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Abstract—The past decade has witnessed immense 
developments in the field of network computing thanks to the rise 
of the cloud computing paradigm, which enables shared access to 
a wealth of computing and storage resources without needing to 
own them. While cloud computing facilitates on-demand 
deployment, mobility and collaboration of services, mechanisms 
for enforcing security and performance constraints when 
accessing cloud services are still at an immature state. The highly 
dynamic nature of networks and clouds makes it difficult to 
guarantee any service level agreements. On the other hand, 
providing quality of service guarantees to users of mobile and 
cloud services that involve collaboration of multiple services is 
contingent on the existence of mechanisms that give accurate 
performance estimates and security features for each service 
involved in the composition. In this paper, we propose a 
distributed service monitoring and dynamic service composition 
model for network computing, which provides increased 
resiliency by adapting service configurations and service 
compositions to various types of changes in context. We also 
present a greedy dynamic service composition algorithm to 
reconfigure service orchestrations to meet user-specified 
performance and security requirements. Experiments with the 
proposed algorithm and the ease-of-deployment of the proposed 
model on standard cloud platforms show that it is a promising 
approach for agile and resilient network computing.       
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I. INTRODUCTION  
Recent advances in services computing including the rise 

of the cloud computing paradigm has brought network 
computing, which enables the sharing of computing and 
storage resources over a network and collaboration of services 
to achieve complex tasks, to a whole new level. Cloud 
computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable 
computing resources (e.g., networks, servers, storage, 
applications, and services) that can be rapidly provisioned and 
released with minimal management effort or service provider 
interaction [9]. Context plays a very important role in 
achieving high quality of service with both mobile and cloud 
computing, as both computing paradigms face highly dynamic 
conditions, i.e. highly variable context. Richness and efficient 
gathering/utilization of contextual information gains even 

more importance in the case of collaboration between mobile 
and cloud platforms, as achieving high computational 
performance and user satisfaction is contingent upon the 
correct identification of resources to be utilized and various 
constraints peculiar to mobile computing.  

Context in network computing consists of the following 
elements [6][2]: 
1. User preference: This element of context captures user-

specific preference settings for particular applications, 
and could potentially affect the composition of mobile 
services. 

2. Workload: This element involves the workload on the 
mobile services (the usage of resources by different 
applications, or by different components of an 
application), and is another highly dynamic element of 
context. 

3. Data connection type, bandwidth: The available 
bandwidth between clients and services and the data 
connection type are important factors especially for real-
time data-processing intensive applications. 

4. Resource availability: This contextual clue captures the 
availability and quality of various resources on specific 
hosts, and can be used to make decisions regarding the 
selection of services to achieve the best application 
performance. 

5. Situational context: This context element consists of 
monitored data and information regarding the user 
location, time and other data collected by sensors. It is 
most useful in personalizing applications to achieve high 
user satisfaction. 

Adaptability to different contexts is significant for high 
performance in network computing [3]. In order to ensure the 
enforcement of service level agreements (SLAs) and provide 
high security assurance in network computing in real time, a 
monitoring framework needs to be developed to inspect the 
services dynamically during their execution. If a service is 
compromised, misbehaves or is underperforming, the service 
monitor needs to discover this inadequate performance, 
provide feedback, take remedial actions and adapt according 
to the changes in context. The monitoring system must not 
incur a high performance overhead to make them viable for 
large-scale deployment. Finally, a good monitoring framework 
should be as transparent to the service providers and 



consumers. The last requirement is essential for adoption in 
the industry.  

There is a need for novel techniques to monitor service 
activity, discover and report service behavior changes, and 
enforce security and quality of service requirements in cloud 
and mobile services [1] by integrating the various elements of 
context mentioned above. In this paper, we propose a novel 
approach that uses a distributed network of service activity 
monitors to audit and detect service behavior and performance 
changes in various domains. By integrating components for 
service performance monitoring, service trust management 
and dynamic service composition, the proposed model aims to 
provide a unified architecture for agile and resilient network 
computing.  

The rest of this paper is organized as follows: Section II 
provides a brief review of related work in service auditing and 
policy enforcement in network computing. Section III presents 
our proposed system architecture for agile and resilient 
computing. Section IV provides the details of dynamic service 
composition algorithm in the proposed model and Section V 
presents the results of experiments with the algorithm. Section 
VI concludes the paper with future work directions.      

