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Abstract— This paper introduces an adaptive model-free deep
reinforcement approach that can recognize and adapt to the diur-
nal patterns in the ride-sharing environment with car-pooling.
Deep Reinforcement Learning (RL) suffers from catastrophic
forgetting due to being agnostic to the timescale of changes in the
distribution of experiences. Although RL algorithms are guaran-
teed to converge to optimal policies in Markov decision processes
(MDPs), this only holds in the presence of static environments.
However, this assumption is very restrictive. In many real-world
problems like ride-sharing, traffic control, etc., we are dealing
with highly dynamic environments, where RL methods yield
only sub-optimal decisions. To mitigate this problem in highly
dynamic environments, we (1) adopt an online Dirichlet change
point detection (ODCP) algorithm to detect the changes in the
distribution of experiences, (2) develop a Deep Q Network (DQN)
agent that is capable of recognizing diurnal patterns and making
informed dispatching decisions according to the changes in the
underlying environment. Rather than fixing patterns by time of
week, the proposed approach automatically detects that the MDP
has changed, and uses the results of the new model. In addition
to the adaptation logic in dispatching, this paper also proposes
a dynamic, demand aware vehicle-passenger matching and route
planning framework that dynamically generates optimal routes
for each vehicle based on online demand, vehicle capacities,
and locations. Evaluation on New York City Taxi public dataset
shows the effectiveness of our approach in improving the fleet
utilization, where less than 50% of the fleet are utilized to serve
the demand of up to 90% of the requests, while maximizing
profits and minimizing idle times.

Index Terms— Ride-sharing, route planning, deep Q-networks,
change point detection, non-stationary MDPs.

I. INTRODUCTION

IN Q-LEARNING, there is a tight coupling between the
learning dynamics (probability of choosing an action) and
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underlying execution policy (the effective rate of updating the
Q value associated with that action). This coupling can cause
performance degradation in dynamic noisy environments [2].
As the RL agent continues to build on its experiences in
order to learn increasingly complex tasks, it should be able
to quickly adapt while maintaining its acquired knowledge.
However, once the i.i.d. assumption in the inherent Markov
Decision Process (MDP) is violated, artificial neural networks
have been shown to suffer from catastrophic forgetting [3],
[4] due to erasing knowledge acquired from older data as
the model gets trained on the new data. As an example,
for an extraterrestrial rover mission, changes in the MDP
may be a consequence of regular, predictable events such as
intra-day or seasonal temperature variations, or may result
from more complex phenomena that are difficult to predict
(e.g., terrain changes due to wind) [5]. This paper proposes a
novel approach to deal with the model changes in a model-free
reinforcement learning setup.

We propose an adaptive model-free deep learning frame-
work for ride-sharing with car-pooling that can learn different
underlying contexts of the environments. Deep reinforcement
learning methodologies are used for this adaptive modeling
where transition probabilities are computed through Deep
Q Neural Network (DQN). We utilizes the dispatch of idle
vehicles using a Deep Q-learning (DQN) framework as in
DeepPool [6], and we add the profit term in the reward
function so that the output expected discounted rewards
(Q-values) associated with each action, becomes a good reflec-
tion of the expected earnings gained from performing this
action. To the best of our knowledge, our AdaPool frame-
work is the first work that introduces an adaptive model-free
approach for distributed matching and dispatching where
agents are able to recognize various diurnal patterns, learn
their corresponding models, detects the change points and
adapts accordingly. Thus, influencing the decision making of
ride-sharing platforms. We identify the following as our major
contributions:
• We propose an adaptive model-free RL algorithm for

handling non-stationary environments, where we adapt
Deep Q-learning to learn optimal policies for different
environment models. The proposed approach, in training,
finds the set of models that divide the time-varying MDPs
based on diurnal patterns, and uses the appropriate model
to make decisions. To the best of our knowledge, this is
the first work for model-free reinforcement learning that
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works for training policies accounting for diurnal patterns
in any area.

• Using change point detection, the proposed algorithm
switches between the MDP policies, and estimates policy
for the new model or improves the policy learnt, if the
model had been previously experienced. In this manner,
our method avoids catastrophic forgetting [3], and utilizes
the Q-values learnt using DQN for making the dispatch
decisions.

• We propose a dynamic, demand-aware matching and
route planning framework, that is scalable up to the
maximum capacity per vehicle in the initial assignment
phase. In the optimization phase, this algorithm takes
into account the near-future demand in order to improve
the route-planning by eliminating rides heading towards
opposite directions and applying insertion operations to
vehicles’ current routes.

• Through experiments using real-word dataset of
New York City’s taxi trip records [7] (15 million trips),
we simulate the ride-sharing system.1 We show that the
optimization problem of our novel AdaPool framework
is formulated such that it enhances the overall acceptance
rate, increases the profit margins of the fleet, minimizes
the extra travel distance and the average idle time, when
compared to non-adaptive RL approaches.

The rest of this paper is organized as follows: Section II
describes the overall architecture of our adaptive deep RL
framework: AdaPool. In Section III, we explain our dynamic,
demand-aware approach for matching and route planning.
Section IV, explains our adaptive DQN-based approach for
dispatching vehicles. Simulation setup as well as experimental
results are presented in Section V. Detailed related work is
presented in Appendix A. Finally, Section VI concludes the
paper with discussion on future directions.

Abbreviations and Acronyms: MoD: Mobility-on-Demand.
RL: Reinforcement Learning. DQN: Deep Q-Network. ODCP:
Online-parametric Dirichlet Change Point. Conv-Net: Con-
volutional Neural Network. OSRM: Open Source Routing
Machine. MDP: Markov Decision Process.

II. ADAPOOL: ADAPTIVE MATCHING AND DISPATCHING

FRAMEWORK USING DEEP RL

In this section, we provide details about each component in
our model architecture, as well as explanations of model para-
meters and notations. We propose a novel adaptive framework
for matching and dispatching in ride-sharing environments
with car-pooling using DQN, where initial matchings (that
are decided in a greedy fashion) are then optimized in a
distributed manner (per vehicle) in order to meet the vehicle’s
capacity constraints as well as minimize customers’ extra
waiting time and driver‘s additional travel distance. We con-
sider the scenario where the environment changes between
models 1, 2, · · · , k in a cyclic manner, dynamically as shown
in Fig. 1. With the cyclic nature, the environment changes

1The code for this work is available at https://github.com/marina-haliem/
AdaPool.

