
A Distributed Monitoring and Reconfiguration
Approach for Adaptive Network Computing

Bharat Bhargava, Pelin Angin, Rohit Ranchal
Department of Computer Science

Purdue University
West Lafayette, IN, USA

{bb, pangin, rranchal}@cs.purdue.edu

Sunil Lingayat
Information Systems Sector

Northrop Grumman Corporation
McLean, VA, USA

sunil.lingayat@ngc.com

Abstract—The past decade has witnessed immense
developments in the field of network computing thanks to the rise
of the cloud computing paradigm, which enables shared access to
a wealth of computing and storage resources without needing to
own them. While cloud computing facilitates on-demand
deployment, mobility and collaboration of services, mechanisms
for enforcing security and performance constraints when
accessing cloud services are still at an immature state. The highly
dynamic nature of networks and clouds makes it difficult to
guarantee any service level agreements. On the other hand,
providing quality of service guarantees to users of mobile and
cloud services that involve collaboration of multiple services is
contingent on the existence of mechanisms that give accurate
performance estimates and security features for each service
involved in the composition. In this paper, we propose a
distributed service monitoring and dynamic service composition
model for network computing, which provides increased
resiliency by adapting service configurations and service
compositions to various types of changes in context. We also
present a greedy dynamic service composition algorithm to
reconfigure service orchestrations to meet user-specified
performance and security requirements. Experiments with the
proposed algorithm and the ease-of-deployment of the proposed
model on standard cloud platforms show that it is a promising
approach for agile and resilient network computing.

Keywords—agile computing, resilience, monitoring,
adaptability, service-oriented computing

I. INTRODUCTION
Recent advances in services computing including the rise

of the cloud computing paradigm has brought network
computing, which enables the sharing of computing and
storage resources over a network and collaboration of services
to achieve complex tasks, to a whole new level. Cloud
computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction [9]. Context plays a very important role in
achieving high quality of service with both mobile and cloud
computing, as both computing paradigms face highly dynamic
conditions, i.e. highly variable context. Richness and efficient
gathering/utilization of contextual information gains even

more importance in the case of collaboration between mobile
and cloud platforms, as achieving high computational
performance and user satisfaction is contingent upon the
correct identification of resources to be utilized and various
constraints peculiar to mobile computing.

Context in network computing consists of the following
elements [6][2]:
1. User preference: This element of context captures user-

specific preference settings for particular applications,
and could potentially affect the composition of mobile
services.

2. Workload: This element involves the workload on the
mobile services (the usage of resources by different
applications, or by different components of an
application), and is another highly dynamic element of
context.

3. Data connection type, bandwidth: The available
bandwidth between clients and services and the data
connection type are important factors especially for real-
time data-processing intensive applications.

4. Resource availability: This contextual clue captures the
availability and quality of various resources on specific
hosts, and can be used to make decisions regarding the
selection of services to achieve the best application
performance.

5. Situational context: This context element consists of
monitored data and information regarding the user
location, time and other data collected by sensors. It is
most useful in personalizing applications to achieve high
user satisfaction.

Adaptability to different contexts is significant for high
performance in network computing [3]. In order to ensure the
enforcement of service level agreements (SLAs) and provide
high security assurance in network computing in real time, a
monitoring framework needs to be developed to inspect the
services dynamically during their execution. If a service is
compromised, misbehaves or is underperforming, the service
monitor needs to discover this inadequate performance,
provide feedback, take remedial actions and adapt according
to the changes in context. The monitoring system must not
incur a high performance overhead to make them viable for
large-scale deployment. Finally, a good monitoring framework
should be as transparent to the service providers and

consumers. The last requirement is essential for adoption in
the industry.

There is a need for novel techniques to monitor service
activity, discover and report service behavior changes, and
enforce security and quality of service requirements in cloud
and mobile services [1] by integrating the various elements of
context mentioned above. In this paper, we propose a novel
approach that uses a distributed network of service activity
monitors to audit and detect service behavior and performance
changes in various domains. By integrating components for
service performance monitoring, service trust management
and dynamic service composition, the proposed model aims to
provide a unified architecture for agile and resilient network
computing.