II. RELATED WORK 
Development of runtime-auditing systems for mobile and 

web-based services has been the focus of many research 
efforts. Li et al. [7] describe a system for auditing runtime 
interaction behavior of web services. They use finite state 
automata to validate predefined interaction constraints, where 
message interception is bound to the particular server used for 
deploying Web services. Simmonds et al. [10] present a more 
comprehensive auditing solution for checking behavioral 
correctness of web service conversations. They use UML 2.0 
Sequence Diagrams as a property specification language, 
which are then transformed to automata by multiple monitors 
that check the validity of safety and liveness properties. Their 
proposal is for a specific application server, since they utilize 
an event mechanism provided by that server. Guinea et al. [4] 
present an auditing system that is able to report and monitor 
functional requirements and quality-of-service constraints of 
BPEL (Business Process Execution Language) processes. 
Their approach leverages data collection, including message 
interception for auditing. However, their solution is 
technology-dependent and they do not address the auditing of 
cloud-based service interactions. 

To support flexible auditing of the behavior pattern for 
composite services, Wu et al. [12][13] demonstrate an “aspect 
extension” to WS-BPEL, in which history-based pointcuts 
specify the pattern of interest within a range, and advices 
describe the associated action to manage the process if the 
specified pattern occurs. The solution they provide addresses 
specific orchestration engines, which is not a generic solution 
for modern cloud-based and mobile services. In [8] and [11] 
the identification of trusted services and dynamic trust 
assessment in SOA are studied. Malik et al. [8] introduce a 
framework called RATEWeb for trust-based service selection 
and composition based on peer feedback. It is based on a set of 
decentralized techniques for evaluating reputation-based trust 

with ratings from peers. However they do not take into account 
initial service invocations and the secondary services in 
compositions. Spanoudakis et al. [11] present an approach to 
keep track of trusted services to address the compliance of 
promises expressed within their service level agreements 
(SLAs). The trust assessment is based on information collected 
by monitoring services in different operational contexts and 
subjective assessments of trust provided by different clients 
(consumers) situated in specific operational context. They 
further address the issue of unfair ratings by combining user 
rating and quality of service monitoring. Approaches like [8] 
and [11] are not suitable for compositions with many services, 
because the monitoring system would need to collect intensive 
information from a lot of peers and clients, which would make 
it very expensive. 

Gamble et al. [14] present a tiered approach to auditing 
information in the cloud.  The approach provides perspectives 
on auditable events that may include compositions of 
independently formed audit trails. Filtering and reasoning over 
the audit trails can manifest potential security vulnerabilities 
and performance attributes as desired by stakeholders. [5] 
introduces a system to model the essential security elements 
and define the proper message structure and content that each 
service in the composition must have, based on a security 
meta-language (SML) that models the security relevant 
portions of the standards for their consistent, comprehensive, 
and correct application. Both of these approaches focus on how 
services can comply with established standards, but their 
implementation requires strong support from the cloud 
provider (and hence dependency on a certain technology) and 
extensive changes in the current infrastructures. On the other 
hand, the solution proposed for agile and resilient monitoring 
in this paper is generic and can easily be applied to different 
technologies. 

III. PROPOSED SYSTEM ARCHITECTURE 
In this section we present our proposed system architecture 

for the monitoring of services in network computing in order 
to provide adaptability and resiliency in the case of changing 
service behavior and context.  

The main goals of agile and resilient computing in the 
proposed approach are: 

1. Replacing anomalous/underperforming services with 
reliable versions 

2. Reconfiguring service orchestrations to respond to 
anomalous service behavior 

3. Swiftly self-adapting to changes in context 
4. Enforcing proactive and reactive response policies to 

achieve performance and security goals 
5. Achieving continuous availability even under attacks 

and failures 

Providing adaptability in order to achieve increased 
resiliency relies on two main elements:  

1. Monitoring service status and determining action: 
Monitoring of services is of utmost importance in 
achieving high resilience, as services in environments 
with highly dynamic contexts such as mobile and 



cloud computing platforms may exhibit frequent 
changes in many quality of service parameters such as 
throughput, bandwidth, response time etc. Compliance 
with SLAs is also hard to achieve in such dynamic 
environments, making monitoring a must for accurate 
decision-making in service composition problems.   