Fig. 1. Time varying MDPs in non-stationary environment.

from model n to model 1. Such cyclic repetition allows for
learning the k models and use them in the run-time, where
on detecting the change-point, next model can be used. The
implication of the non-stationary environment is this: when the
agent exercises a control at at time t , the next state st+1 as
well as the reward rt are functions of the active environment
model dynamics. In our approach, we assume that there
are k environment models M1, M2, · · · , Mk , through which
the system cycles. However, neither the context information
(or model parameters) of each model nor the change points
T1, T2, · · · (when these model changes occur), are known to
the RL agent. In this case, the agent can collect experience
tuples while simultaneously following a model-free learning
algorithm to learn an approximately optimal policy. Instead
of assuming any specific structure, our model-free approach
learns the Q-values dynamically using convolutional neural
networks. Our method works in tandem with a change point
detection algorithm, to get information about the changes in
the environment. Then, it updates Q-values of the relevant
model whenever a change is detected and does not attempt
to estimate the transition and reward functions for the new
model. Additionally, if the method finds that samples are
obtained from a previously observed model, it updates the
Q values corresponding to that model. Thus, in this manner,
the information which was learnt and stored earlier (in the
form of Q-values) is not lost.

Moreover, each vehicle learns the best future dispatch action
to take at time step t , taking into consideration the locations of
all other nearby vehicles, but without anticipating their future
decisions. Vehicles’ dispatch decisions are made in parallel,
since it is unlikely for two drivers to take actions at the same
exact time since drivers know the location updates of other
vehicles in real time (e.g., GPS). Therefore, our algorithm
learns the optimal policy for each agent independently as
opposed to centralized-based approaches such as in [8].

A. Model Architecture
Figure 2 shows the basic components of our joint frame-

work and the interactions between them. We assume that the
control unit is responsible for: (1) making the initial matching
decisions, based on the proximity of vehicles to ride requests,
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Fig. 2. Overall architecture of AdaPool framework.

(2) maintaining the states including current locations, current
capacity, destinations, etc., for all vehicles. These states are
updated in every time step based on the dispatching and
matching decisions. (3) Control unit also has some internal
components that help manage the ride-sharing environment
such as: (a) the estimated time of arrival (ETA) model used
to calculate and continuously update the estimated arrival
time. (b) The Open Source Routing Machine (OSRM) model
used to generate the vehicle’s optimal trajectory, using [9],
to reach a destination, and (c) the (Demand Prediction) model
used to calculate the future anticipated demand in all zones.
We adopt these three models from [8], [10] since they play
a crucial role in enabling this framework; their details are
provided in Appendix C. First, the ride requests are input to
the system along with the heat map for supply and demand
(which involves demand prediction in the near future). Then,
based on the predicted demand, vehicles adopt a dispatching
policy using DQN, where they get dispatched to zones with
anticipated high demand. This step not only takes place when
vehicles first enter the market (lines 3-5 in Algorithm 1),
but also when they experience large idle durations (at the
end of every time step, this gets checked for in lines 13-14,
Algorithm 1). The control unit performs the initial vehicle-
passenger(s) matching where each vehicle gets assigned all
potential (one or more) requests in its vicinity. Then, each
vehicle executes its matching optimizer module that performs
an insertion-based route planning. In this step, vehicles reach
their final n requests by dealing with their initial matchings
list in the order of their proximity, performing an insertion
operation to their current route plan (as long as this insertion
satisfies the capacity, extra waiting time, and additional travel
distance constraints to guarantee that serving this request
would yield a profit).

Using the “Change Point Detection” module, vehicles are
able to learn and switch between models M1, M2, · · · , Mk

dynamically whenever a change is detected. Finally, a vehicle
communicates with the control unit, as needed, to request new
information of the environment (prior to making decisions) or
update its own status (after any decision). Algorithm 1 presents
the overall flow of our framework.

Algorithm 1 AdaPool Framework
1: Initialize vehicles’ states X0 at t0.
2: for t ∈ T do
3: Fetch all vehicles that entered the market in time slot t, Vnew .
4: Initialize Vehicles’ routes SVj ← empty for each Vj ∈ Vnew
5: Dispatch Vnew to zones with anticipated high demand (Algo. 3).
6: Fetch all ride requests at time slot t, Dt .
7: Fetch all available vehicles at time slot t, Vt .
8: for each vehicle Vj ∈ Vt . . . do
9: Obtain initial matching A j using Algorithm 5.
10: Perform route planning SVj ← GREEDY_INSERTION(A j, SVj )
11: Retrieve next stop from SVj .
12: Head to next stop (whether a pickup or a dropoff).
13: Fetch all idle vehicles with Idle_duration > 10 minutes, Vidle .
14: Dispatch Vidle to zones with anticipated high demand (Algo. 3).
15: Update the state vector st .
16: procedure GREEDY_INSERTION(A j, SVj )

17: Initialize V j
capacity = V j

C

18: while V j
capacity < C

Vj
max do

19: for each ride request ri ∈ A j . . . do

20: if (V j
capacity + |ri |) ≤ C

Vj
max then

21: Obtain (S�Vj
, cost(Vj , S�Vj

)) ← ROUTE_PLANNING

(Vj , SVj , ri ) using Algo. 2.

22: min_cost ← min(ri∈A j )(cost(Vj , S�Vj
[ri ]))).

23: r∗ ← argmin(ri ∈A j )(cost(Vj , S�Vj
[ri ]))).

24: Update trip time Ti based on S�Vj
[r∗] using ETA model.

