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Abstract—This paper introduces AGAPECert, an Auditable, Generalized, Automated, Privacy-Enabling, Certification framework
capable of performing auditable computation on private data and reporting real-time aggregate certification status without disclosing
underlying private data. AGAPECert utilizes a novel mix of trusted execution environments, blockchain technologies, and a real-time
graph-based API standard to provide automated, oblivious, and auditable certification. Our technique allows a privacy-conscious data
owner to run pre-approved Oblivious Smart Contract code in their own environment on their own private data to produce Private
Automated Certifications. These certifications are verifiable, purely functional transformations of the available data, enabling a third
party to trust that the private data must have the necessary properties to produce the resulting certification. Recently, a multitude of
solutions for certification and traceability in supply chains have been proposed. These often suffer from significant privacy issues
because they tend to take a "shared, replicated database" approach: every node in the network has access to a copy of all relevant
data and contract code to guarantee the integrity and reach consensus, even in the presence of malicious nodes. In these contexts of
certifications that require global coordination, AGAPECert can include a blockchain to guarantee ordering of events, while keeping a
core privacy model where private data is not shared outside of the data owner’s own platform. AGAPECert contributes an open-source
certification framework that can be adopted in any regulated environment to keep sensitive data private while enabling a trusted

automated workflow.

Index Terms—Oblivious Smart Contract, Private Automated Certification, Certification, Supply Chain, Blockchain.

1 INTRODUCTION

ECENTLY, many solutions for certifiability and trace-
Rabﬂity in supply chains using blockchain technologies
have risen to prominencel. For example, to provide account-
ability and visibility in the food supply, blockchain solutions
exist such as IBM Food Trust [1], BeefChain [2], Lowry
Solution’s Sonaria platform [3], ripe.io [4], OriginTrail [5],
and SAP Blockchain Service [6], to name a few.

A component of many blockchain solutions is a smart
contract: a piece of code stored in the blockchain itself
that is run by all (or most of) the nodes in the chain in
response to some on-chain event: some data is added to
the blockchain computing nodes which triggers processing.
Nodes in the network have copies of the data and the code
and achieve data integrity by checking each other’s work.
This approach suffers from significant privacy challenges
because data and smart contract code is replicated on all
nodes in the network [7] as a means to achieve varying
levels of Byzantine fault tolerance, i.e., malicious actors are
unable to affect data integrity.

Thus, some projects have proposed the use of trusted
execution environments in the chain to provide some level
of privacy-preserving computation [7] (§2.2). A trusted ex-
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ecution environment (TEE) is a private, integrity-protected,
and secure computation environment built into processor
hardward] [8], [9]. For example, Intel SGX (Software Guard
Extensions) intends to supply confidentiality and integrity
guarantees to computation run in environments where the
hypervisor (virtualized environments), operating system,
or the kernel are probably malicious/adversarial [9]. TEEs
were originally intended to provide a way to keep code and
data isolated from malicious actors in a shared platform,
and they have had questionable (§4.) success toward that
goal thus far. However, AGAPECert’s trust model simply
requires that a TEE can produce cryptographically secure
guarantees about which code it ran, not that it isolates data
from the rest of its platform.

Brandenburger et al. contributed an open-source proof of
concept for TEEs within blockchain computation on top of
Hyperledger Fabric [Z]. Another example using blockchain
and Intel SGX is SDTE [10], a data processing model im-
plemented on Ethereum. A more general framework is the
Confidential Consortium Blockchain (COCO) that aims to
enable scalable and confidential blockchain networks [11]].
In all these solutions, the computation is on-chain, i.e.,
replicated across nodes in the network.

In many of the real use cases requiring the privacy
provided by TEEs, participants are reluctant to provide even
encrypted versions of sensitive data to a public or permis-
sioned blockchain which would preserve the encrypted data
immutably, thus giving attackers an enormous time-based

1. Throughout the rest of this paper, we use the terms TEE, enclave,
and trusted black box interchangeably.
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attack surface to find exploits in encryption key manage-
ment.

In this paper, we address these challenges by developing
AGAPECert, which leverages privacy-preserving compu-
tation via TEEs but allows the TEEs to run in environ-
ments controlled by the data owner rather than on-chain.
AGAPECert abstains from sending data to a public or even
private blockchain network and applies restrictions to the
code that runs inside enclaves: the code or algorithm that
runs on the private data must be pre-approved by both data
owner and regulator.

Next, we more formally define the problem that
AGAPECcert is designed to solve, and then overview the
technology we develop in the rest of this paper.

1.1 Problem Definition

Fig.[Ialillustrates a common user activity that we call a trust
transformation. A regulator such as the Internal Revenue
Service (IRS), an environmental agency, or even a down-
stream purchaser of a product has a form that the individual
or company being regulated needs to fill out. This form
contains a request for information that is derived from other
sources. The source data is generally considered private by
the data owner, and therefore is not submitted directly to
the regulator. The transformation of the source data into
the fields on the regulator’s form can be considered a trust
transformation from more private, fine-grained data to less
private, coarse-grained data.

When the regulator has cause for increased scrutiny,
such as an IRS audit or a “surprise” inspection, there is
typically a need to reproduce the private source data and re-
execute the process of the trust transformation under threat
of legal action; however, this time under the supervision
of the regulator or an independent third party. The source
data presented under audit conditions should be verifiable
as the same data that produced the responses in the original
form. The auditor often has little means of verifying that the
data provided by the data owner is correct. Instead, the data
owner would typically sign some legal document attesting
that the data they have provided is correct to the best of
his/her knowledge@.

The goal of AGAPECert is to enable the trusted service
provider or data owner that performs the trust transforma-
tion in Fig.[Talto be replaced or augmented with code agreed
upon by both the regulator and the data owner as shown in
Fig.[Ibl This automates the process of data-centric certifica-
tion. This process must not infringe on existing models for
trust transformation that society already understands and
uses, as outlined below.

1.2 Design Principles

The following features must be supported in order for
AGAPECert to fit most existing certification processes [12],
(131, [14], [15], [16], [17]:

1) The data owner should be confident that private
data will not be released to the regulator, even in
encrypted (but decryptable) form.

2. The data owner in question is often the sole source of that infor-
mation.

- l s

Trust Transformation : -
= °

p R
Private Data Fi,l,l ed OS‘ I
Form
Regulator
(a
— -

Trust Transformation

7 o
—| @& |—
O = Filled Out '

Private Data “ ”
Form

Regulator

(b)

Fig. 1: (a) Illustration of common model of trust transfor-
mation. A person or their trusted agent will fill out a form
for a regulator using private, fine-grained source data that
they transform into the fields on the regulator’s form. (b)
AGAPECert replaces or augments the service provider or
data owner with a piece of software code agreed upon by
both the regulator and the data owner, thus automating the
certification process.

2) The data owner should be able to run the code to
fill out the regulator’s form as often as they like
internally without notifying the regulator.

3) The regulator must be able to verify that the private
data has not changed in the event of a subsequent
audit under threat of legal action.

4) The regulator should learn nothing more about
the data owner’s information or business processes
other than the exact features of the filled-out form.

5) In some cases (§1.4] Trust Level 2 and 3), the regu-
lator should be able to confirm that the appropriate
code was run without requiring a full audit.

6) The process need not verify the private data beyond
a legal assertion by the data owner that the data
is correct. However, the process may enable better
trust requirements around the integrity of private
source data.

This functionality leads to repeatable precision: when the
trusted software code produces the responses in the form
such as “passed” or “properly certified,” then the data
owner knows that they have passed the certification pro-
cess, regardless of later human regulators or auditors. The
traditional model of data-centric automation has been to
ship data to the code that uses it, thus creating privacy con-
cerns. In the AGAPECert model, data-centric automation is
achieved by shipping trusted code to the data, eliminating
any needless privacy concerns, leaving only those privacy
issues required by the contents of the regulator’s report (§6).

1.3 Overview of Technical Approach

As a key component of the AGAPECert framework, we
introduce Oblivious Smart Contracts (OSCs) as a means to
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achieve Private Automatable Certifications (PACs). A summary
of this approach is as follows:

1) Use a piece of standardized, industry-trusted,
regulator-approved code that can securely access
private data using a standardized graph-based API
(§2.4).

2) Compute an aggregate resulting certification (the
PAC) as a purely functional result from the input
data.

3) Store results back to the platform of choice for the
code (i.e., a blockchain, or any standardized event-
ordering scheme §2.4).

4) Hash and sign all (private data, the result of the
computation, and code) so that these signatures and
hashes can be presented in the event of a legal
challenge, used to verify that the code was run
faithfully, and used to verify that the input data has
not been changed since code execution.

