bits, 23-bit vectors inside the spheres are within
Hd = 3 Hamming distance from the centroid 23-bit vector.
Since PEC focuses on Hd = 3, the clustering scheme will
be interested in

(
23
3

)
= 1771 23-bit binary vectors that are

3 Hamming distance away from center. Other vectors with
even just 1 more bit variation will be sent to a different
sphere (cluster). 1771

2048 ≈ 86% of the vectors will stay close
to the center where as 277

2058 ≈ 14 will be assigned to new
cluster’s hash index.

Figure 1. BFC Technique—Fuzzy criteria for clusters

BFC technique (Figure 2) applies 23-bit binary vector
to extracted features (1 for presence of feature and 0 for
the absence) or predefined features and clusters them in
appropriate hash indexes (cluster labels). Predefined feature
extraction works as follows: assume a system that is classi-
fying images of the city San Francisco. The user can set the
features and program the software to look for those features
and apply the 23-bit vector. For example, F1: Does the
image has sharp triangle shaped white pillar?, F2: Is there
a street sign(s) with an alphabet and number? etc. Based on
the detected features, the 23-bit binary vector (e.g. 0, 1, 0,
0, 1, ...) will be created and will be assigned to a specific
cluster in the hash indices. The vector does not need to be 23
bits long since the scheme supports even fewer parameters.
Another advantage of BFC is that the 23-bit binary vectors
can be used for autonomously generating 23-bit labels to be
applied for a specific type of data item. If unknown data (that
was not present in either training or testing dataset) appears

then a new template (label) can be generated autonomously,
creating a new cluster.

Since the suggested clustering technique uses (23, 12, 7)
cyclic code (a subclass of linear codes), the implementation
can be simplified through algebraic computations by gener-
ating polynomials instead of parity checks. Thus the code
can be computed by the polynomials (this derivation is given
in [18] but for the sake of clarity, we recite it here.),

H1(y) = 1 + y2 + y4 + y5 + y6 + y10 + y11 (3)

H2(y) = 1 + y + y5 + y6 + y7 + y9 + y11 (4)

The features labeled from 0 to 22 can be represented by
polynomials mod y23−1 with correlated coefficient in the
binary space H(y). The data item can be represented by a
12-bit binary vector and adding 11 parity check bits gives us
23-bit label < l0, l1, ..., l22 >. Let the label be represented
by T (y):

T (y) = l11y
11 + ...+ l22y

22 (5)

And the parity check polynomial C(y),

C(y) = l0 + l1y + l2y
2 + ...+ l10y

10 (6)

Then the entire label of a data item is represented by,

L(y) = T (y) + C(y) (7)

A label vector of a data item must be a multiple of
generator polynomial such as H1(y) or H2(y),

L(y) = X(y)H(y) (8)

Here X(y) is a polynomial with degree = 11. From this, we
can define the encoding procedure with the following steps:

1) Compute the product of the data label polynomial with
y11 to compute C(y)

2) Compute T (y)
H(y) to get the remainder C(y)

3) Compute the label with C(y) + T (y)

Using (23, 12, 7) code for clustering raw data is based on
the following lemma. A direct proof of this lemma will give
the elaborate geometrical details in the suggested clustering
technique.

Lemma: Given a 23 dimensional binary vector that is
partitioned into 212 spheres, then searching a sphere with
the hamming diameter of 2 placed in the cube, it either
lies (a) totally within the sphere or (b) distributed uniformly
across 6 equally partitioned spheres.

Proof : Consider a sphere that is partitioned with center
Pc. Based on equation (2), it will have 2048 geometrical
points that are divided into 4 categories based on their dis-
tance from Pc. Lets assume two cases of Distance(Pc, Sc)
where Sc is another sphere to check whether it resides inside
the partitioned sphere (cluster) or not.



Case 1: 0 ≤ Distance(Pc, Sc) ≤ 2
In this case, the Sc with radius of 1 resides in the partitioned
sphere that has the radius of 3.

Case 2: Distance(Pc, Sc) = 3
Lets assume that there exists a set of 23-bit binary vectors
with the spheres of radius 1: V = v0, v1, ..., v22 where v0 =
<0,0,0 ... , 0>, v1 = <0, 0, 0, ... , 1>, ... , v23 = <1, 0, 0,
... , 0 >. Then the center of sphere Sc can be computed by
3 fixed unit vectors like va, vb, and vc.

Sc = Pc + va + vb + vc (9)

Consider a modification for Sc where by adding another
vector vk where k 6= a, b, c, or 0 and k = 1, 2, 3, ...., 23. The
vector vk falls into the sphere that is adjacent to Pc at the
distance of 3 from the center. Say, Sk constitutes the points
of the sphere that is in question,

Sk = Pc + va + vb + vc + vk (10)

Equation (10) can be rewritten as,

Pc + va + vb + vc + vk = Ps + vx + vy + vz (11)

where x, y, or z 6= a, b, c, or k. This represents the
fact that each of the sphere with 4 points with the center
in Sc lies adjacent to the partitioned sphere with center
Ps, where Ps is another adjacent sphere to Pc. Given V
and k, we have 24 points. And in those points, we have
identified the location of quadruple of points in Pc—the
first partitioned sphere. This procedure can be continuously
reused until every point in V is searched. Thus 24 points in
v constitute different quadruples and lie in adjacent spheres.
Hence, when Distance(Pc, Sc) = 3, we get six spheres of
different partitions.