The rest of this paper is organized as follows: Section II
provides a brief review of related work in service auditing and
policy enforcement in network computing. Section III presents
our proposed system architecture for agile and resilient
computing. Section IV provides the details of dynamic service
composition algorithm in the proposed model and Section V
presents the results of experiments with the algorithm. Section
VI concludes the paper with future work directions.

II. RELATED WORK
Development of runtime-auditing systems for mobile and

web-based services has been the focus of many research
efforts. Li et al. [7] describe a system for auditing runtime
interaction behavior of web services. They use finite state
automata to validate predefined interaction constraints, where
message interception is bound to the particular server used for
deploying Web services. Simmonds et al. [10] present a more
comprehensive auditing solution for checking behavioral
correctness of web service conversations. They use UML 2.0
Sequence Diagrams as a property specification language,
which are then transformed to automata by multiple monitors
that check the validity of safety and liveness properties. Their
proposal is for a specific application server, since they utilize
an event mechanism provided by that server. Guinea et al. [4]
present an auditing system that is able to report and monitor
functional requirements and quality-of-service constraints of
BPEL (Business Process Execution Language) processes.
Their approach leverages data collection, including message
interception for auditing. However, their solution is
technology-dependent and they do not address the auditing of
cloud-based service interactions.

To support flexible auditing of the behavior pattern for
composite services, Wu et al. [12][13] demonstrate an “aspect
extension” to WS-BPEL, in which history-based pointcuts
specify the pattern of interest within a range, and advices
describe the associated action to manage the process if the
specified pattern occurs. The solution they provide addresses
specific orchestration engines, which is not a generic solution
for modern cloud-based and mobile services. In [8] and [11]
the identification of trusted services and dynamic trust
assessment in SOA are studied. Malik et al. [8] introduce a
framework called RATEWeb for trust-based service selection
and composition based on peer feedback. It is based on a set of
decentralized techniques for evaluating reputation-based trust

with ratings from peers. However they do not take into account
initial service invocations and the secondary services in
compositions. Spanoudakis et al. [11] present an approach to
keep track of trusted services to address the compliance of
promises expressed within their service level agreements
(SLAs). The trust assessment is based on information collected
by monitoring services in different operational contexts and
subjective assessments of trust provided by different clients
(consumers) situated in specific operational context. They
further address the issue of unfair ratings by combining user
rating and quality of service monitoring. Approaches like [8]
and [11] are not suitable for compositions with many services,
because the monitoring system would need to collect intensive
information from a lot of peers and clients, which would make
it very expensive.

Gamble et al. [14] present a tiered approach to auditing
information in the cloud. The approach provides perspectives
on auditable events that may include compositions of
independently formed audit trails. Filtering and reasoning over
the audit trails can manifest potential security vulnerabilities
and performance attributes as desired by stakeholders. [5]
introduces a system to model the essential security elements
and define the proper message structure and content that each
service in the composition must have, based on a security
meta-language (SML) that models the security relevant
portions of the standards for their consistent, comprehensive,
and correct application. Both of these approaches focus on how
services can comply with established standards, but their
implementation requires strong support from the cloud
provider (and hence dependency on a certain technology) and
extensive changes in the current infrastructures. On the other
hand, the solution proposed for agile and resilient monitoring
in this paper is generic and can easily be applied to different
technologies.

III. PROPOSED SYSTEM ARCHITECTURE
In this section we present our proposed system architecture

for the monitoring of services in network computing in order
to provide adaptability and resiliency in the case of changing
service behavior and context.