No information will be leaked from the private data beyond
what is produced by the pre-approved code itself. Even the
produced PAC does not necessarily have to be shared by
the data owner except in the case of a manual audit or legal
challenge. It needs not even leak that the data owner has
run the OSC if the OSC itself does not communicate with
any outside platform during execution. We can consider the
PAC as being produced by a smart contract — standard, pre-
approved code shared by participants — and consumers of
the resulting PAC as being oblivious to all features of the un-
derlying private dataset beyond the aggregate information
in the PAC, as in oblivious computation [18]. As an exam-
ple of a PAC protocol utilizing blockchain as a byzantine
fault toleranf] data storage layer, AGAPECert can leverage
auditable computation through a Blockchain-Gateway that
allows pluggable shared ledgers (§5.0)) to store anonymous
hashes computed during the PAC generation process.
AGAPECert utilizes the Trellis framework [19], a graph
datastore abstraction which specializes the Open Ag Data
Alliance (OADA) API framework [20], to provide a standard
API for automated data exchange. AGAPECert uses this
concept of having a known, standard API for any type of
data as a foundational component to build an interoperable
codebase capable of interacting with different individual
platforms (§2.41) Without a standardizable API layer, it is
not practical to write a piece of code that one would expect
to work against many heterogeneous data sources.
AGAPECert also integrates two techniques proposed
in Intel SGX [21]: REPORT and QUOTE. A REPORT is a
unique signed structure that binds a key to the enclave
hardware, the signer of the codebase, the code itself, and
any user-defined data. In the remote attestation process
(§2.2.2), the Quoting Enclave verifies the REPORT and creates
and signs the QUOTE with a key that is only known to
trusted Intel SGX hardware. The QUOTE is utilized by the
Intel Remote Attestation Services to verify the identity of
particular code running inside an enclave. AGAPECert can
store the Quote_Hash (§2.) in the PAC or a shared ledger,
serving as BFT proof of the computation result timing.

3. A Byzantine Fault Tolerant (BFT) network can continue operating
even if some of the nodes fail to communicate or act maliciously.

AGAPECert differs considerably from current edge com-
puting literature. The AGAPECert architecture includes a
graph data store node, a compute engine node, a broker,
and a validator (§3.1). This is a flexible approach: OSC
code can interact with or be initiated by regular on-chain
smart contract code, various data components can be chosen
by participants as either on-chain or off-chain to support
the use case, and results and hashes can be reported di-
rectly to certifying bodies, pushed to a blockchain (or other
standardized event-ordering scheme), or held only by the
data owners. PACs can also be composed: one “meta”-PAC
can be created by an OSC which verifies the validity of
many other PACs, avoiding the need to even disclose the
underlying PACs themselves.

1.4 Trust Levels

Not all use cases have the same trust requirements.
AGAPECert proposes classifying OSC structures that solve
various use cases into a hierarchy of three trust levels with
increasing trust guarantees at the expense of increasing
complexity (Table [IJ):

e Trust Level 1, Owner Attested (OA): Regulator or
consumer of PAC trusts the data owner to faith-
fully execute the OSC, and therefore does not re-
quire proof of correct execution provided by a TEE.
Computation is still auditable under legal challenge.
Example: One company prepares a report that uti-
lizes data from a supplier, and they would like to
automate report preparation without requiring the
transfer of private source data from the supplier
that the report preparation process would naturally
aggregate anyway.

e Trust Level 2, Enclave Attested (EA): Regulator or
consumer of PAC requires attestation that OSC code
was executed faithfully. Computation is auditable
under legal challenge, and correct code execution can
be attested without access to private data. Example:
A government regulator would like to automate
checks against a data owner’s digital data, so the
resulting PAC contains TEE attestation.

o Trust Level 3, Ordering Attested (BA): Regulator or
consumer of PAC requires proof of correct execution
as well as proof of event ordering for issues like dou-
ble spending prevention. Contains same components
as Level 2, with the addition of a Byzantine fault
tolerant shared data storage layer like blockchain.
Example: A buyer of a product wants to know that it
is from a certified set (i.e., purchase does not exceed
available certified balance), but the seller does not
wish to leak information about timing and quantity
of other sales.

1.5 Contributions

The contributions of this paper are summarized as follows:

e We develop AGAPECert, an auditable, generalized,
automated, and privacy-enabling certification frame-
work that integrates event-ordering technologies,

trusted execution environments, and graph-based
APIs.
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Level Explanation Requirements Security Guarantees
Intel SGX | Blockchain | auditable | independently attestated | provable sequence
Trust Level 1 TL1 | Owner Attested X X v’ X X
Trust Level 2 TL2 | Enclave Attested v’ X v’ v’ X
Trust Level 3 TL3 | Ordering Attested v’ v’ v’ v’ v’

TABLE 1: Summary of trust levels in terms of their requirements and security guarantees.

e Asacomponent of AGAPECert, we introduce Obliv-
ious Smart Contracts and Private Automated Certi-
fications to automate and protect data ownership in
real use cases, i.e., certification frameworks, in the
supply chain (§3).

e Through a handshake protocol utilizing trusted
execution environments and OAuth2.0 (§83),
AGAPECert contributes auditable computation for
use cases that require preserving data ownership and
privacy.

o We analyze the implications of using trusted execu-
tion environments (§4). We also contribute possible
extensions that can enhance AGAPECert’s future
releases.

e We provide an open source implementation of our
solution (§5) that can be reused by other researchers.
With this implementation, we demonstrate the key
characteristics of AGAPECert in the domain of

privacy-preserving food-safety (§6 7).

1.6 Roadmap

The rest of this paper is organized as follows. Section
provides technical background on the components used to
build AGAPECert. Then, Section [3] describes the architec-
ture and method through which the AGAPECert system
model achieves the goal of private automated certification.
Section@ provides a security analysis of AGAPECert as well
as a discussion on its relationship to known vulnerabilities
in Intel SGX. Section Bldescribes AGAPECert’s implementa-
tion details, and Section [6] describes real-world applications
that can be deployed using AGAPECert’s model. Section
presents an evaluation of the most critical of AGAPECert’s
components, such as trust levels and deployment of OSCs.
In Section [8l we compare AGAPECert against the state-of-
the-art. Finally, Section [0 concludes this paper.

2 TECHNICAL BACKGROUND

AGAPECert interacts with a trusted real-time graph-based
API (§2.4). AGAPECert computes on encrypted or access-
controlled data (confidentiality), preserves the privacy and
state of the original private data (integrity, §2.1), and, for
some use cases, provides the latest record of the certifica-
tion (sequence, §2.3). AGAPECert instantiates pre-approved
software code inside the compute engine (for Trust Level
2 and 3), providing proof of correct code execution us-
ing trusted execution environments and remote attestation

(§2.2).

2.1

AGAPECert provides integrity protection of private data
and code through well-known cryptographic hash func-
tions. Formally, hash functions map an arbitrary length

Cryptographic Hash Functions and Data Integrity

input message m to a fixed-length output h(m) referred
to as a hash [22]. The hash has the property that it is
computationally infeasible to create an input string which
produces a pre-defined hash value, it is infeasible to invert
(i.e., determine the original input from the hash alone), and
it is deterministic (the same input string always produces
the same hash).

AGAPECert uses the SHA256 hashing function [23] to
create five hashes (Table 2) that uniquely characterize the
private data: the REPORT (local attestation), QUOTE (re-
mote attestation), PAC, and OSC.

2.2 Trusted Execution Environments

Trusted Execution Environments (TEEs) are an industry
innovation to enhance the privacy of data and computa-
tion [7]. Through specialized and isolated execution en-
vironments (enclaves), TEEs shield applications against
any malicious operating system, hypervisor, firmware, or
drivers [9]]. TEEs include functionality to encrypt sensitive
communications, seal (encrypt) data, and verify the integrity
of code and data. TEEs implementation includes specialized
hardware instructions embedded in a machine’s processor.
Examples of TEEs include Intel SGX [21] and ARM Trust-
Zone [24].

2.2.1 Intel SGX

Intel SGX (Software Guard Extensions) aims to supply in-
tegrity and confidentiality guarantees through a TEE [9].
Intel SGX creates a private and trusted execution region
in the computer’s processor called an enclave: a secure
"virtual container” or black box that contains code and secret
data [9]. The intended code and data are injected from an
untrusted region into the enclave. Then, built-in software
attestation and sealing mechanisms can provide proof that
an application is interacting with the exact/correct software
in the enclave and not an attacker’s injected malicious code
or simulator.

AGAPECert Trust Level 2 and above require an enclave
to exist in the compute engine (§3.T). The data owner trusts
the environment where they run the code on top of their
private data, and the code they choose to run there has been
pre-approved by them or their trusted service provider in
advance. In addition, the regulator has also pre-approved
the code and knows the appropriate REPORT parameters
that the code will produce when executed in a TEE. Hence,
the code injected in the enclave has been approved by both
the requlator and the data owner, which constitutes a code trust
relationship.

2.2.2 Local and remote attestation

To prove that specific software code is running in trusted
hardware, Intel SGX relies on local and remote attesta-
tion [9], [25]. The attestation mechanism provides proofs,
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Hash Name Input Objective

Data_Hash private_data retrieved from a Trellis data store Integrity of Private Data

Report_Hash | REPORT produced by an enclave when running the OSC Integrity of the REPORT from the enclave
Quote_Hash | QUOTE produced by a Quoting Enclave Integrity of the QUOTE from the enclave
PAC,;_Hash PAC; (JSON object) produced by the enclave interior Integrity of the PAC

OSC_Hash OSC Software Code in the Trusted Code Repository Integrity of the OSC code itself

TABLE 2: Summary of the main AGAPECert cryptographic hashes.

which comprise a cryptographic signature of the enclave’s
content (code, data, and parameters) using the platform’s
secret attestation key known only to the processor. In local
attestation, the cryptographic proof is verifiable locally by
another enclave running in the same processor; this allows
secure collaboration to reach a result.

