

 Purdue University, 2016

Secure Dissemination of EHR
in Untrusted Cloud

Denis Ulybyshev¹ , Bharat Bhargava¹ , Leon Li² , Jason Kobes²,

Donald Steiner², Harry Halpin4 , ByungChan An¹ , Miguel Villarreal¹,
Rohit Ranchal³, Tim Vincent¹

¹Computer Science and CERIAS, Purdue University;

²NGC Research Consortium;

³IBM Watson Health Cloud;
4MIT

Tutorial

 Purdue University, 2016

Table of Contents

Initial Setup .. 3
Secure Dissemination of EHR in Untrusted Cloud .. 5

 Purdue University, 2016

Initial Setup

Supported OS: Linux

1. Create a <Project_Folder>, go to that folder
 $ cd Project_Folder

and clone the source code from the repository:
 $ git clone https://github.com/Denis-Ulybysh/absoa16/

2. go to folder absoa16/console and install npm:
 $ cd console
 $ sudo npm install

node_modules folder must appear in the project directory. Then do the global update of “Express”

framework :

 $ npm update -g express

3. Go to Project_Folder/absoa16/scenarios/webcrypto and run 'install' script. It will install npm for

every service: doctor, insurance, researcher, hospital, authenticator.

 $./install

4. Install mysql :
 $ apt-get install mysql-server-5.6

5. Set up MySQL database:

 $ mysql -u root -p < db.sql

6. Install Java Runtime Environment. The project was tested under JRE version 8.

7. Run the project: go to Project_Folder/absoa16/scenarios/webcrypto and run ‘start’ script:

 $./start

8. Open the browser, go to http://localhost:3000/ (default port for prototype is 3000).

Internet connection is required. You should see the page from Fig.1 below.

*To run prototype on a remote machine (not on localhost) modify 2 lines in the following source

code files: Project_Folder/absoa16/scenarios/webcrypto/hospital/public/index.html
and

 Project_Folder/absoa16/scenarios/webcrypto/authenticator/public/index.html
-replace localhost with real IP address where prototype (start script) will be running

https://github.com/Denis-Ulybysh/absoa16/

 Purdue University, 2016

Secure Dissemination of EHR in Untrusted Cloud

The server can be run either on a remote machine or on localhost. In our scenario server is
running at waxedprune.com, port 3000. When you open the browser and type the following
URL:
http://waxedprune.com:3000/
you will see the following page:

Fig.1. Secure Dissemination of EHR Main Page

Click “Hospital Service” button. Then you will see the following page:

Fig.2. Hospital Service Page

Select the role (Doctor, Insurance company or Researcher) and select information to request:
‘All’ or specific field, e.g. Contact Info of a Patient. Then click ‘Submit’ button. After that you will
be redirected to authentication server (AS) web page, where you need to enter credentials.
Since https protocol is used between client and authentication server, security exception needs
to be added in the browser.

 Purdue University, 2016

Fig.3. Adding security exception for https connection between client and AS

Fig.4. Security exception confirmation for https connection between client and AS

Fig.5. Password-based authentication of a Client at AS

 Purdue University, 2016

If credentials entered by the Client are incorrect then data request is rejected. If credentials are
correct then cryptographic capabilities of a browser are determined. If the level of cryptographic
capabilities is high then Doctor will get data on behalf of 3 patients (see Fig.6), whereas if level
of cryptographic capabilities is low then Doctor will get data on behalf of only 1 patient (see
Fig.7). The idea behind this is that if level of cryptographic capabilities is high then Doctor can
get data on behalf of patients assigned to other doctors, in addition to data of a patient (Monica
Latte) assigned to the given Doctor.

Fig.6. EHRs retrieved for Doctor with High Level of browser’s crypto capabilities

Fig.7. EHR retrieved for Doctor with Low Level of browser’s crypto capabilities

Each party (corresponding to the Role) interacts with an Active Bundle (AB), running on a cloud
platform, to access only those data from AB for which the party is authorized.

 Purdue University, 2016

If client (e.g. Doctor) clicks on a patient’s record, then detailed information on behalf of that
patient is displayed:

Fig.8. Detailed EHR of a patient retrieved for Doctor

Doctor can also select among 2 actions “Send Medical Record to Patient’s Insurance Company”
or “Send Medical Record to University Research Partner”. Then Active Bundle, containing EHR
on behalf of a patient, will be sent to another cloud, i.e. to corresponding service running in
another cloud.

Fig.9. EHR sent to service running in another cloud

 Purdue University, 2016

According to specified Role-Based Access Control Policies, Doctor can get access to Contact,
Medical and Billing Information of a Patient; Insurance company can get access to Contact and
Billing information (see Fig. 10 below); Researcher can get access to Medical and Billing
Information (see Fig.11 below).

Fig.10. Patient’s data accessible by Insurance Company

Fig.11. Patient’s data accessible by University Researcher

It should be said, that Active Bundle is tamper-resistant: if malicious user tries to modify policies

 Purdue University, 2016

or AB code or bypass policy check then tamper attack will be detected and data access will be
denied. Context-based and trust-based data dissemination is also supported by Active Bundles.

On the right side of web pages (see Fig.12) you can see flow visualization panel: it shows the
phase of a data access process. Initially, client authentication phase is in progress. Then, after
client enters correct credentials, data request is transferred to the Active Bundle and ‘Policy
application’ phase starts. Then role-based access control policies specified in Active Bundle are
applied abd finally, data for which the party (according to the Role) is authorized are retrieved
and sent to the Client.

Fig.12. Flow visualization panel