The main goals of agile and resilient computing in the
proposed approach are:

1. Replacing anomalous/underperforming services with
reliable versions

2. Reconfiguring service orchestrations to respond to
anomalous service behavior

3. Swiftly self-adapting to changes in context
4. Enforcing proactive and reactive response policies to

achieve performance and security goals
5. Achieving continuous availability even under attacks

and failures

Providing adaptability in order to achieve increased
resiliency relies on two main elements:

1. Monitoring service status and determining action:
Monitoring of services is of utmost importance in
achieving high resilience, as services in environments
with highly dynamic contexts such as mobile and

cloud computing platforms may exhibit frequent
changes in many quality of service parameters such as
throughput, bandwidth, response time etc. Compliance
with SLAs is also hard to achieve in such dynamic
environments, making monitoring a must for accurate
decision-making in service composition problems.

2. Dynamic reconfiguration of services based on
changes in context: Changes in both service context
and the context of users can affect service
compositions, requiring dynamic reconfiguration.
While changes in user context can result in updated
priorities such as trading accuracy for shorter response
time in an emergency, as well as updated constraints
such as requiring trust levels of all services in a
composition to be higher than a particular threshold in
a critical mission, changes in service context can
result in failures requiring the restart of a whole
service composition. Dynamic reconfiguration of
service compositions based on the updated constraints
and service contexts enables enhanced enforcement of
policies to provide higher user satisfaction.

Fig. 1. Broad view of the distributed monitoring system architecture.

Figure 1 shows a high-level view of the proposed system
architecture. Monitoring in the proposed model is distributed
in the sense that each service domain, such as a cluster of
machine instances in the cloud or a set of mobile services in
close proximity to each other, has a service monitor that tracks
interactions among the services in the domain as well as
interactions with services or users outside the domain. When a
service is deployed, it is registered with the local monitor of
its domain in order to be discoverable by other services or
users. The local monitors have access to all interactions with
the services registered in their domain and they gather data
including response time, response status, authentication
failures etc. among other parameters for each service using
interceptors transparent to each service implementation, and
log them in their database. The data collected are periodically
mined by each local monitor using statistical analysis of multi-
lateral time-series data to detect deviations from normal
behavior and reported to a central monitor in the form of
summary health statistics and trust values for the services.
These statistics are utilized by the dynamic service

composition module described in the following section when
making decisions about which services to include in a specific
orchestration to meet user requirements.

In the prototype system, each local service monitor is
implemented using Apache Axis2 [16] valves for intercepting
all service requests in the domain and each service domain
includes a MySQL [17] database, in which useful data
(response time, response status, CPU usage, memory usage)
about each service gathered by the monitor is logged. The
central monitor is implemented as a web service on Amazon
EC2 [15], which has its own database to store health, endpoint
address and category data for various services. While each
service invocation leads to an update in the local monitor’s
database, summary data for all services in a specific domain is
reported to the central monitor periodically by each local
monitor. The dynamic service composition module, as
described in the next section, utilizes information from the
central monitor’s database to create service orchestrations that
comply with users’ performance and/or security requirements.

IV. DYNAMIC SERVICE COMPOSITION

A. Dynamic Service Composition Problem
The challenge in dynamic service composition is to

configure set of services that conform to security policy and
quality of service requirements. A dynamically reconfigured
service composition is based on changes in the context with
respect to timeliness and accuracy of information as well as
the type, duration, extent of attacks and the complexity of the
threat environment. Configurability needs rules that allow
applications and customers to set priorities, risk tolerance, and
monitoring requirements. In network computing, every service
orchestration is composed of a series of services that interact
with each other based on an interaction graph. One of the
benefits of cloud computing is that there can be multiple
options for services to achieve a specific task. We define a
service category as an abstraction for a set of services that
provide similar functionality. A service is the actual
implementation of the functionality for a specific service
category.

The left hand-side of Figure 2 shows a specific
orchestration of services involving categories A, B and C,
where service A-1 invokes service B-1, which invokes C-1.
When we perform dynamic service composition, we effectively
choose services for each category in the composition. For
example, if service B-1 in Figure 2 fails, it can be replaced with
service B-2, which also results in the replacement of service C-
1 with C-3 as shown on the right hand-side of the figure.

Fig. 2. Example of a configuration change in the case of service failure.