2. Dynamic reconfiguration of services based on 
changes in context: Changes in both service context 
and the context of users can affect service 
compositions, requiring dynamic reconfiguration. 
While changes in user context can result in updated 
priorities such as trading accuracy for shorter response 
time in an emergency, as well as updated constraints 
such as requiring trust levels of all services in a 
composition to be higher than a particular threshold in 
a critical mission, changes in service context can 
result in failures requiring the restart of a whole 
service composition. Dynamic reconfiguration of 
service compositions based on the updated constraints 
and service contexts enables enhanced enforcement of 
policies to provide higher user satisfaction.    
 

 

Fig. 1. Broad view of the distributed monitoring system architecture. 

Figure 1 shows a high-level view of the proposed system 
architecture. Monitoring in the proposed model is distributed 
in the sense that each service domain, such as a cluster of 
machine instances in the cloud or a set of mobile services in 
close proximity to each other, has a service monitor that tracks 
interactions among the services in the domain as well as 
interactions with services or users outside the domain. When a 
service is deployed, it is registered with the local monitor of 
its domain in order to be discoverable by other services or 
users.  The local monitors have access to all interactions with 
the services registered in their domain and they gather data 
including response time, response status, authentication 
failures etc. among other parameters for each service using 
interceptors transparent to each service implementation, and 
log them in their database. The data collected are periodically 
mined by each local monitor using statistical analysis of multi-
lateral time-series data to detect deviations from normal 
behavior and reported to a central monitor in the form of 
summary health statistics and trust values for the services. 
These statistics are utilized by the dynamic service 

composition module described in the following section when 
making decisions about which services to include in a specific 
orchestration to meet user requirements.  

In the prototype system, each local service monitor is 
implemented using Apache Axis2 [16] valves for intercepting 
all service requests in the domain and each service domain 
includes a MySQL [17] database, in which useful data 
(response time, response status, CPU usage, memory usage) 
about each service gathered by the monitor is logged. The 
central monitor is implemented as a web service on Amazon 
EC2 [15], which has its own database to store health, endpoint 
address and category data for various services. While each 
service invocation leads to an update in the local monitor’s 
database, summary data for all services in a specific domain is 
reported to the central monitor periodically by each local 
monitor. The dynamic service composition module, as 
described in the next section, utilizes information from the 
central monitor’s database to create service orchestrations that 
comply with users’ performance and/or security requirements.  

IV. DYNAMIC SERVICE COMPOSITION  

A. Dynamic Service Composition Problem 
The challenge in dynamic service composition is to 

configure set of services that conform to security policy and 
quality of service requirements. A dynamically reconfigured 
service composition is based on changes in the context with 
respect to timeliness and accuracy of information as well as 
the type, duration, extent of attacks and the complexity of the 
threat environment. Configurability needs rules that allow 
applications and customers to set priorities, risk tolerance, and 
monitoring requirements. In network computing, every service 
orchestration is composed of a series of services that interact 
with each other based on an interaction graph. One of the 
benefits of cloud computing is that there can be multiple 
options for services to achieve a specific task. We define a 
service category as an abstraction for a set of services that 
provide similar functionality. A service is the actual 
implementation of the functionality for a specific service 
category. 

The left hand-side of Figure 2 shows a specific 
orchestration of services involving categories A, B and C, 
where service A-1 invokes service B-1, which invokes C-1. 
When we perform dynamic service composition, we effectively 
choose services for each category in the composition. For 
example, if service B-1 in Figure 2 fails, it can be replaced with 
service B-2, which also results in the replacement of service C-
1 with C-3 as shown on the right hand-side of the figure.  

 
Fig. 2. Example of a configuration change in the case of service failure. 



Since there are multiple services in every service category, 
we face the challenge of selecting the most secure and best 
performing service orchestration out of the available services. 
This problem is challenging, as it requires meeting multiple 
criteria such as security, availability, and cost of a service, etc. 
The goal of dynamic service composition is to maximize the 
resiliency and trustworthiness of the system based on selecting 
the best individual services, while meeting the constraints 
(security and SLA requirements). Using the central service 
monitor, we maintain the latest values for the trust and QoS 
parameters of the services and utilize the values of those 
parameters when making decisions regarding whether to 
include a specific service in a composition.  