25: Update SVj ← S�Vj
[r∗]

26: Increment V j
capacity← V j

capacity + |r∗|
27: Remove r∗ from A j
28: if A j is empty then
29: break
30: Update the state vector st .
31: end procedure

B. Model Parameters and Notations

We built a ride-sharing simulator to train and evaluate our
framework. We simulate New York City as our area of opera-
tion, where the map is divided into multiple non-overlapping
regions, a grid with each 1 square mile being taken as
a zone. This allows us to discretize the area of operation
and thus makes the action space —where to dispatch the
vehicles—tractable. We use m ∈ {1, 2, 3, . . . , M} to denote the
city’s zones, and n to denote the number of vehicles. A vehicle
is marked as available if there is remaining seating capacity.
Vehicles that are completely full or are not considering taking
passengers are marked unavailable. Available vehicles in zone
i at time slot t is denoted vt,i . Only available vehicles are
eligible to be dispatched. We optimize our algorithm over T
time steps, each of duration �t . The vehicles make decisions
on where on the map to head-to to serve the demand at each
time step τ = t0, t0 + �t, t0 + 2(�t), . . . , t0 + T (�t) where
t0 is the start time. Below, we present the model parameters
and notations:
• Demand: We denote the number of requests for zone m

at time t as dt,m . The future pick-up request demand in
each zone is predicted through a historical distribution
of trips across the zones [11], and is denoted by Dt :T =
(dt , . . . , dt+T ) from time t to t + T .

• Supply: At each time slot t , the supply of vehicles
for each zone is projected to future time t̃ . dt,t̃,m is

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 17:36:53 UTC from IEEE Xplore.  Restrictions apply. 



2474 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

the number of vehicles that are currently unavailable at
time t but will become available at time t̃ as they will
drop-off customer(s) at region m. This information can
be ascertained using the ETA [6], [10] prediction for all
vehicles. Consequently, for a set of dispatch actions at
time t , we can predict the number of vehicles in each
zone for T time slots ahead, from time t to time t + T ,
denoted by Vt :t+T which serves as our predicted supply
in each zone for T time slots ahead.

• Vehicle Status: We use Xt = {xt,1, xt,2, . . . , xt,N } to
denote the N vehicles’ status at time t . xt,n tracks vehicle
n’s state variables at time step t including, (1) current
location/zone Vloc, (2) current capacity VC , (3) type VT ,
(4) pickup time of each at passenger, (5) the destination of
each passenger, and (6) the earnings till time t . A vehicle
is considered available, if and only if VC < CV

max .
These variables change in real time according to the envi-

ronment variations and demand/supply dynamics. However,
our framework keeps track of all these rapid changes and seeks
to make the demand, dt , ∀t and supply vt , ∀t close enough
(i.e., mismatch between them is zero). Combining all this data,
we define the state space, action space and reward function for
our DQN agents:

1) State Space: we have defined a three tuple that captures
the environment updates at time t to represent our state
space as st = (Xt , Vt :t+T , Dt :t+T ). When a set of new
ride requests arrive at the system, we can retrieve from
the environment all the state elements, combined in one
vector st . Also, when a passenger’s request becomes
assigned, we append the customer’s expected pickup
time, source, destination and ride fare to st as well.

2) Action Space: an
t denotes the action taken by vehicle n

at time step t . In our simulator, the vehicle can move
(vertically or horizontally) at most 7 cells, and hence
the action space is limited to these cells. A vehicle can
move to any of the 14 vertical (7 up and 7 down) and
14 horizontal (7 left and 7 right). This results in a 15×15
action space at,n for each vehicle as a vehicle can move
to any of these cells or it can remain in its own cell.
After the vehicles decides on which cell to go to using
DQN (Section IV-A), it uses the shortest optimal route
to reach its next stop.

3) Reward: Having explained all of the above factors,
at every time step t , the DQN agent obtains a rep-
resentation for the environment, st , and a reward rt .
Based on this information, the agent takes an action
that directs the vehicle (that is either idle or recently
entered the market) to different dispatch zone where
the expected discounted future reward is maximized,
i.e.,

∑∞
j=t η j−tr j (at , st ), where η < 1 is a time discount

factor. In our algorithm, we define the reward rk as
a weighted sum of different performance components
that reflect the objectives of our DQN agent (explained
in Section IV-C). The reward will be learnt from the
environment for individual vehicles and then leveraged
to optimize their decisions.

We note that this discount factor is a key that makes the
change of model slow to learn. Thus, we use change point

detection to learn the change and use the appropriate model.
A detailed table of notations is provided in Appendix B.

III. DYNAMIC DEMAND-AWARE MATCHING AND

ROUTE-PLANNING FRAMEWORK

This section provides details of our dynamic, demand-aware
approach to solve the NP-Hard matching and route planning
problems in ride-sharing environments. Our framework goes
through two phases as explained in this section.

NP-Hardness: The ride-sharing assignment problem is
proven to be NP-hard in [12] as it is a reduction from the
3-dimensional perfect matching problem (3DM). The authors
of [12] provided an approximation algorithm that is 2.5 times
the optimal cost for the case where at most two requests can
share the same vehicle at a time. However, our approach is
not limited to at most two requests per vehicle. The proposed
approach is a different from that in [13] where pricing was
used to dis-incentivize matching passengers going in opposite
directions, while we will use a greedy approach in adding the
customers to the route.

A. Initial Vehicle-Passenger(s) Assignment Phase

Note that the control unit for decision making knows the
future demand Dt :t+T at each zone, the vehicles’ status vectors
Xt including their current locations and destinations as well as
the origin oi and destination di locations for each request ri .
Each vehicle is assigned to up to 50 requests ri in its vicinity
(to reduce the computational power needed), that could poten-
tially get served by it. At the end of this phase, each vehicle
Vj has a list of initial matchings A j = [r1, r2, . . . , rk ], where
k ≤ 50 (Pseudo-code for this phase is given in Appendix E,
Algorithm 5.

B. Optimization Phase: Greedy Insertion Cost

In this phase, we follow the idea of searching each route
and locally optimally inserting new vertex (or vertices) into a
route. In our problem, there are two vertices (i.e., origin oi and
destination di ) to be inserted for each request ri . We define
the insertion operation as: given a vehicle Vj with the current
route SVj , and a new request ri , the insertion operation aims
to find a new feasible route S�Vj

by inserting oi and di into SVj

with the minimum increased cost, that is the minimum extra
travel distance, while maintaining the order of vertices in SVj

unchanged in S�Vj
.