In remote attestation, the cryptographic signature on the
proof can be verified by a third party as having originated
from a particular piece of trusted hardware using the as-
sumption that the secret key within the processor hardware
is unknown outside of the hardware itself and the hardware
never reports that key to running software. In other words,
the only entity that could have produced the signature is a
trusted processor because it is the only entity that knows its
signing key.

AGAPECert utilizes a remote attestation mechanism as
the means by which the data owner can prove to the regu-
lator that they have faithfully executed the pre-approved
code. OSC code reads private data and produces purely
functional outputs from that data, including additional
hashes (§2.1). This makes code execution both reproducible
and verifiable given the same input data.

2.2.3 Intel Enhanced Privacy ID and SGX DCAP

A critical aspect of privacy-preserving computation is attest-
ing that compute devices have not been tampered with and
are authentic. Intel’s Enhanced Privacy ID (EPID) [26] is an
implementation of ISO/IEM 2008 that handles membership
revocation and anonymity. Membership revocation exposes
methods to invalidate compromised secret keys. Anonymity
means that EPID will attest to the authenticity of devices
without identifying the particular device, i.e., the signature
was created by a key from amid a trusted group of secret
keys. However, EPID cannot distinguish which particular
key in the group created a given signature. AGAPECert
utilizes these existing remote attestation signature schemes.
EPID has some limitations, however:

o Participants are reticent to outsource trust decisions.

e Some highly-distributed use cases require scalable
verification points and need to avoid a single point
of failure.

e AGAPECert can run computation in controlled envi-
ronments restricting Internet access at runtime.

To overcome this, Intel allows the use of Data Center
Attestation Primitives — Intel SGX DCAP [27] - to build
customized third party remote attestation. At this point,
only servers with Flexible Launch Control (FLC) enabled
Intel Xeon E Processors are supported.

2.3 Blockchain and Event Ordering Technologies

In AGAPECert, we expose three trust levels (§1.4) that
define different trust requirements. That is, the regulator

(or consumer of a PAC) and data owner define the trust
requirements for particular use cases. For Trust Level 3, the
data owner and regulator have to agree on a technology that
serves as a reliable mechanism for the ordering of events.
A reliable system must include Byzantine fault-tolerant,
consensus, immutability, and integrity properties [7].

Our solution thus desires (for Trust Level 3) a reliable
distributed data storage layer for a reduced schema and
unique content. We consider Blockchain as the mechanism
for ordering events, given its APIs and platforms have
become popular and well-established over the past decade.
We will experimentally demonstrate AGAPECert’s perfor-
mance with Blockchain in Section 7.4, where we contribute
evidence of a use case deployed in the well-known Hyper-
ledger shared ledger fabric.

A blockchain is an immutable, decentralized digital
ledger [7]], [28]. Multiple computers store ordered trans-
actions, linked together through a series of hashes that
represent all the data in the ledger up to a given block.
Immutability implies that a record in a set "chained" to-
gether by hashes cannot be changed without affecting all the
subsequent block hashes. A blockchain provides byzantine
fault-tolerant [29] independent auditability capabilities typ-
ically by placing computational constraints on block content
which make it too difficult for a malicious attacker to game
since they cannot brute-force guess solutions any faster than
non-malicious participants.

A smart contract is defined as code that resides in the
blockchain itself. An event can trigger some or all nodes to
execute that code. The input and output data for each run
of the contract code is also typically stored in the blockchain
to make code execution directly verifiable: every node uses
the same inputs, runs the same code, and verifies that they
produce the same output.

The simplest forms of OSC do not require a blockchain.
However, some use cases require provable concepts of time
or event ordering. In such cases, including a blockchain
building block can be key to giving an OSC the capability
to provide collaborative interaction that respects ordering of
events. In such cases, AGAPECert can utilize a blockchain
to store hashes when building a PAC. AGAPECert currently
implements a Generalizable Blockchain-Gateway with IBM
Hyperledger Fabric as a building block, but can be extended
to other blockchain frameworks such as Ethereum [30].

Alternative solutions to Blockchain for ordering events
include employing graph databases (such as Neo4j [31] and
ArangoDB [32]), which can expose customized ordering of
events utilizing network/graph representation of transac-
tions and events. In fact, AGAPECert will employ the Trellis
Framework (§2.4) to interact with the private data store via
REST API calls, which is built on top of ArangoDB. Hence,
as an alternative to Blockchain, one could build person-
alized ordering of events or traceability modules utilizing
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the Direct Acyclic Graph (DAG) model materialized on top
of ArangoDB and exposed by Trellis via a REST API. The
distributed ledger technology alternatives to Blockchain,
Tangle [33] and Hashgraph [34], are also based on DAG
models and could similarly be employed here.

2.4 Real-time Graph-based API

We utilize the Trellis Framework [19] which exposes stan-
dardized REST API semantics to interact with a user’s
private data store. The purpose of Trellis is to enable stan-
dardized, automated, permissioned, ad-hoc, point-to-point
data connections through the use of a common REST APL
It is beyond the scope of this paper to fully recount the
details of Trellid]. However, some critical features of Trellis
are important to the development of AGAPECert:

e Resource discovery: Filesystem-like graph schemas
define where data can be discovered. For ex-
ample, catch locations for a fishing vessel for
May 1, 2020 could be defined as discoverable
at graph path /bookmarks/trellis/fishing/catch-
locations/day-index/2020-05-01.

o Write semantics: Trellis standardizes how data within
a graph is written. All data changes are reduced to
an ordered stream of idempotent merge operationﬁ
Operation ordering is only guaranteed per resource,
not globally.

o Change feeds: Clients can register for real-time change
feeds for any arbitrary subgraph of data. This pro-
vides both a real-time communication channel as
well as a means of concurrency-safe 2-way data
synchronization. The change feed is comprised of the
ordered stream of idempotent merge operations.

o Authorization: Trellis standardizes how any client reg-
isters and obtains authorization tokens at any Trellis
platform.

e Permissions: Trellis standardizes how data can be
locally shared within a platform.

3 MEeTHOD: AGAPECERT SYSTEM MODEL
3.1 AGAPECert Architecture

AGAPECert considers two primary actors: data owners and
regulators. Data owners are clients that own private and sen-
sitive data. Regulators are actors that desire some derivative
of the client’s private, sensitive data without requiring the
disclosure of that data itself. Note that the regulator may
not be only what is traditionally considered a regulator, e.g.,
from a government agency, but rather is used in a broader
sense here as any entity looking for information that may
be derived from a client’s private data. By this definition,
a regulator could be a direct customer of the data owner, a
down-stream buyer in a supply chain, or a business partner.

We define two critical components of the certification
process:

4. Refer to https://github.com/trellisfw for more information.

5. An idempotent merge operation means that a given JSON docu-
ment is produced that only affects matching keys. Keys that do not exist
are created, existing ones are deep-replaced at overlapping key paths,
similar to a common upsert. Applying the same merge repeatedly
results in the same resource state at the mentioned key paths.

o Private Automated Certification (PAC): The derivative
output of the client’s data (i.e., the contents of the
"form" that the regulator requires the data owner to
fill out).

e Oblivious Smart Contract (OSC): The regulator-
approved code which, given access to private input
data, produces the desired PAC (i.e., the "questions"
on the regulator’s "form").

The client (or their trusted service provider or industry
consortium) ensures that the OSC obtains only the necessary
data to produce a PAC, and that the PAC will not leak
any unauthorized information (such as copies of the private
data, or knowledge of when the OSC code was run). The
client runs the approved code and provides it access to their
private data to it to obtain a signed PAC. This PAC should
contain, at minimum, a cryptographic hash representing
the input data used in its computation. For Trust Levels 2
and above, it must also include the cryptographic hashes of
REPORT (Report_Hash) and QUOTE (Quote_H ash) from
the Intel SGX enclave. The client then provides their PAC
to the regulator upon request, at which time the regulator
may validate the PAC according to the trust level for that
use case. Should a subsequent legal challenge be necessary,
the client can produce the private data to a legal authority,
which can verify that the cryptographic hash for that data
(Data_Hash) matches that from the PAC, and can also
re-run the OSC code to produce an equivalent PAC for
comparison.

The AGAPECert architecture is comprised of six main
components, four required and two optional based on the
level of trust required, as depicted in Fig.

e Compute Engine: A compute node controlled by or
trusted by the data owner that is capable of running
the OSC code. A compute engine is required for
all trust levels. For Trust Levels 2 and above, the
compute engine must be Intel SGX-enabled.

o Data Store: A Trellis-conformant data storage plat-
form that holds the private data owned by the client.
This serves as the source of the data for the OSC, as
the real-time communication channel for the broker
and the OSC, and as the destination for the PAC
produced by the OSC.

o Broker: A web application that initiates, authorizes,
provisions, moderates, monitors, and validates OSC
execution, communicating with the OSC through
the secure shared Trellis connection. This serves as
the bridge between the data owner and the OSC,
acting as a service manager; all OSC services can be
monitored through this web-app.

o Validator: A web application that can validate a PAC,
including remote attestation for Trust Level 2 and 3,
and checking a blockchain (or other event-ordering
technology) for Trust Level 3.

o Attestation Service: The Intel SGX attestation service
or DCAP (§2.2.3). Given a particular QUOTE, this
service can attest whether the QUOTE was produced
by a legitimate Intel SGX enclave or not, thus attest-
ing proper code execution. Required for Trust Levels
2 and above.
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Components Explanation

Compute Engine Compute node controlled or trusted by the data owner. Runs the OSC.