Since there are multiple services in every service category,
we face the challenge of selecting the most secure and best
performing service orchestration out of the available services.
This problem is challenging, as it requires meeting multiple
criteria such as security, availability, and cost of a service, etc.
The goal of dynamic service composition is to maximize the
resiliency and trustworthiness of the system based on selecting
the best individual services, while meeting the constraints
(security and SLA requirements). Using the central service
monitor, we maintain the latest values for the trust and QoS
parameters of the services and utilize the values of those
parameters when making decisions regarding whether to
include a specific service in a composition.

B. Dynamic Service Composition Algorithm

The problem of finding an optimal service composition
subject to a set of performance and security constraints is an
NP-hard problem. As achieving low response times for
dynamic service composition requests is important in real-
time computing, we propose a greedy heuristic-based
approach to find near-optimal solutions to this problem.

Algorithm 1. Dynamic Service Composition

//Input:	 A	 set	 of	 m	 service	 categories	 Si,	 each	 with	 a	 set	 of	 	
//concrete	 services.	 	
//Output:	 A	 set	 of	 services,	 one	 in	 each	 category,	 with	 	
//near-‐optimal	 utility	 based	 on	 context.	 	

sort services in every category in descending order of utility

for i: 1..m
 xi1 = 1; //	 select	 the	 highest	 utility	 service	 for	 the	 initial
	 	 	 	 	 	 	 	 	 	 	 	 	 	 //composition

if composition satisfies constraints
 return current composition;

else
 while solution not feasible
	 	 	 	 	 	 	 	 	 	 	 //downgrade	 using	 the	 service	 with	 biggest	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 //aggregate	 saving	 in	 constraints	
 for each category i
 for each service j in i
 calculate aggregate saving of service in
 category i of the current composition with j;
 find service j with maximum aggregate saving;
 record the best service BEST(i) for category i (over
 all j’s);
 find the overall best service from the set of best
 services for every category (over all i’s);
 include the overall best service in the composition;

 return composition;

Algorithm 1 provides the details of the proposed solution.
Note that each service in the problem has a utility measured
by the value of the parameter selected as the target for the
optimization problem (i.e. the value we would like to
maximize, such as the total trust value of services). Additional
service parameters such as response time can be specified as
performance/security constraints (e.g. total response time <
X).

V. EXPERIMENTS
We performed experiments to evaluate the response time

of the dynamic service composition algorithm for varying
number of service categories involved in the composition, as
well as varying number of services in each category. The
dynamic service composition module was hosted on an
Amazon EC2 m3.medium instance (1 vCPU, 3.75 GB
memory) in the experiments, where service data was stored in
a MySQL database.

The first set of experiments involves dynamic composition
requests for orchestrations involving different number of
service categories, where each category has 3 services to
choose from. More specifically, the task is to create a service
orchestration with minimum response time, subject to the
constraint that the average trust level of all services in the
composition is not below a certain threshold. Figure 3 shows
the results of these experiments. As seen in the figure,
composition response time does not increase significantly with
increasing number of service categories in a composition, and
is always under 800 ms, which is a reasonable overhead for
most scenarios. Database access time dominates the response
time in these experiments.

Fig. 3. Dynamic service composition time for varying number of service
categories, with 3 possible services for each category.

The second set of experiments involves dynamic
composition requests for orchestrations of 3 service
categories, with a varying number of services to choose from
each category. Figure 4 shows the results of these
experiments. As seen in the figure, composition response time
does not increase significantly with increasing number of
services to choose from for each category, and is always under
800 ms, which is a reasonable overhead for most scenarios.

Once again, database access time is the dominant factor in the
response time.

Fig. 4. Dynamic composition time for 3 service categories, with varying
number of services for each category.

VI. CONCLUSION AND FUTURE WORK
In this paper we proposed an agile and resilient approach

for dynamic monitoring and reconfiguration of service
orchestrations in network computing. The main impact of the
approach is the proposal of a comprehensive monitoring and
reconfiguration architecture for network computing involving
mobile and cloud services, which achieves high performance
and continuous availability even under highly-dynamic
contexts involving attacks and service failures, thereby
providing increased resiliency. The results of the experiments
with the proposed dynamic service composition model and the
reliance of the approach on standard technologies make it
promising as a preliminary basis for a high-performance
distributed architecture in network computing.