Specifically, for a new request ri , the basic insertion algo-
rithm checks every possible position to insert the origin and
destination locations and return the new route such that the
incremental cost is minimized. So, the vehicle reaches its final
matchings (denoted M j ) list by greedily picking the top k �
requests (where k � ⊂ k) with the minimal insertion cost while
k � ≤ C

Vj
max to satisfy its capacity constraint (see lines 16-24 in

Algorithm 1). Assume the passenger count per request is
| ri |, and the vehicle Vj arrives at location z. Then, to check
the capacity constraint in O(1) time, we define vehicle Vj ’s
current capacity V j

C [z] which refers to the total capacity of the
requests that are still on the route of Vj when it arrives at that
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location z as follows:

V j
C [z] =

{
V j

C [z − 1]+ | ri | if z == oi

V j
C [z − 1]− | ri | if z == di .

To present our cost function, we first define our distance
metric, where given a graph G, we use our OSRM engine
to pre-calculate all possible routes over our simulated city.
Then, we derive the distances of the trajectories (i.e., paths)
from location a to location b to define our graph weights.
Thus, we obtain a weighted graph G with realistic distance
measures serving as its weights. We extend the weight notation
to paths as follows: w(a1, a2, . . . , an) = ∑n−1

i=1 w(ai , ai+1).
Thus, we define the cost associated with each new potential
route/path S�Vj

= [ri , ri+1, . . . , rk ] to be the cost(Vj , S�Vj
) =

w(ri , ri+1, . . . rk) resulting from this specific ordering of
vertices (origin and destination locations of the k requests
assigned to vehicle Vj ). The full insertion-based algorithm is
presented in Algorithm 2.

Algorithm 2 Insertion-Based Route Planning
1: Input: Vehicle Vj , its current route SVj , a request ri = (oi , di ) and

weighted graph G with pre-calculated trajectories using OSRM model.
2: Output: Route S�Vj

after insertion, with minimum cost(Vj , S�Vj
).

3: procedure ROUTE_PLANNING(Vj, SVj , ri )
4: if SVj is empty then
5: S�Vj

← [loc(Vj ), oi , di ].
6: cost(Vj , S�Vj

) = w(S�Vj
).

7: Return S�Vj
, cost(Vj , S�Vj

)

8: Initialize S��Vj
= SVj , Pos[oi ] = NULL, costmin = +∞.

9: for each x in 1 to |SVj | do
10: Sx

Vj
:= Insert oi at x − th in SVj .

11: Calculate cost(Vj , Sx
Vj

) = w(Sx
Vj

).

12: if cost(Vj , Sx
Vj

) < costmin then

13: costmin ← cost(Vj , Sx
Vj

).

14: Pos[oi ] ← x , S��Vj
← Sx

Vj
.

15: S�Vj
= S��Vj

, costmin = +∞.

16: for each y in Pos[oi ] + 1 to |S��Vj
| do

17: S y
Vj
:= Insert di at y − th in S��Vj

.

18: Calculate cost(Vj , S y
Vj

) = w(S y
Vj

).

19: if cost(Vj , S y
Vj

) < costmin then

20: costmin ← cost(Vj , S y
Vj

).

21: S�Vj
← S y

Vj
, cost(Vj , S�Vj

)← costmin .

22: Return S�Vj
, cost(Vj , S�Vj

)

23: end procedure

After vehicle Vj picks the route S�Vj
that has the minimum

cost of inserting ry into its current route, it follows the same
procedure for every ri ∈ A j as shown in Greedy_Insertion
procedure in Algorithm 1. Repeatedly picking r∗ that is the
argmin of the minimum insertion cost among all potential
requests in A j , each vehicle ends up with k � final matchings
that guarantees the optimal routing for the vehicle while
serving all k � requests and satisfying its capacity constraint.

Finally, this phase works in a distributed fashion where each
vehicle picks the top k � requests that minimizes its travel cost,
following Algorithm 2, and satisfying its capacity constraint
by following the Greedy_Insertion procedure in Algorithm 1.

Complexity Analysis: We note that the routes pre-calculation
step done using our OSRM engine (with their associated
costs), provides us with fast routing and constant-time com-
putation O(1), thus reducing the complexity of our algorithm
from O(n3) to O(n2). In addition, we adopt the approach
proposed in [13] for checking the route feasibility in O(1) time
to further reduce the computation needed (details provided in
Appendix E.

IV. ADAPTIVE DQN DISPATCHING APPROACH

In this section, we present our distributed adaptive approach
for dispatching vehicles. This framework aims at re-balancing
vehicles over the city to better serve the demand while
accounting for the different diurnal patterns during the day.
Utilizing DQNs along with a change point detection algo-
rithms, individual agents (i.e., vehicles) are able to learn dif-
ferent underlying models of the environment that correspond
to the different demand patterns and switch between them
according to the observed state of the environment. We utilize
a reinforcement learning framework, with which we can learn
the probabilistic dependence between vehicle actions and the
reward function thereby optimizing our objective function.
We utilize this framework in order to re-balance vehicles over
the city to better serve the demand. The fleet of autonomous
vehicles were trained in a virtual spatio-temporal environment
that simulates urban traffic and routing. In our simulator,
we used the road network of the New York City Metropolitan
area along with a realistic simulation of taxi pick-ups. This
simulator hosts each deep reinforcement learning agent which
acts as a delivery vehicle in the New York City area that
is looking to maximize its reward defined by Eq. (3). The
learning begins by obtaining experience tuples Et according
to the dynamics and reward function of current active model
Mθc . The state and reward obtained are stored as experience
tuples, since model information is not known.

A. Distributed Adaptive DQN

At every time step t , our adaptive DQN performs the
change point detection algorithm described in Section IV-B.
If it receives T ∗ signalling that a change has been detected,
it increments the counter c and starts switching from its
current model and updates (and takes action based on) a new
model, it does not attempt to estimate the transition and reward
functions for the new model. Instead, it starts to update the
dynamics of this new model, where the Q values are updated.
The full algorithm for this approach is in Algorithm 3, where
as assume the knowledge of a pattern of change as in line 1,
but without the knowledge of the context information of each
model.