Data Store A Graph Data Store that holds the private data (Trellis).

Broker A web-app that initiates, authorizes, provisions, moderates, monitors, validates OSC execution.
Validator A web-app that can validate a given PAC

Attestation Service The Intel SGX attestation service or Data Center Attestation Primitives (DCAP)
Blockchain-Gateway | A Generalizable Blockchain Service to connect to a mix of ledgers as needed (optional).

TABLE 3:
Gateway are only necessary for Trust Level 3.

Data Owner
Participant Regulator

as Validator j }
T ey

1
Graph API - C++ Driver 1
1
I IAS
{F @ >

1
! DCAP
1 ’OSC-Exterior K:HOSC-Interioq :
1
1
Y

Blockchain Gateway (optional)

! !

Broker

& F-

Data Store

(0

Data Store 8

|

3 {REST | WebSockets} i 1

——> {REST} -
[ Trellis Framework Compliant
o e D 8 Node - Data Store

Blockchain gateway (optional component)

Intel SGX Enabled Node
Compute Engine - OSC

Fig. 2: AGAPECert architecture for Trust Level 3. The data
owner main components include a compute engine that
runs the OSC (exterior and interior), a data store, a service
manager for the OSCs (broker), and a blockchain-gateway
(optional, for trust level 3 only) to store the Quote_Hash
and UUID (PAC.id). The regulator includes the validator
and its data store. The validator queries the ledger to verify
a particular PAC. Also, the validator attests correct code ex-
ecution connecting to remote attestation services or DCAP.

e Blockchain (Event-Ordering) Gateway (optional):
An interface to a blockchain (or other event-ordering
scheme, see §2.3) that is trusted by the regulator and
the data owner—this component is optional and only
necessary for trust level 3.

These components are summarized in Table[3

3.2 Oblivious Smart Contracts

An Oblivious Smart Contract (OSC) is software code that
reads private data to compute a result such as pass/fail
and generate a PAC (§3.3). OSCs run in the compute engine
node. For Trust Levels 2 and 3, this computation happens
inside a TEE on the compute engine.

As explained by Intel’s documentation [21], Intel SGX
applications (such as Trust Level 2 and above OSC’s) are
comprised of two parts: the untrusted part of the application

Summary of components comprising the AGAPECert architecture. The Attestation Service and Blockchain-

which communicates with the enclave, and the trusted part
that includes the computation inside enclaves. Note that
while these terms make sense in the traditional environ-
ments where Intel SGX is intended to run, they are mis-
nomers in our context where the environment running the
OSC is assumed to be trusted by the data owner already. We
will instead use the term enclave exterior to describe what
Intel SGX terms the untrusted part, and enclave interior to
describe the trusted part.

Trust Level 1 does not require a TEE; this simple form of
OSC is simply any code capable of interacting with a Trellis
platform to read data and save a resulting PAC.

For the Trust Levels 2 and 3, the OSCs include native
C Bridge functions that communicate with the enclaves.
The enclave exterior of the OSC connects and retrieves
the private data from the Trellis data store and injects a
buffer into the enclave interior of the OSC. AGAPECert
includes C++ classes that implement the Trellis REST and
WebSockets APIs to communicate with the Trellis data store
through a shared resource located in the Trellis graph at
/bookmarks/OSC/Hy, where Hj, can be a random string
generated at runtime by the OSC or a static feature of the
OSC and is discovered by the Broker when initiating the
connection.

The enclave interior of the OSC computes the crypto-
graphic hashes necessary to audit the computation in the
future and passes them through the enclave exterior to be
stored in the PAC, which is stored back to the data owner’s
Trellis data store. In Trust Level 3, AGAPECert also stores
the cryptographic hashes in the blockchain.

It is important to note that since AGAPECert stores
only the cryptographic hashes in the blockchain, and these
hashes cannot be linked to the source data using only the
hash, this protects the privacy of the data owner; i.e., there
is no information leakage from this process such as third
party knowledge of how many times the data owner has
run the OSC. However, storage of the hash in the blockchain
can leak the time when a given PAC was generated since a
regulator receiving the PAC in the future can check where
in the blockchain the hash was saved.

The typical OSC runs continuously, awaiting notification
from the broker through the Trellis data store at shared
storage location /bookmarks/OSC/Hy, to start a new PAC
generation process on a new subset of data, or until a restart
is submitted from the broker. Each run of the OSC produces
one or more PACs deterministically, after which point the
OSC returns to a listening state awaiting further signals
from the broker.
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3.3 Private Automated Certifications (PAC) Workflow

To generate a certification under Trust Level 3, AGAPECert
uses the following workflow (Fig.[3] Algorithm[l) For other
trust levels, the respective components not used by those
levels are simply left out. Note that AGAPECert utilizes a set
of RFCs in this process (RFC7591, RFC7517, and RFC7519)
as prescribed in the Trellis authorization protocol [35]].

1)

Install OSC: The data owner installs the OSC on
their compute engine. This produces a random pub-
lic/private asymmetric key pair, with the public key
saved as a JSON Web Key (jwk from RFC7517) in a
newly generated Trellis Client Certificate (Cysc).
Authorize Broker: The data owner logs into their
Trellis compliant node via OAuth2 to authorize a
token for the Broker.

Watch for OSCs: The broker opens and maintains
an active websocket connection to the Trellis data
store that watches the top-level /bookmarks/OSC
document for any connected OSCs.

Authorize OSC: The data owner uses the Broker to
pre-register the OSC’s Trellis Client Certificate C\s.
at their Trellis data store as an authorized OSC.
Start the OSC: The data owner starts the OSC. They
can also verify that the hash of the OSC code
OSC_Hash matches the one available in a private
certified code repository.

a) The OSC Exterior performs OAuth2 dynamic
client registration by exchanging its Trel-
lis Client Certificate C,,. with Trellis for a
Client ID. It then performs OAuth2 Client
Grant flow during which it proves that it has
the private key for the pre-registered certifi-
cate by creating a signed jwt_bearer token
(RFC7523). This process results in a properly
scoped launch token (1) to access the user’s
Trellis data store at /bookmarks/OSC.

b) The OSC Exterior generates a random string
Hj, that uniquely identifies this instance
of OSC. The OSC uses the token received
from previous step to create a resource
(/bookmarks/OSC/Hy) in the data store. It
also puts information about itself into that
document.

c¢) The OSC exterior opens and maintains an
active Trellis websocket connection to the
Trellis data store watching for changes to
the new /bookmarks/OSC/Hj, as the main
communication channel between the broker
and the OSC.

Communication Channel Opens: The broker’s active
Trellis websocket connection notifies it that a new
OSC resource exists at /bookmarks/OSC [ Hy.

Validate OSC Quote: To validate that their plat-
form has loaded the correct OSC code, the data
owner loads the credentials for the Attestation Ser-
vice §2.2.3| (IAS or DCAP) into the Broker. The Bro-
ker will initiate remote attestation to verify that the
enclave is legitimate. This remote attestation work-

10)

11)

12)

13)

14)

8

flow produces and validates a QUOTE (m.
The data owner can store the QUOTE to expose
auditability features. The data owner can also prove
to a third party (e.g., a regulator or auditor) that a
particular OSC was run in the data owner’s plat-
form with a specific configuration.

Provision Data to OSC: The broker then provisions a
properly-scoped data access token Ty for the OSC
to use in creating its PAC. The broker writes this
token to the shared Trellis communication chan-
nel at /bookmarks/OSC/Hy, along with any data
filtering instructions (such as restricting the PAC
to only consider a particular day’s dataset). The
active websocket connection held by the OSC ex-
terior notifies it of the newly provisioned token and
filter, triggering the OSC to begin the core PAC
generation.

OSC Interior Requests Data: The OSC exterior re-
ceives the data access token and filtering instruc-
tions and notifies the OSC interior to begin PAC
generation. The OSC interior uses its knowledge of
the known, published Trellis semantic data struc-
tures to begin requesting data it needs. Requests for
data initiated by the OSC interior are forwarded to
the OSC exterior to make the actual requests over
the active Trellis websocket connection.

OSC Exterior Injects Data: The OSC exterior serializes
and injects the received data into the OSC Interior
as it comes back from Trellis.

OSC Interior Computes PAC: The OSC interior com-
putes its core certification result (i.e., pass/fail) from
the received input data, as well as a cryptographic
hash (Data_Hash) of all serialized data received
during the generation of one PAC. Upon completion
of all received data, the OSC interior saves this hash
of all input data to the PAC in the data store.