Future work will involve comprehensive experiments with
the proposed model under highly variable contexts such as
fluctuating network bandwidth, changes in service behavior
(e.g. CPU/memory utilization patterns), different service loads,
and various types of attacks on services that affect
performance. We will also evaluate the effects of specifying
multiple quality of service and security constraints on the
performance of dynamic service composition.

ACKNOWLEDGMENT
This research is supported by Northrop Grumman

Cybersecurity Research Consortium.

REFERENCES
[1] M. Azarmi, B. Bhargava, P. Angin, R. Ranchal, N. Ahmed, A. Sinclair,

M. Linderman, and L. ben Othmane, “An End-to-End Security Auditing
Approach for Service Oriented Architecture,” Proc. 31st IEEE
Symposium on Reliable Distributed System, 2012, pp. 279-284.

[2] P. Angin, “Autonomous Agent-Based Mobile-Cloud Computing,” Ph.D.
Thesis, Purdue University, Dec. 2013.

[3] B. Bhargava and S. Browne, “Adaptable Recovery Using Dynamic
Quorum Assignments,” Proc. 16th International Conference on Very
Large Data Bases (VLDB), 1990, pp. 231-242.

[4] L. Baresi, S. Guinea, and O. Nano, “Comprehensive Monitoring of
BPEL Processes,” IEEE Internet Computing, Vol. 14, No. 3, 2010, pp.
50-57.

[5] R. Baird and R. Gamble, “Developing a Security Meta-Language
Framework,” Proc. 44th Hawaii International Conference on System
Sciences, 2011, pp. 1-10.

[6] H. J. La and S. D. Kim, “A Conceptual Framework for Provisioning
Context-Aware Mobile Cloud Services,” Proc. 3rd IEEE International
Conference on Cloud Computing (CLOUD’10), 2010, pp. 466-473.

[7] Z. Li, Y. Jin, and J. Han “A Runtime Monitoring and Validation
Framework for Web Service Interactions,” Proc. Australian Software
Engineering Conference, 2006, pp. 70–79.

[8] Z. Malik and A. Bouguettaya, “Rateweb: Reputation Assessment for
Trust Establishment among Web Services,” VLDB, Vol. 18, No. 4, 2009,
pp. 885–911.

[9] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
NIST Special Publication 800-145, 2011.

[10] J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O'Farrell, E. Litani, and
J. Waterhouse, “Runtime Monitoring of Web Service Conversations,”
IEEE Transactions on Service Computing, Vol. 2, No. 3, 2009, pp. 223-
244.

[11] G. Spanoudakis and S. LoPresti, “Web Service Trust: Towards a
Dynamic Assessment Framework,” Proc. IEEE International
Conference on Availability, Reliability and Security (ARES’09), 2009,
pp. 33–40.

[12] G. Wu, J. Wei, and T. Huang, “Flexible Pattern Monitoring for WS-
BPEL Through Stateful Aspect Extension,” Proc. IEEE International
Conference on Web Services (ICWS '08), 2008, pp. 577 – 584.

[13] G. Wu, J. Wei, C. Ye, H. Zhong, and T. Huang, “Detecting Data
Inconsistency Failure of Composite Web Services through Parametric
Stateful Aspect,” Proc. IEEE International Conference on Web Services,
2010, pp. 68-75.

[14] R. Xie and R. Gamble, “A Tiered Strategy for Auditing in the Cloud,”
Proc. IEEE 5th International Conference on Cloud Computing
(CLOUD), 2012, pp. 945-946.

[15] Amazon EC2. http://aws.amazon.com/ec2. Accessed: 14 July 2015.
[16] Apache Axis2. http://axis.apache.org/axis2/java/core. Accessed: 14 July

2015.
[17] MySQL. http://www.mysql.com. Accessed: 14 July 2015.