At every time step t , the DQN agent obtains a represen-
tation for the environment, st,n , and calculates a reward rt

associated with each dispatch-to location in the action space
at,n according to the dynamics and reward function of current
active model Mθc , and updates Q-values of the relevant model.
Based on the rewards associated with each cell of the vehicle’s
action space explained in Section II-B, the agent takes an
action that directs the vehicle to different dispatch zone where
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Algorithm 3 Distributed Dispatching Using Adaptive DQN
1: Input 1: Model Change Pattern, Mθ1 → Mθ2 , Mθ2 →

Mθ3 , . . . , Mθk−1 → Mθk , where Mθi ∈ {M1, M2, . . . , Mk }, and θ ∈ � =
{1, 2, . . . , k}

2: Input 2: Xt , Vt :t+T , Dt :t+T .
3: Output: Dispatch Decisions
4: Fix learning rate σ
5: Initialize context number, c = 1, Q values Q(m, s, a) = 0, ∀ m ∈ 1, . . . , k
∀(s, a) ∈ S x A.

6: Construct a state vector st,n = (Xt , Vt :t+T , Dt :t+T ).
7: Get the best dispatch action at,n = argmax[Q(st,n , a; θc)] for all vehicles

Vn using the Q-network of model Mθc .
8: Get the destination zone Zt, j for each vehicle j ∈ Vn based on action

at, j ∈ at,n
9: Get reward rt,n using Eq. 3 associated with model Mθc .
10: Update Q value associated with model Mθc (explained in Appendix H.
11: Obtain next state st+1,n according to the environment dynamics.
12: et ← (st,n, rt,n, st+1,n)
13: Update dispatch decisions by adding ( j, Zt, j )
14: τ ← DCP (eT = e1, . . . et ), where T includes all t ≥ τ∗ at which model

Mθc was active.
15: if τ is not Null then
16: Increment c = mod (c+ 1, k).
17: if c == 0 then
18: c = k
19: τ∗ ← τ
20: Return (n, Zt,n)

the expected discounted future reward is maximized. In our
algorithm, we define the reward rk as a weighted sum of
different performance components that reflect the objectives of
our DQN agent (explained in Section IV-C). The architecture
of our DQN is described in Appendix G.

The reward will be learnt from the environment for indi-
vidual vehicles and then leveraged by the agent/optimizer
to optimize its decisions. Through learning the probabilis-
tic dependence between the action and the reward function
that is explained further in Appendix H, we learn the
Q-values according to the dynamics and reward function of
current active model Mθc associated with the probabilities
P(rt | at , st ) over time by feeding the current states of the
system. The Q-values are then used to decide on the best
dispatching action to take for each individual vehicle. Looking
at Figure 1, the DQN agent starts by learning model 1,
where c = in line 5 of Algorithm 3. At each time step t ,
it receives the 3-tuple representation of the environment, cal-
culates the reward (Q-values) according to the dynamics of that
active model, and makes dispatch decisions accordingly (see
lines 7 - 11) by picking the actions that yields the maximum
expected discounted reward (Q-value). Besides, the agent
stores experience tuples Et , at each time step t , that consists
of current state st , reward rt , and next state st+1 as shown in
line 12. Further, after the learning step, the agent checks for
change points using the ODCP algorithm (line 14) explained
in Section IV-B. Once it detects a change, that is when the
ODCP algorithm (Algorithm 4) returns T ∗, it switches to next
model c+ 1 and continues its learning using the dynamics of
the new active model (lines 14 - 19). Note that if the samples
observed come from a model (i.e., policy) that has been learnt
before, the DQN agent updates the Q-values of that previously
seen model and continues learning building on its previous
experience that is associated to that model. Also, after learning

(where no new model is learnt), the different learnt models can
be exploited along with change point detection for recognizing
diurnal patterns.

Algorithm 4 Dirichlet Change Point Detection Algorithm
1: Input Time Window [1 . . . T ], Data [x1 . . . xT ].
2: Output T ∗: Change Point (if there is a change).
3: procedure DCP([x1 . . . xT ])
4: Q0 ← Estimate Drichlet Parameters for [x1 . . . xT ] using Eq. 1
5: L L0 ← Estimate Log-Likelihood for [x1 . . . xT ] under Q0 (Eq. 2).
6: (T ∗, L L∗)← ESTIMATE_2WINDOW([x1 . . . xT ])
7: Z∗ ← L L∗ − L L0
8: if Z∗ > threshold then
9: Return Change point at T ∗.
10: else
11: No change, Return
12: end procedure
13: procedure ESTIMATE_2WINDOW([x1 . . . xT ])
14: for t ∈ 1 . . . T − 1 do
15: Q1 ← Estimate Drichlet Parameters for [x1 . . . xt ] (Eq. 1).
16: Q2 ← Estimate Drichlet Parameters for [xt+1 . . . xT ] (Eq. 1).
17: L Lt ← Log-Likelihood for [x1 . . . xt ] under Q1 + Log-Likelihood

for [xt+1 . . . xT ] under Q2 (Eq. 2).
18: L L∗ ← max(t∈ 1...T−1)L L(t)
19: T ∗ ← argmax(t∈ 1...T−1) L L(t)
20: Return (T ∗, L L∗)
21: end procedure

B. Online Dirichlet Change Point Detection
To detect points of change, our DQN agents analyze data

from their experience memory. The samples can be analyzed
for context changes in batch mode or online mode. If a change
gets detected, then the counter c is incremented, signalling
that the agent believes that context has changed. We adapt
the online parametric Dirichlet change-point (ODCP) detection
algorithm proposed in [14] for data consisting of experience
tuples. Multiple change-points are detected by performing a
sequence of single change-point detections. Although ODCP
requires the multivariate data to be i.i.d. samples from a
distribution, the justification in [15] explains the utilization
of ODCP in the Markovian setting, where the data obtained
does not consist of independent samples. The full algorithm
for the Dirichlet change point detection algorithm is shown
in Algorithm 4. In this algorithm, the maximum likelihood
estimation of Dirichlet distribution parameters is calculated for
the cumulative data (stored through experience tuples) using
Eq. 1 below:
α∗i = argmaxαlog	(