OSC Interior Hashes PAC: The OSC interior generates
a hash of the entire PAC (including Data_Hash
and a random universally unique identifier for the
blockchain transaction) and saves this back to the
PAC itself in the Trellis data store through the OSC
exterior.

Exterior Obtains TEE Quote: The OSC exterior sees
the hash of the overall PAC and concludes that
the OSC interior has completed its work. The OSC
exterior then instructs the OSC interior to obtain a
QUOTE from a local quoting enclave, including the
hash of the PAC as the user data for a new REPORT
from the OSC interior. The OSC exterior gathers the
final QUOTE from this process and writes it to the
PAC in the Trellis data store.

OSC Interior Sends Quote_Hash to Blockchain: For
Trust Level 3, the OSC exterior will then com-
municate with the Blockchain Gateway to record
the unique identifier and Quote_Hash in the
blockchain, along with any further case-specific re-
quirements.

6.1f the OSC cannot be validated, an exception report must be
stored in the data owner’s trusted platform. This constitutes a remote
attestation failure, in which case the process will not continue with the
next steps.
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15)  Data Owner Sends PAC to Regulator: Finally, at a later
time, the regulator receives the generated PAC from
the data owner and uses the Validator to check it.
The Validator sends the QUOTE from the PAC to
an attestation service to verify that the QUOTE was
indeed generated with an Intel EPID key that has
not been revoked. Note that if a processor’s key
is revoked, this either invalidates all prior PAC’s
generated by that processor, or some outside means
of providing a trusted timestamp of QUOTE genera-
tion (such as that provided by Trust Level 3 through
a blockchain) must be included in this flow to
maintain validity of PAC’s generated prior to some
known revocation time. The Validator also queries
the blockchain ledger to validate the Quote_Hash
and case-specific data.

Data: data_token, filter

Result: PAC, QUOTE, QUOTE_HASH, UUID
trellis < new Trellis(data_token) ;

/* instantiates a new gateway =*/
blockchain_gateway < new Blockhain() ;

/* retrieves private data =/

data + trellis.get PrivateData( filter) ;

/+ instantiates the trusted algorithm
inside enclave (0OSC interior), returns
the computed PAC */
pac < computeAlgorithm(data) ;

if pac # null then
quote < getQuote() ; /* retrieves the
cryptographic proof of the
computation =/
trellis.put PAC (pac, quote) ; /» updates PAC
in the trellis backend =/
blockhain_gateway.put PAC (pac); /+ stores
UUID and Quote_Hash in the shared
ledger */

end
Algorithm 1: AGAPECert PAC generation overview.

3.4 Blockchain-Gateway Schema

AGAPECert stores a minimal set of cryptographic hashes
(§2.1) in the shared ledger. These hashes do not convey any
identifiable private information to an eavesdropper of the
transactions in the blockchain nodes. We define the methods
of the smart-contract necessary to store hashes from the
OsC.

The AGAPECert proof-of-concept models the business
network utilizing Hyperledger Fabric (§5.11) Hyperledger
Fabric requires the definition of assets, participants, and
transactions. AGAPECert utilizes a PAC as an asset in
the blockchain that we define as a "Fabric PAC" fabPAC.
We define two participants: an anonymous participant that
stores PACs in the ledger and a regulator who queries the
transactions and assets in the distributed ledger.

AGAPECert defines a simple schema of at least two
strings for a fabPAC: (unique identifier, Quote_Hash)
and for some use cases a One-Time-Use-Key (OTK).

Property(fabPAC.) Type.

id String (UUID)
quoteHash String

OTK (optional One-Time-Key) | String (Base64 encoded)

TABLE 4: PAC business network in the shared ledger.

AGAPECert’s blockchain schema is shown in Table @ This
forms the basis for use cases in Trust Level 3.

The regulator automated software can check if the cryp-
tographic hashes in the PAC match the transaction regis-
tered in the blockchain. AGAPECert’s Blockchain Gateway
exposes a REST API to communicate with the Fabric.

4 SECURITY ANALYSIS

AGAPECert does not alter the existing real-world model of
requiring the regulator to trust the data provided to it by the
client under threat of legal recourse, as discussed in[I.2] Our
security analysis therefore only focuses on guarantees made
about computation on the private data (which is assumed
correct until audited), rather than about the private data
itself.

4.1 Side channel attacks to the Compute Engine

TEE technology such as Intel SGX can be vulnerable to "side
channel attacks:" [36], [37], [38], [39], [40], [41] malicious
code running on the same processor can learn about enclave
computation and data via round-about methods such as
tracking cache timings after an enclave is switched out of
execution. AGAPECert assumes the data owner is running
the OSC in an environment they already trust: the threat
of a malicious entity on the same processor does not apply,
hence AGAPECert is immune to traditional enclave side-
channel attacks.

However, a data owner using past side-channel attacks
against their own trusted enclaves (such as the enclave
that provides quotes) could learn the remote attestation
keys [36], [38] for their own system and use that to forge
fake QUOTE’s. Since such attacks have been discovered,
researchers have also contributed mitigation techniques to
patch those security vulnerabilities [36]], [38]. Additionally,
Intel’s security advisories provide critical mitigation tech-
niques [42]. For instance, some vulnerabilities require mi-
crocode level and software mitigations.

AGAPECert runs in a controlled environment in which
standards and best practices are enforced; therefore, data
owners and participants in the protocol must have the latest
Intel SGX Software installed, the newest microcode up-
dates through BIOS updates, and any other recommended
measures such as updated operating systems and virtual
machines. Microcode updates upgrade the Security Ver-
sion Number (SVN) utilized in the implementation of Intel
SGX [42]. Microcode updates provide new sealing and at-
testation keys to the enclaves on the platform [42]. Hence,
we can track the SVN embedded in the PAC the regulator
will assess the validity of a specific PAC via a customized
attestation process using current vulnerabilities.

This means that at any given time, it is not known to be
possible to forge QUOTEs that contain the latest SVN until a
future vulnerability is released. In the event of catastrophic
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security failure of Intel SGX's architecture, data owners may
need to refresh relevant PACs after updating their processor
microcode to produce updated SVNs. The purely functional
and auditable nature of AGAPECert’s OSCs fit this model
well. In addition, if the QUOTE hash was published in a
blockchain prior to vulnerability discovery, regulators may
consider a "likely validity" date since the blockchain can
attest when the original QUOTE was signed.

Recall as well that the computation is auditable at any
time: should the regulator question a result, they can simply
trigger an audit of the private data, which could be as simple
as running the OSC again with the auditor’s oversight. Con-
sider as well that it is often vastly easier for a malicious data
owner to forge their private data (which they can do today
without AGAPECert) than it is to attempt cracking open a
CPU in an attempt to probe for highly guarded embedded
attestation keys. Once such foul play is discovered during
any audit, Intel EPID can simply revoke the key that the
malicious data owner spent so much effort attempting to
learn, providing severely diminishing returns to any such
attacker.

Therefore the traditional side-channel security vulnera-
bilities with TEE computing have little ability to impact the
security of AGAPECert in general.

4.2 Analyzing AGAPECert’s Trust Levels
4.2.1 Owner Attested

The regulator trusts the data owner to correctly execute the
OSC. Therefore, the Compute Engine, Broker, Data Store are
assumed to be trusted. In the case of an adversarial data
owner, the regulator can still validate the private data and
code execution via audits.

4.2.2 Enclave Attested

Trust Level 2 requires the correct execution of the OSC/Al-
gorithm. Therefore, Trust Level 2 relies on the attestation
capabilities of the Intel SGX Architecture. Following our
previous discussion on side-channel attacks, an adversarial

data owner can steal secrets from an outdated Intel SGX-
enabled node signing code and data as genuine compromis-
ing ultimately Trust Level 2. AGAPECert implementations
must require up-to-date remote attestation schemes, includ-
ing the latest SVN known to have reasonably uncompromis-
able attestation keys.

4.2.3 Ordering Attested

For Trust Level 3, the discussion about faithful code exe-
cution is analogous to Trust Level 2. Ordering of events
provided by a shared ledger can expose the execution
timestamp of an OSC and creation of a PAC breaking our
premise of obliviousness and revealing useful information
for an interested party. AGAPECert utilizes a Blockchain
Gateway to submit anonymous and asynchronous transactions
to a shared ledger or a mix of ledgers hiding the identity of
the participants. In the case of a compromised shared ledger,
no useful information is derived by an attacker solely from
the global state.

4.3 Discussion

There exist extremely sensitive datasets and data sources—
electronic health records, stock market, finance, etc. —in
which even the leakage of a reduced set of bits can be
catastrophic. Under adversarial environments, these use
cases require stronger cryptosystems that offer semantic
security [43], [44] (homomorphic encryption). AGAPECert
use cases and trust model limit the capabilities of an ad-
versary. For instance, a participant is limited by standards,
regulations, and audits. Moreover, the possibility of legal
action—when a deviation from the protocol is suspected—
forces the participant to maintain a good reputation.
Powerful adversaries (stronger than HB(]) that can
get access to the blockchain cannot derive any useful in-
formation from the stored cryptographic hashes and ran-
dom universal unique identifiers. AGAPECert does not

7. "The honest-but-curious (HBC) adversary is a legitimate partic-
ipant in a communication protocol who will not deviate from the
defined protocol but will attempt to learn all possible information from
legitimately received messages" [45].
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rely solely on Intel SGX attestation and sealing primi-
tives; instead, AGAPECert contributes a set of trust levels
providing adaptability features according to particular use
cases. AGAPECert’s future releases can allow homomorphic
encryption exposing Homomorphic and Oblivious Smart
Contracts (HOSC). Integrating SEAL [46] in AGAPECert
allows a richer set of devices as compute engines.