B. Dynamic Service Composition Algorithm 

The problem of finding an optimal service composition 
subject to a set of performance and security constraints is an 
NP-hard problem. As achieving low response times for 
dynamic service composition requests is important in real-
time computing, we propose a greedy heuristic-based 
approach to find near-optimal solutions to this problem.  

 
Algorithm 1. Dynamic Service Composition 
 
//Input:	  A	  set	  of	  m	  service	  categories	  Si,	  each	  with	  a	  set	  of	  	  
//concrete	  services.	  	  
//Output:	  A	  set	  of	  services,	  one	  in	  each	  category,	  with	  	  
//near-‐optimal	  utility	  based	  on	  context.	  	  
 
 
sort services in every category in descending order of utility 
 
for i: 1..m 
   xi1 = 1; //	  select	  the	  highest	  utility	  service	  for	  the	  initial  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  //composition 
 
if composition satisfies constraints 
    return current composition;  
 
else  
    while solution not feasible 
	  	  	  	  	  	  	  	  	  	  	  //downgrade	  using	  the	  service	  with	  biggest	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  //aggregate	  saving	  in	  constraints	  
          for each category i 
              for each service j in i 
                  calculate aggregate saving of service in  
                     category i of the current composition with j; 
             find service j with maximum aggregate saving; 
            record the best service BEST(i) for category i (over  
                                                                                    all j’s); 
        find the overall best service from the set of best  
                services for every category (over all i’s); 
       include the overall best service in the composition; 
 
    return composition;       

 

Algorithm 1 provides the details of the proposed solution.  
Note that each service in the problem has a utility measured 
by the value of the parameter selected as the target for the 
optimization problem (i.e. the value we would like to 
maximize, such as the total trust value of services). Additional 
service parameters such as response time can be specified as 
performance/security constraints (e.g. total response time < 
X). 

V. EXPERIMENTS 
We performed experiments to evaluate the response time 

of the dynamic service composition algorithm for varying 
number of service categories involved in the composition, as 
well as varying number of services in each category. The 
dynamic service composition module was hosted on an 
Amazon EC2 m3.medium instance (1 vCPU, 3.75 GB 
memory) in the experiments, where service data was stored in 
a MySQL database. 

The first set of experiments involves dynamic composition 
requests for orchestrations involving different number of 
service categories, where each category has 3 services to 
choose from. More specifically, the task is to create a service 
orchestration with minimum response time, subject to the 
constraint that the average trust level of all services in the 
composition is not below a certain threshold. Figure 3 shows 
the results of these experiments. As seen in the figure, 
composition response time does not increase significantly with 
increasing number of service categories in a composition, and 
is always under 800 ms, which is a reasonable overhead for 
most scenarios. Database access time dominates the response 
time in these experiments.  

 

 
Fig. 3. Dynamic service composition time for varying number of service 
categories, with 3 possible services for each category.    

The second set of experiments involves dynamic 
composition requests for orchestrations of 3 service 
categories, with a varying number of services to choose from 
each category. Figure 4 shows the results of these 
experiments. As seen in the figure, composition response time 
does not increase significantly with increasing number of 
services to choose from for each category, and is always under 
800 ms, which is a reasonable overhead for most scenarios. 



Once again, database access time is the dominant factor in the 
response time.   

 
Fig. 4. Dynamic composition time for 3 service categories, with varying 
number of services for each category.    

VI. CONCLUSION AND FUTURE WORK 
In this paper we proposed an agile and resilient approach 

for dynamic monitoring and reconfiguration of service 
orchestrations in network computing. The main impact of the 
approach is the proposal of a comprehensive monitoring and 
reconfiguration architecture for network computing involving 
mobile and cloud services, which achieves high performance 
and continuous availability even under highly-dynamic 
contexts involving attacks and service failures, thereby 
providing increased resiliency. The results of the experiments 
with the proposed dynamic service composition model and the 
reliance of the approach on standard technologies make it 
promising as a preliminary basis for a high-performance 
distributed architecture in network computing.  

Future work will involve comprehensive experiments with 
the proposed model under highly variable contexts such as 
fluctuating network bandwidth, changes in service behavior 
(e.g. CPU/memory utilization patterns), different service loads, 
and various types of attacks on services that affect 
performance. We will also  evaluate the effects of specifying 
multiple quality of service and security constraints on the 
performance of dynamic service composition.  
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