∑
l

αl)−
∑

l

log	(αl)

+
∑

l

(
(αl − 1)(logx̂l)

)
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T

∑
i

log(xil ) (1)

Then, the log likelihood given distribution Q0 is calculated
using equation 2 below:

L L(x1 . . . xT , Q) =
T∑

i=1

log(Q(xi))
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Fig. 3. Evaluation metrics for AdaPool and the non-adaptive baseline.

where d = |xi | Dimensionality of xi , xl ≥ 0, and∑d
l=1 xl = 1.
Then, at each time step t , that is seen as a potential change

point, we split the data into two parts (prior and after this
time step t), and we estimate the maximum likelihood as
well as the sum of log likelihood for both partitions using
the equations above. Finally, the algorithm returns the point
in time T ∗ associated with the maximum log likelihood to be
a potential change point. If the difference between this value
and the log likelihood of our unsplit original data turns out to
be greater than our threshold, then we declare that a change
has been detected at time T ∗.

C. DQN Dispatch Policy

In this section, we detail our system’s global reward objec-
tive which allows efficient fleet dispatch in fulfilling service
workloads. This global reward is optimized by our proposed
algorithm in a distributed fashion as vehicles solve their own
DQN to maximize rewards. At each time step t , each vehicle
that is either idle or newly entered the market (i.e. vehicles
that are marked available ∀Vj ∈ vt,m) needs to make a
dispatch decision of which zone m to be dispatched to at
time slot t . To take this decision, each vehicle calculates the
discounted reward (Q-value) associated with each potential
action and picks the action that would yield the maximum
future reward. The reward function, which drives the dispatch
policy learner’s objectives, is shaped in a manner which
aims to (1) satisfy the demand of pick-up orders, thereby
minimize the supply-demand mismatch: (difft ), (2) minimize
the dispatch time: T D

t (i.e., expected travel time of vehicle
Vj to go zone m at time t), (3) minimize the extra travel
time a vehicle takes for car-pooling compared to serving
one customer: �t , (4) maximize the fleet profits Pt , and (5)
minimize the number of utilized vehicles: et . These objectives
are defined in Appendix F.

The overall objective of the system is optimized at each
vehicle in the distributed transportation network. In this case,
the reward rt,n for vehicle n at time slot t is represented in

Eq. (3), where the objectives above are mapped to: (1) Ct,n:
number of customers served by vehicle n at time t , (2) dispatch
time: T D

t,n , (3) extra travel time: T E
t,n , (4) average profit

for vehicle n at time t : Pt,n , and (5) max(et,n − et−1,n, 0)
that addresses the objective of minimizing the the number
of vehicles at t to improve vehicle utilization. The reward
function of each vehicle is defined as a weighted sum of these
terms as:
rt,n = r(st,n, at,n) = β1Ct,n −

[
β2T D

t,n + β3T E
t,n

]
+ β4Pt,n−β5[max(et,n−et−1,n, 0)] (3)

where β1, β2, β3, β4 and β5 depend on the weight factors of
each of the objectives. Note that we maximize the discounted
reward over a time frame. The negative sign here indicates
that we want to minimize these terms. Further, the last term
captures the status of vehicle n where et,n is set to 1 if vehicle
n was empty and then becomes occupied at time t (even if by
one passenger), however, if it was already occupied and just
takes a new customer, et,n is 0. The intuition here is that if
an already occupied vehicle serves a new user, the congestion
and fuel costs will be less when compared to when an empty
vehicle serves that user. Note that if we make β3 very large,
it will dis-incentivize passengers and drivers from making
detours to serve other passengers, Thus, the setting becomes
similar to the one in [8], where there is no carpooling. The
overall optimization process includes a route planning and
matching policy, and the DQN dispatch policy working in
tandem with each other.

While the primary role of the DQN is to act as a means
of dispatching idle vehicles, it contains useful signals on
future anticipated demand that is utilized by other components
of our method including the Demand Aware Matching and
Route Planning. The additional profits term Pt integrated with
the reward function makes the output expected discounted
rewards (Q-values) associated with each possible move on
the map, a good reflection of the expected earnings gained
when heading to these locations. The Q-values are then used
to decide on the best dispatching action to take for each
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individual vehicle. Since the state space is large, we don’t
use the full representation of st , instead a map-based input is
used to alleviate this massive computing.

V. EXPERIMENTAL RESULTS

A. Simulator Setup

In our simulator, we used the road network of the New York
Metropolitan area along with a real public dataset of taxi trips
in NY [7]. We used Python and Tensorflow to implement
our framework. For each trip, we obtain the pick-up time,
passenger count, origin location, drop-off location and ride
fare. We use this trip information to construct travel requests
and demand prediction model. We start by populating vehicles
over the city, randomly assigning each vehicle a type and
an initial location. According to the type assigned to each
vehicle, we set the accompanying features accordingly such
as: maximum capacity, mileage, and price rates (per mile of
travel distance ω1, and per waiting minute ω3). We initialize
the number of vehicles, to 8000. Note that, not all vehicles are
populated at once, they are deployed incrementally into the
market by each time step t . We also defined a reject radius
threshold for a customer request. Specifically, if there is no
vehicle within a radius of 5km to serve a request, it is rejected.
This simulator hosts each deep reinforcement learning agent
which acts as a ridesharing vehicle that aims to maximize its
reward: Eq. (3).

B. DQN Training and Testing

The fleet of autonomous vehicles was trained in a virtual
environment that simulates urban traffic. We consider the data
of June 2016 for training and one week from July 2016 for
evaluations. For each experiment, we trained our DQN neural
networks using the data from the month of June 2016 for
20k epochs, which corresponds to a total of 14 days, and
used the most recent 5000 experiences as a replay memory.
Upon saving Q-network weights, after training, we retrieve the
weights to run testing on an additional 8 days from the month
of July which corresponds to 10k epochs. Thus, T = 8 × 24 ×
60 steps, where �t = 1 minute. To initialize the environment,
we run the simulation for 20 minutes without dispatching the
vehicles. Finally, we set β1 = 10, β2 = 1, β3 = 5, β4 = 12,
β5 = 8. Each vehicle has a maximum working time of 21
hours per day, after which it exits the market. Also, we perform
hyper-parameter tuning to set k (the number of models to be
learnt by our DQN) to 7, and the threshold for our ODCP
algorithm to 5000. We show that our framework is able to
recognize up to 7 different diurnal patterns throughout the day.