5 PROTOTYPE IMPLEMENTATION

The AGAPECert prototype implementation components are
available as open source as shown in Table[5] and documen-
tation for how to install and run the entire flow can be found
at https:/ /github.com /agapecert/agapecert.

5.1

For Trust Level 3, AGAPECert’s prototype implementation
interacts with a pacContract deployed in a blockchain net-
work through a custom Javascript-based Blockchain Gate-
wayll. The primary purpose of the Blockchain Gateway is
to submit asynchronous (and optionally anonymous) trans-
actions to the ledger. The Blockchain Gateway is generaliz-
able and can accommodate pluggable shared ledgers. This
gateway allows the Broker, Validator, and OSC to interact
with a shared ledger (or a mix of ledgers). AGAPECert’s
Blockchain-Gateway future releases can utilize concepts
defined by Agrawal et al. [47] to enhance anonymity and
privacy when interacting with a shared ledger.

Blockchain Gateway

5.2 Trusted Compute Engine

We implemented the OSCs utilizing C++ for the OSC exte-
rior. We utilized OpenEnclave [48] to implement C bridge
functions for the OSC interior. The compute engine exposes
a rich API (C++ driver Listing [I)) to allow secure commu-
nication between the OSC, the graph-based API, and the
Broker. The C++ driver implements secure WebSockets.

/Trellis * objTrellis = new Trellis ();

> objTrellis —>getPrivateData () . wait () ;

3 m_private_records =

objTrellis —>m_private_records;
// AGAPECert C++ Driver - Compute Engine Methods

5 objTrellis —>getUUID () ;

~

®

1(

» objTrellis —>getToken () ;

objTrellis —>getAuthorization () ;

objTrellis —>getPrivateDataPath() ;

objTrellis —>getPrivateData () ;

objTrellis —>putPAC() ;

Listing 1: Example OSC Exterior usage of Compute Engine
C++ Trellis driver
(https:/ / github.com/agapecert/compute-engine)

6 EXAMPLE APPLICATIONS

There are an enormous number of potential applications for
AGAPECert with its OSC+PAC model. This section shows a
few non-trivial illustrative examplesﬁ.

8. https://github.com/agapecert/blockchain-gateway
9. A complete description of example applications can be found at
https:/ /github.com/agapecert/osc-definitions /wiki
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6.1

A Consumer-Facing Food Company, known as CFFC,
wishes to create periodic sustainability reports for con-
sumers to strengthen their brand. However, many of the
metrics they might report are dependent upon data sources
outside their company: i.e., their suppliers or third-party
contractors. Consider just one metric: total energy con-
sumed from renewable sources. CFFC does not want to
require its suppliers to send their energy bills to them each
month. Instead, CFFC creates an OSC that looks in Trellis
first for an already-produced sustainability report, and if it
finds one, it produces a PAC with just the “total energy con-
sumed from renewable resources” number extracted from
the existing report. If it does not find one, it looks for any
energy bills containing such numbers, adds them together
for the year, and then produces a PAC with the resulting
number.

CFFC asks its suppliers to run this OSC in their
AGAPECert instances and then share the resulting PAC
with CFFC via an automated Trellis connection. CFFC is able
to fully automate the creation of their own sustainability
report without requiring the release of private, sensitive
data from their suppliers. This relies on their supplier hav-
ing such information already in a Trellis-conformant data
store: in cases where it is not, the benefits of automating this
process for their suppliers is incentive to achieve that goal
in ways that are difficult to incentivize without such a tool.

The supplier has a trusted third party that handles
running their OSC’s, so the third party starts up this OSC
from CFFC, and an employee with the supplier uses the
AGAPECert broker app to authorize, configure, and mon-
itor the OSC as it creates the PAC’s automatically every
month. The employee creates an automated Trellis connec-
tion to CFFC so that whenever a new PAC is generated,
and that PAC has been approved internally via a rule set
or human approval, it automatically synchronizes the new
PAC to CFFC. This represents a Trust Level 1 (Owner-
Attested) PAC. The data owner is attesting that they ran
the code faithfully, and the hash of the input data is stored
in the PAC by the OSC, allowing auditability in the future
as needed.

Trust Level 1: Automated Sustainability Reporting

6.2 Trust Level 2: Certified Fishing Catch Area

The global fishing industry would like to eliminate over-
fishing by requiring fishing vessels to catch fish only in
approved areas. Fishermen consider their active catch areas
to be proprietary to their business. The industry needs a
practical zero-knowledge proof that can certify a particular
fish was caught within legal boundaries without disclosing
the actual catch locations. A sustainable fishing industry
consortium creates an OSC which checks a given Trellis data
store for a list of catch locations within a certain time period
or within a certain group identifier like a lot number. The
OSC pulls a set of approved geospatial catch boundaries
from an industry list, intersects the catch locations with the
boundaries, and produces a PAC with the time period or lot
number, a “true/false” answer about whether all the catch
locations fit within the boundaries, an identifier for the set
of boundaries used, and a QUOTE from the trusted black
box attesting that the OSC code was executed faithfully.
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Component Repository Objective

Broker https://github.com/agapecert/broker OSCs” Service Manager

Validator https:/ /github.com/agapecert/validator PACs’ verifier

Compute Engine https:/ /github.com/agapecert/compute-engine Compute Engine

Blockchain Gateway | https://github.com/agapecert/blockchain-gateway | Anonymous and asynchronous shared ledger accesses

TABLE 5: Summary of components’ repositories for AGAPECert implementation.

The industry would like to minimize cheating, and au-
thorizes a set of trusted catch location recording devices
that are maintained and periodically tested by approved
auditors. The OSC can be augmented to verify that each
catch location contains a signature from a trusted recording
device manufacturer, and that the device is present in a
recent active audit that is digitally signed by a trusted
third-party auditor, all using the Trellis standard document
integrity signature process. This additional “true/false” an-
swer is added to the PAC, verifying that the catch locations
themselves were attested by trusted parties other than just
the fisherman. The fisherman uses the AGAPECert broker
and their OSC-enabled Trellis platform to authorize and run
the OSC, producing the certification back to their Trellis
platform. Before each batch of fish can be sold at the docks,
the buyer must receive the PAC for that days’ catch. This
represents a Trust Level 2 (Enclave Attested) computation
where the global fishing industry would like to know that
the code was faithfully executed by the fisherman.

6.3 Trust Level 3: Organic Mass Balance

One of the more difficult certification problems is charac-
terized by a mass balance. In its simplest form, there is
some mass of product that has been certified to be produced
(either based upon the total inputs to the process, or based
upon a human auditor’s assessment), and the industry
would like to know that the seller of a product indeed
can certifiably produce that amount of that product. If an
organic farmer could receive a certification that they can or
did produce 10 tons of organic apples, downstream buyers
of those apples would like to know that the farmer has not
re-used that 10-ton organic certification multiple times with
multiple buyers, thereby selling potentially non-organic ap-
ples under an organic certificate. The farmer, on the other
hand, does not want to put a list of their transactions into
some shared database for buyers to check for validity since
this could tip off buyers about how much inventory he has
or how many sales he has made recently and to whom.
The buyer needs a zero-knowledge-style proof that the
certified product they are buying has not been sold under
this certification to someone else.

An industry consortium agrees on one or more
blockchain platform(s) to act as a byzantine fault tolerant
shared datastore. The consortium produce an OSC which
can look at a buyer’s Trellis platform for a private ledger
of sales. This ledger should be initiated with an additive
transaction that is digitally signed by a trusted auditor (i.e.,
the auditor attests that the farmer has 10 tons of organic
apples). The signature is verified by the OSC, and the bal-
ance is computed by subtracting any subsequent verifiable
sales. The OSC finds a proposed new sales transaction in
the Trellis data store, digitally signed by the buyer and the
seller. The OSC verifies that the amount of the sale does

not exceed the available balance, verifies the signatures, and
then saves the transaction to the end of the private ledger.
The OSC produces a PAC indicating “success/failure” for
the transaction, which can be automatically saved back to
either the buyer’s Trellis data store, the seller’s, or both. If
the buyer has their own private ledger, this PAC from the
seller can serve as auditable, traceable proof to include in the
buyer’s private ledger and add to their available inventory,
all without disclosing any of the buyer’s sales to any outside

party.