IV. EVALUATION

The fuzzy matching depends on comparison operations.
It requires time and space. BFC scheme offers various
possibilities such as variations in sizes of matching adjacent
spheres correlating to different generating polynomials. Pre-
cision and recall should be considered in order to measure
the effectiveness of the fuzzy classification techniques. We
consider recall as one of the metric to measure the perfor-
mance of the clustering technique. We built BFC with 222

= 4,194,304 for the vector representation.
Figure 3 represents the recall probabilities (recited from

[18]) of the suggested BFC technique. The case 1–1 means
matching two spheres of size 1 (i.e.) a direct matching
of 12-bit hash values. For the higher hamming distances,
the matches that occur are relatively small. With 1–6, we
get 100% recall for 1 Hamming distance. In the cases of
2–12, 2–2, 12–12, we performed two kinds of (23, 12,
7) partitioning. For example, 2-12 means that 2 adjacent
spheres of size 1 are compared with 2 adjacent spheres of
size 6.
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Figure 2. Recall probabilities with (23, 12, 7) partitioning

We also use another metric of measuring CPU perfor-
mance in terms of number of reference clock cycles used
by the BFC technique. Clustering large data requires inten-
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Figure 3. Fixed samples of number of clock cycles required for the
execution of BFC

sive computing capabilities with systems that can handle
the clustering algorithm at the same time processes the
streaming data on-the-fly. Figure 4 shows the reference clock
cycles required for BFC technique with another encoding
software, 7zip. Clock cycles were recorded with a periodic
fixed sampling of every 1,000,000 instructions. We used
process thread API [19] to obtain clock cycle samples. The
header is used to set the sampling period and reference
clock cycles were recorded for all the processes that are
active and running. During run time, the process id (PID)
of the clustering algorithm and 7zip were manually noted.
Based on the process id, sampled reference clock cycles
were filtered and obtained. The clock cycles show that the



clustering algorithm takes considerably less number of clock
cycles to compute the clusters compared to other encoding
software 7zip.

Another the main disadvantage of popular clustering al-
gorithms is their time complexity. Conventional clustering
algorithms with rich functionalities operate in exponential
time. Hence they are prohibitive in preprocessing intense
real-time data streams. BFC clustering operates on hash

Table I
COMPARISON OF COMPUTATIONAL COMPLEXITIES OF CLUSTERING

ALGORITHMS

Clustering Algorithms Time Complexities
k-means O(nkd)

Hierarchical Clustering O(n2)
Clustering using REpresentatives (CURE) [20] O(n2 log n)

ROCK [21] O(min(n2, nmmma))
CLICK [22] O(n log n)

BFC O(n)

indices for cluster assignment. Once the 23-bit binary vector
is applied to a data item, the algorithm needs to search the
related cluster in the hash and store it. In the best case
scenario, hash search can be completed in constant time
(O(1)) and in the worst case scenario the hash search can
take O(n) time. Thus the PEC clustering takes O(n) time.
There are other clustering mechanisms such as Fuzzy c-
means clustering [23] and BIRCH clustering [24] that can
complete the task in O(n) time but they are not equipped to
deal with large continuous stream of data. Comparison with
existing clustering methods is given in Table I.

V. EXTENSIONS OF BFC TECHNIQUE

As our future work, we introduce an extension of the BFC
technique to increase the learning capability of autonomous
systems. Convolutional Neural Networks (CovNets or CNN)
are used for image recognition and classification. Recent
developments in Natural Language Processing (NLP) are
based on CNNs that are used for sentence classification [25].

Figure 4. Workflow of applying CNN to BFC classified data

Figure 4 shows the application of CNN on the clustered
data. Since these metadata items have common features,
they can be transformed into a matrix and we can conduct

a sliding window operation [26]. Even through it is a
brute force approach, the feature selection is not necessary
thus no new training datasets are required, both of which
significantly reduce the time and space complexity of the
learning process. This is particularly helpful in autonomous
systems since they come across unknown data from their
dynamic environments and they need to process the data
faster, and make decisions based on the results.

Once the small blocks are processed to generate convo-
luted features, they go through down sampling or pooling
to find most interesting features by finding the maximum
value in each block. The final values are processed as
a new vector to compare and classify. The approach of
CNN on clustered data has advantages: (1) the clusters
themselves provide valuable information with organized data
but applying CNN on top of it can reveal interesting relations
between each clusters. Sub clusters can be classified that can
provide greater insights into unknown data items that may be
wrongly clustered and (2) the errors or mismatches caused
by the fuzziness of BFC can be cleared through CNN sub
clusters. CNN is costly in very larger datasets [27]. Since
the CNN is applied only at the end to required clusters, the
time and space complexity of CNN on all data items can be
reduced considerably.

VI. CONCLUSION

In this paper, we proposed BFC technique based on (23,
12, 7) perfect error-correcting codes. Reversal of this error-
correction scheme results in a robust clustering technique
for stream data processing. The scheme offers 23-bit binary
vector label for each data item and producing up to 223

combinations of clusters. Hence the scheme can be used
for classifying data with thousands of categories. It can
correct up to 3 bits of errors in that 23-bit binary vector
thus the scheme offers some fault tolerance. One of the
most important qualities of BFC clustering is that it operates
in O(n) time complexity. Compared to traditional and rich
functionality clustering algorithms, BFC is fast and fault-
tolerant. We proposed a framework to enable further insights
from clustering through deep learning: applying CNN to
clustered data. Since it is applied to only sub clusters, the
time and space complexity of learning will be limited. We
intend to apply this technique to computer vision problems
such as large-scale image classifications in dynamic envi-
ronments.
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