C. Computational Analysis

To provide more insight regarding the complexity of our
AdaPool framework, we investigate:

1) Dispatch Decisions: We show in Fig. 4, the cumulative
distribution function (cdf) plot for the time taken for dispatch
decisions for each individual vehicle. We can obseve that with
probability 1.0, it will take the vehicle < 0.2 seconds to make
a dispatch decision of which location on the map to head to
next in order to maximize its own reward.

Fig. 4. CDF for dispatching and route-planning decisions’ times.

2) Matching and Route-Planning Decisions: We show
in Fig. 4 the cdf plot for the time taken for route-planning
decisions for each individual vehicle. This is the time taken by
the vehicle to apply the greedy insertion operations and decide
on the k � ride requests, which satisfy its capacity constraint and
correspond to the minimum cost. We can conclude that with
probability 1.0, it will take the vehicle < 2.5 milliseconds to
make a dispatch decisions.

These results proves the viability and efficiency of our
framework to be applied in large-scale real-world environ-
ments. Clearly, the time taken for route-planning is negligible
when compared to the time taken for making dispatching
decisions; however, both are very reasonable for real-time
decision making scenarios.

D. Performance Metrics
We breakdown the reward, and investigate the performance

of AdaPool against a non-adaptive baseline [13]. Recall that
we want to minimize the components of our reward: Eq. (3).
• Accepted Requests: This is calculated as the total num-

ber of requests served by the fleet per working hour.
The total number of customers served indicates how
effectively the algorithm is able to minimize the supply
demand gap and fulfill delivery requests.

• Travel Distance: This metric shows the total amount of
distance traveled by each vehicle per hour of service,
which gives a good reflection of the cost incurred by
vehicles due to serving multiple ride requests. This dis-
tance is computed using the weights of the n edges that
constitute the vehicle’s optimal route from its current
location to origin oi and to destination di . This route
is obtained through the insertion-operation, the route
which minimizes the DARM cost function as shown in
Algorithm 2.

• Occupancy Rate: This metric captures the utilization
rate of the fleet of vehicles, it keeps track of how many
vehicles are deployed from the fleet to serve the demand.
This is calculated as the total number of vehicles that
are carrying passengers per hour of service, while we
also calculate the occupancy rate of vehicles (in Fig. 5),
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Fig. 5. Histograms of performance metrics for the proposed AdaPool and the baseline.

which is defined as the percentage of time where vehicles
are occupied out of their total working time. By minimiz-
ing the number of occupied vehicles, we achieve better
utilization of individual vehicles in serving the demand.
A lower occupancy rate indicates that a fleet is able to
minimize the number of vehicles on the street to serve
the requests.

• Profit: This represents the net profit accumulated by a
vehicle over the course of a day, where the cost incurred
by fuel consumption is subtracted from the revenue. The
revenue is calculated by summing the trip fares from all
customers served by this vehicle.

• Cruising (idle) time: This represents the time during
which a vehicle is neither occupied nor gaining profit
but still incurring gasoline cost. Lower cruising times
therefore suggests a cost effective policy.

• Detected points of change and the corresponding
demand and hour in day: This measure helps investi-
gate the pattern of change in demand against the detected
points of change in order to validate if our framework
adapts accordingly.

The proposed non-adaptive baseline aims to evaluate the
effectiveness of the adaptive aspect of our framework as well
as the demand aware matching and route planning compo-
nent. Our proposed method incorporates both insertion-based
route-planning and diurnal pattern adaptation. As compared to
the non-adaptive baseline, we hypothesize that our AdaPool
framework would be a more effective approach. With the
capability of adapting to the demand pattern, we expect
AdaPool to bring the supply/demand gap to a minimum and
thus, minimize the cruising idle time and travel distance in
addition to increasing the overall accept rate of requests. Given
that the core intuition of our matching and route planning com-
ponents is to group together rides that share route intersections
to their destinations as opposed to rides heading to opposite-
direction-destinations, we expect improvements in the number
of rides served, profits, travel distance, and occupancy rate.

E. Results Discussion
From our simulation, we observe that the hypothesis for our

baseline comparison has been supported for the most part by
our experimental results. In Figure 3, we investigate the overall
performance of our AdaPool framework. We show the actual
number of requests as the dotted black line. We can observe
that, over a week long of simulation, AdaPool consistently
improves the overall acceptance rate of ride requests by around
a 10 − 15%, while at the same time, significantly decreases

the average travelling distance of the fleet. This proves the
effectiveness of AdaPool in minimizing the supply/demand
mismatch. Although, this comes at the cost of a slight increase
in the number of utilized vehicles (≈ 300 extra vehicles) in the
fleet, this outcome proves that - unlike the non-adaptive base-
line, AdaPool does a successful job in re-balancing vehicles
over the city, so extra vehicles would become occupied in order
to serve extra demand (that was not served in the non-adaptive
scenario) while at the same time achieving a decrease in
the average travel distance of the fleet. This result points
towards the effeciency of our insertion-based route-planning as
it allows for serving more requests with the smallest possible
travel distance. It is also worth noting that, even with a slight
increase in the number of occupied vehicles, the total number
of utilized vehicles stays below 3.5k which is less than half
of the fleet (we set the maximum number of vehicles to 8000
in our simulator). This proves our hypothesis that AdaPool
outperforms the non-adaptive baseline in the utilization of
available resources. This is a positive outcome that points
towards the viability of our proposed approach to learn diurnal
patterns and adapt in a timely manner.