As specified to this point, the protocol suffers from a
double-spending attack where the seller simply maintains
multiple private ledgers, providing different ones to the
OSC depending on which customer they are selling to, thus
enabling them to “spend” the same certified product more
than once. To alleviate this problem, we introduce the con-
cept of a one-time-use asymmetric key pair generated by the
OSC and verified by a smart contract on the OSC’s chosen
blockchain. When the OSC is evaluating a proposed trans-
action, it accesses the seller’s Trellis datastore to retrieve
the one-time-use private key from the previous transaction
and an indicator of where to find the corresponding public
key in the blockchain storage layer. The OSC checks the
blockchain’s record for that key to see if has been marked
as “used” yet or not. If it has not been used, then the OSC
initiates a smart contract at the blockchain platform to mark
it as “used,” which is only allowed by the smart contract
when it verifies that the OSC can produce a signature with
the private key corresponding to the public key in the
chain. The OSC sees this successfully finish and then asks
a different smart contract on the blockchain platform to
store a new one-time-use public key and registers it in the
blockchain along with a hash of the new ledger. The OSC
will fail the transaction if the ledger hash for the key it used
does not match the hash of the current ledger it is updating.
The OSC stores the private key for this new one-time-use
key pair for the next transaction. The OSC also checks
that each successful transaction in the private ledger has a
corresponding “used” key recorded in the blockchain with
matching ledger hashes. Note the importance of including
the hash of the ledger in the chain with the public key. We do
not want to link transactions in the chain by allowing one
key to point to the next key in the chain. However, if the
two are truly unlinkable, then it is possible for a malicious
seller to still double-spend by simply maintaining multiple
ledgers with multiple one-time-use keys. Therefore, the OSC
and smart contract must allow the link to be maintained
in the private ledger, both refusing to create and store a
new one-time-use keypair whose full ledger hash is already
present with another one-time-use key in the chain. For
maximal trust, the blockchain nodes themselves should also
be capable of performing remote attestation to validate a
QUOTE from the OSC interior. This is an example of a Trust
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Level 3 (Ordering Attested) computation.

7 EVALUATION

In order to present empirical evidence of AGAPECert ef-
fectiveness, we develop three experiments to benchmark
critical components of AGAPECert. We start by evaluating
the trusted compute engine performance with a mix of
Trust Level 1 and Trust Level 2. Then, we discuss the
results of generating 1000 PACs for different input sizes
(a complete workflow performance evaluation). Finally, we
evaluate the Blockchain-Gateway with our pacContract
and Hyperledger Fabric performance. All experiments are
run 1000 times. All the code of experiments can be found at
https:/ / github.com/agapecert.

7.1 Experiment setup

To show AGAPECert usability and flexibility, we utilize a
commodity HP Pavilion Laptop with an Intel Core i5-8250u
CPU and 16GB of RAM running Ubuntu Linux 18.04 LTS
64-bit Operating System (serves as a compute engine, graph
data store, and Apache Spark server). We also use a trusted
edge server, Dell R340, with an Intel Xeon E-2186G and
64GB of RAM running Ubuntu Server Linux 18.04 LTS 64-
bit Operating System (utilized for data center attestation
primitives). The latter has support for Flexible Launch Con-
trol (FLC) and Data Center Attestation Primitives (DCAP.)
Serving as the Blockchain-Gateway is a MacBook Pro (15-
inch, 2017) with an Intel Core i7 2.8GHz and 16GB of
RAM running macOS Catalina Version 10.15.4 and IBM
Blockchain Platform 1.0.31 Visual Studio Code Extension.

7.2 Trusted Compute Engine Performance

We developed a computation-intensive algorithm—the
Monte Carlo approximation—as an Oblivious Smart
Contract. The Monte Carlo OSC was instantiated in
AGAPECert’s compute engines running NodeJS (TL1), in-
browser JavaScript (TL1), and C using OpenEnclace API
(TL2). Besides, we developed equivalent code in Python and
deployed it in Apache Spark version 3.1.0.

7.2.1 AGAPECert's compute engine and Apache Spark

We compared AGAPECert’s compute engine against
Apache Spark version 3.1.0. The goal of this experiment is
to provide a context of comparison to AGAPECert; Apache
Spark will scale and perform better at a massive scale. How-
ever, AGAPECert includes use cases in which preserving
data ownership is critical. Fig. @ shows that AGAPECert’s
compute engine performs better than Apache Spark using
this computationally-intensive Monte Carlo OSC. It is worth
noting that Apache Spark’s poor performance with two or
four executors is due to the use of a synchronized random
function in Python, which cannot scale to multiple cores.
Nonetheless, a single executor (spark naive) provides a
better comparison against AGAPECert’s compute engine.
Future AGAPECert releases can integrate Apache Spark [49]
and Opagque [18] for scalability guarantees.
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Fig. 4: AGAPECert’s compute engine (TL1, TL2) and Apache
Spark (1,24 executors). We developed the Monte Carlo
Approximation Algorithm for those compute engines.
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Fig. 5: Compute Engine Performance. We developed the
Monte Carlo Approximation Algorithm. The Monte Carlo
OSC is instantiated in AGAPECert for Trust Level 1 (TL1) for
an in-browser compute engine, Trust Level 1 (TL1) NodeJS
compute engine, and Trust Level 2 (TL2) with Intel SGX and
OpenEnclave.

7.2.2 Trust Level 1 and Trust Level 2 comparison

In Fig. Bl we observe that the AGAPECert (TL2) compute
engine outperforms an in-browser JavaScript compute en-
gine (TL1) with equivalent source code. Hence, AGAPECert
(TL2) can offer similar performance to widely used devel-
opment frameworks such as Node]S and JavaScript. For
some use cases, AGAPECert (TL2) can provide a better
performance than such frameworks—even computing on
top of encrypted private data. We compare the compute
time exclusively. An extensive study of ocalls and ecalls
performance is shown in [50].

7.3 Private Automated Certifications Performance

This experiment shows the total time needed to generate
a PAC using the K-means clustering algorithm deployed
as an Oblivious Smart Contract (OSC). The K-means al-
gorithm is setup with n in increments of 2° * 1000 where
0,1,2,3,4,5; k is set to buckets of 250 items per
cluster (k = n/250); k centroids are determined randomly.
The total time includes enclave creation, communication
with the graph-based API, computation on private-data,
PAC generation, and PAC storage in the graph data store.
An asynchronous blockchain access stores the PAC in the
blockchain (Fig. [7).

——
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Fig. 6: PACs’ generation performance evaluation for Trust
Level 3 (TL3). The K-means algorithm is instantiated as an
Oblivious Smart Contract (K-means OSC or oblivious K-means
if you will).

The purpose of this K-means OSC is two-fold: (1) it
presents a widely used clustering algorithm for replicability;
(2) solves our example applications (§6.2)—certified fishing
catch area and similar use cases—with a straightforward
modification. The regulator fixes the set of centroids, the
algorithm to compute the distances, and the threshold that
determines if the PAC has passed the evaluation/certifica-
tion process. As mentioned before, this K-means OSC will
be agreed upon by both the regulator and the data owner.
The K-means OSC will contain all the semantics that allow
the correct validation of data to generate an objective—
according to the specification—PAC that can be audited in
the future.

Fig. [6] shows that the PAC generation is bounded by
the input data retrieved from the graph data store. Ad-
ditionally, the running-time in the blockchain (§7.4) and
enclave creation is approximately constant (610.65 & 230.10
ms). However, an OSC is continuously running, waiting
for signals from the broker (OSCs’ service manager.) The
overhead to initialize an enclave is suffered only once per
computation cycle, or when a restart is required.

7.4 Blockchain-Gateway Performance

AGAPECert interacts with a Blockchain-Gateway for Trust
Level 3 (§5.0). We created a test suite to measure the
Blockchain-Gateway performance using the Chai assertion
library [51] and the Mocha test framework [52] (Fig. [7).
When there exist multiple blocks in the shared ledger,
the Blockchain-Gateway takes around 2180.88 & 38 ms to
execute an asynchronous PAC creation in the ledger. The
Blockchain-Gateway takes 27.37 & 9 ms to execute a PAC
GET query in the ledger (when there are more than 100
blocks in the shared ledger.) The validator will use the GET
function to the Blockchain-Gateway, the Broker or OSC will
use the PUT to the Blockchain-Gateway. The Broker, OSC,
or validator will use the cached connection (83.36 & 13 ms).

8 RELATED WORK

This section describes prominent industry solutions that
utilize Trusted Execution Environments to provide privacy-
preserving computation.
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Fig. 7: Blockchain-Gateway interacting with IBM Hyper-
ledger Fabric and pacContract performance.

8.1 Microsoft’s CCF framework

The Confidential Consortium Blockchain Framework (CCF,
formerly CoCo) strives to enable private and scalable
blockchain networks [11]. The CCF is meant to be open-
source and compatible with other blockchain protocols [11].
CCF augments the trust among peers/nodes executing
smart contracts inside Intel SGX enclaves. Analogous to the
CCF, we observe that traditional blockchains pose signif-
icant privacy issues; transactions, global state, and smart
contract code are visible to anyone that enters the network.
In contrast to the CCF, AGAPECert identifies that not all
transactions and computation have to run in the chain for
the problems addressed in this paper.

8.2 Secure Data Trading Ecosystem

The Secure Data Trading Ecosystem (SDTE) aims to secure
the data processing utilizing Ethereum and Intel SGX [10].
Analogous to AGAPECert, SDTE identifies the privacy
implications when sharing complete datasets (sellers are
data sources) with potential buyers or regulators. Instead,
SDTE shares data analysis results processed on top of SGX-
enabled nodes. Only trusted nodes execute data analysis
contracts and the buyer can deploy any contract [10]. SDTE
based their security guarantees mostly on remote attestation
and sealing derived from the Intel SGX architecture. CCF
also utilizes Ethereum and Intel SGX to provide scalable and
confidential blockchain networks [11]. Both solutions com-
pute on-chain, whereas AGAPECert uses off-chain business
logic and certified pre-approved code—Oblivious Smart
Contracts—that obtain only specific results from the private
data.

8.3 Secure Energy Trading Ecosystem

Aitzhan and Svetinovic (2018) identified the problems of
centralized infrastructures [53]. They provided a peer-to-
peer decentralized token-based system that allows a se-
cure energy trading ecosystem. They rely on blockchain
technologies to build their proof of concept. Analogous
to [53], AGAPECert identifies the problems of relying on
a centralized third party; instead, AGAPECert uses DCAP
(Data Center Attestation Primitives) to provide a cus-
tomized remote attestation for particular use cases. More-
over, AGAPECert offers various levels of trust, providing a
flexible and generalizable framework.
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8.4 DeepChain

Weng et al. introduced DeepChain, a distributed and
collaborative training framework for deep learning [54].
DeepChain relies on the decentralized nature of blockchain
technologies to provide a reward-based mechanism that
can force participants to behave honestly [54]. DeepChain’s
simulator uses Corda as a shared ledger [54]. Un-
like DeepChain, AGAPECert does not rely entirely on
blockchain technologies to provide auditability of transac-
tions. AGAPECert’s trust model is fundamentally differ-
ent from DeepChain since AGAPECert defines a trusted
compute engine. DeepChain utilizes a fixed set of smart
contracts, i.e., a trading contract and a processing con-
tract. AGAPECert is generalizable, allowing a myriad of
blockchain technologies through its blockchain-gateway —
i.e., for trust level 3— and the data owner can instantiate
multiple algorithms as OSC in the framework.

8.5 CAFE

CAFE is a cloud-based solution that utilizes hypervisor-
level mechanisms to protect the deployment and execution
of applications [55]. CAFE enables confidential execution
in the cloud and is fundamentally different from Intel
SGX [55]. In contrast, AGAPECert avoids sending data or
code to the cloud; moreover, certified code—oblivious smart
contracts—controls the algorithms that are allowed to run
on top of private data, protecting data ownership.

8.6 Google’s Asylo framework

Asylo is an open-source framework that shields the in-
tegrity and confidentiality of data and applications through
a confidential computing environment [56]]. Asylo’s most
important goal is to make confidential computing easy,
and therefore could be used in future development within
AGAPECert.

8.7 Teechain

Teechain exploits TEEs to provide a layer-two payment
network [57]. Teechain contributes asynchronous blockchain
accesses. Teechain executes off-chain payments on top of
Bitcoin utilizing a peer-to-peer network of TEEs [7], [57].
Teechain is closely related to AGAPECert; however, it is
closely focused on providing an off-chain payment network
specifically and provides no private data access layer such
as the Trellis framework used by AGAPECert.

8.8 DelegaTEE

DelegaTEE aims to secure fine-grained delegation of rights
and resources utilizing broker delegation on top of TEEs
without revealing access credentials to third parties [58].
Since DelegaTEE allows fine-grained delegation of services
or resources by an owner to a borrower, it can be used
to enhance AGAPECert, enabling a richer interaction of
services in the Certification model. DelegaTEE can allow the
sharing of aggregated data (checkpoints) in the case of on-
site audits to verify data and computation.

8.9 Verifiable Computation

Cryptographic protocols such as Verifiable Computation
(VCQ) facilitate outsourcing expensive computation kernels
to stronger worker nodes or cloud workers so that the data
owner or client can verify the computation’s result faster
than if the data owner performs the computation itself [59],
[601, [611, [62], [63], [64].

The objective of VC —offloading computation
while maintaining verifiable results— is different from
AGAPECert’'s goal of private automated certification
between an owner and regulator. AGAPECert includes a
data owner that computes on its private data in its own
node (or trusted service provider) to ensure data ownership.
AGAPECert abstains from sending data to a public or even
a private network and applies restrictions to the code that
runs inside enclaves. In our model, the code that runs inside
enclaves can be considered as private as it is deployed
to known/trusted nodes. Although VC does not require
trusted hardware to ensure security against malicious
server behavior [60], [61], [62], [63], it was envisioned to
outsource computation [59], [60], and it is meant to send
the data and algorithms to a powerful outsourced/cloud
node, potentially compromising data ownership.

Due to this, VC would introduce drawbacks in the
AGAPECert setting. In particular, cryptographic-based VC
techniques such as Quadratic Arithmetic Programs [60]
and solutions that utilize Fully Homomorphic Encryption
(FHE) [60], [65] introduce large computation overhead [9],
[66] for trusted data owners that compute on their plat-
forms. To verify this, we conducted a small experiment
comparing the implementation of AGAPECert to VC for
a common matrix multiplication task (code available at
https://github.com/agapecert). For this experiment, we
prepared two identical DCsv2-series Microsoft Azure Vir-
tual Machines (VMs), and built the VC use case using
the C++ libsnark library [67]. The algorithm we compare
computes the inner product of two vectors of size n = 100,
using Rank-1 Constraint Systems (R1CS) as in arithmetic
circuit satisfiability [60]. We find that libsnark VC takes
1.049 x 1071 £ 2.1 x 1073 seconds to compute the inner
product, while AGAPECert only requires 9.287 x 1074 &
9.959 x 107° seconds. The performance benefits of using
Intel SGX compared to VC cryptographic-based schemes
has also been noted in recent work [66].

8.10 Commitment schemes

Commitment schemes enable committing to a chosen val-
ue/statement (time ¢;) while hiding the content from oth-
ers [68]. The commitment schemes can reveal the committed
value later (time t;, where k > 7). Commitment schemes
include the commit phase in which a value is chosen and
committed and the reveal phase during which the sender
reveals the value—the receiver verifies its authenticity. The
commit phase can consist of a single message—called com-
mitment. To preserve the hiding property, the value chosen
cannot be known by the receiver. To safeguard the binding
property, the sender can only compute the message cho-
sen during the commit phase—this phase needs a single
message from the sender to the receiver and a verification
check performed by the receiver. Commitment schemes can
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be integrated with AGAPECert to provide proof that can be
verified later. AGAPECert utilizes group signatures schemes
to verify that a particular algorithm was executed inside an
enclave—providing a binding property to a specific set of
valid processors [26], [27]. The integration of Commitments
schemes in AGAPECert will act as a Zero-Knowledge Proof
to expose Computational Verifiable PACs.

An existing framework for the integration of VC with
commitments is described in [64], where Costello et al.
introduce a Commit-and-Prove scheme into their Geppetto
solution for “Versatile Verifiable Computation”. The authors
identified the need for a protocol that ensures (i) the cryp-
tographic material respects the semantics of the original
program that they started with and (ii) that there are no
mistakes during the compilation process [69]. In many
real use cases requiring the privacy provided by TEEs, or
other solutions such as FHE and Multi-Party Computation
(MPCQ), participants are reluctant to provide even encrypted
versions of sensitive data to a public cloud, as would be
the case with VC and commitments. AGAPECert’s trust
model is unique from the current literature in this respect,
utilizing TEEs in a trusted environment while providing
automated code verification and private automated certi-
fications (PACs).

AGAPECert utilizes a unique mix of blockchain technolo-
gies, trusted execution environments, and a real-time graph-
based API to define for the first time Oblivious Smart
Contracts (OSCs) that generate auditable Private Automated
Certifications (PACs). AGAPECert offers pragmatic perfor-
mance and is generalizable to many use cases and data
types. AGAPECert has a significant impact providing an
open source [72] framework that can be adopted as a stan-
dard in any regulated environment to keep sensitive data
private while enabling an automated workflow.

Due to AGAPECert’s malleable architecture, our tech-
nique can be easily extended to provide additional features.
For instance, AGAPECert’s Blockchain-Gateway future re-
leases can utilize concepts defined by Agrawal et al. [47]
to enhance anonymity and privacy when interacting with
a shared ledger. Similarly, AGAPECert’s future releases
can allow homomorphic encryption exposing Homomor-
phic and Oblivious Smart Contracts (HOSC). Integrating
SEAL [46] in AGAPECert will allow a richer set of devices as
compute engines, i.e., sensors, IoT devices, mobile devices,
to name but a few. AGAPECert’s roadmap includes ana-
lyzing and implementing techniques such as VC and Com-
mitment schemes that can act as Zero-Knowledge Proofs.
Finally, we will also analyze the integration of an automated
source code repository for Oblivious Smart Contracts that

8.11

Many protocols based on secret sharing schemes [70] can
be used to solve distributed computing securely on data,
this method significantly differs from the trust model and
the problem that AGAPECert wants to tackle. For instance,

Solutions based on Secret Sharing

can preserve the privacy and ownership of the source code.
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