Besides, the extra number of utilized vehicles (which can
be explained by the additional number of requests served) will
-in turn- increase the average profits of the fleet which is also
another desirable outcome. In Figure 5a, we can observe that
AdaPool increases the average profits per vehicle in the fleet
while minimizing their cruising idle time, which in turn, cuts
down fuel consumption and environmental pollution. We note
that, in AdaPool, more than 80% of vehicles in the fleet spend
less than 3 hours of idle cruising per day. On the other hand,
with the non-adaptive scenario, the plot is more skewed to the
right where the average idle cruising time reaches more than
5 - 6 hours per day. This is mainly due to AdaPool dispatching
vehicles according to the learnt demand pattern which makes
the vehicles present at locations very close to the anticipated
demand and thus minimizes their idle time and cruising time
to get to the requests assigned to them. On the other hand,
the non-adaptive baseline relies only on mobilizing vehicles
according to the pickup locations of their requests as opposed
to learning the changes of the supply-demand distribution of
the city and mobilizing accordingly when they experience idle
time.

In Figure 3, we observed the occupancy rate of the fleet
(how many vehicles are occupied from the fleet); however
in Figure 5, we look at the occupancy rate per vehicle. That
is how much of the time, when the vehicle is in service,
does it stay occupied. We note that, with AdaPool, more
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Fig. 6. Analysis for Diurnal pattern adaptation.

than half of the fleet is occupied for more than 50% of
their time in the market. Again, the occupancy rate plot is
more skewed to the left with the non-adaptive baseline, which
suggests less occupancy rate per vehicle as it leans towards
10%− 30%. Finally, after we investigated the overall average
travel distance for the whole fleet in Figure 3, we also take
a closer look at the travel distance per vehicle in Figure 5.
Clearly, AdaPool shows a considerably less travel distance per
vehicle than the non-adaptive baseline. This further ascertains
that, in AdaPool, the insertion-based route-planning in tandem
with the demand pattern adaptaion achieves a great success in
learning the demand pattern and re-balancing vehicles over the
city accordingly. This significantly improves the utilization of
each individual vehicle as well as the whole fleet.

Finally, to validate the adaptation aspect of AdaPool,
Figure 6a shows the amount of demands at the detected
points of change at which our approach switches contexts (i.e.,
models). We can, clearly, conclude that the detected change
points are associated with either a sharp increase or decrease in
demand which suggests a change in context; thus, our AdaPool
switches to either learn a new model or to a previously learnt
model (if the samples it observes has been learnt before). This
behavior is consistent throughout the week of testing, except
over the weekend where we can observe there has been some
detected change points at intermediate demand. This could be
attributed to other factors represented in our reward function,
where the change might not be only dependent on the amount
of demand but also on factors resulting from that such as
larger customer’s waiting times or larger cost incurred from
fuel consumption. For future work, we plan to conduct more
investigation on weekends, holidays, etc. and research on what
other aspects could attribute to changing contexts (such as:
unexpected weather conditions, etc.).

In Figure 6, we take a closer look at the pattern of the
detected changes. We can observe that the change pattern
is relatively consistent throughout the week of evaluations,
excluding the weekend where the pattern varies slightly.
In weekdays, AdaPool detects changes somewhere between
5-7 am, then between 11-noon, after that between 4-6 pm,
and finally at night between 8-9 pm. On the other hand,
for weekends there are additional detected points later in
the night around 10-11 pm and at mid-night. Tying back
to Figure 6a, we can conclude that these points correspond

to peaks (e.g. 4-6 pm when people heading home from
work, and students from school), decreasing demand (e.g.,
around 8-9 pm when traffic generally starts slowing down in
weekdays), or rising peaks (e.g., around 5-7 am when people
starts heading to work, or to school). This outcome ascertains
that our approach is able to detect diurnal patterns as the
contexts of the underlying environment change. In addition to
this, AdaPool also adapts according to these changes, as it
switches between models. Tracking these model switches,
we observe that AdaPool exploits the same model around the
same timing each day, and thus, models vary by the variation
of demand as well. For instance, in weekdays, between 10 pm
and 5 am, AdaPool utilizes the same model every day. We note
that this time-frame characterizes the least amount of demand
every weekday. Similarly, mornings between 5-9 am, the same
model is also utilized every week day. This time-frame corre-
sponds to a notably high demand as it signals the beginning
of each business day. Therefore, AdaPool is able to adapt
by switching to the model that corresponds to the diurnal
pattern it has learnt, while it still is able to learn online
any new unexpected changes as they take place within the
environment.

VI. CONCLUSION AND FUTURE WORK

In this paper, we detailed our novel approach—Distributed
Adaptive Deep Q Learning for Ride-Sharing with car pooling,
namely “AdaPool” framework and our Demand-Aware Match-
ing and route planning approach—that generate ideal routes
on-the-fly and adapts dynamically to changing environmental
contexts. Agents’ (i.e., vehicles) decision-making process is
informed by a reward function that aims to achieve the maxi-
mum profit for drivers while accounting for fuel costs, waiting
times, and supply-demand mismatch to compute the reward.
This novel AdaPool methodology integrates a DQN-based
dispatch algorithm, learns up to 7 different contextual models,
and adapts accordingly by detecting the relevant change points.
The learnt Q-values associated with the active model are then
leveraged by each vehicle to make informed dispatch decisions
independently. Experimental results show that AdaPool frame-
work boosts the acceptance rate, while enhancing drivers’
profits and decreasing their average travel distance. Given the
maximum number of vehicles (8000) populated in the simula-
tion, our framework utilizes less than 50% of the vehicles to
serve the demand of up to 90% of the requests. Experiments
also show that vehicle idle time (cruising without passengers)
is reduced to below 2 hours per day and 40% - 70% of
the vehicles are occupied most of the time. Our model-free
AdaPool framework can be extended to large-scale ridesharing
protocols due to the vehicles’ distributed decision making that
reduces the decision space significantly.

Application of the proposed approach for decision making
in other environments with diurnal patterns will be considered
in the future. Extension of this work to include capabilities of
a joint delivery system for passengers and goods as in [16]
and [17], multitrip deliveries within a certain time window as
in [18], or using multi-hop routing of passengers as in [19]
for efficient fleet utilization is left as future work.
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