On-the-fly Analytics over Encrypted Records in Untrusted V2X Environments

Denis Ulybyshev*, Servio Palacios*, Ganapathy Mani, Aala Oqab Alsalem, Bharat Bhargava

Computer Science Department, CERIAS
Purdue University
West Lafayette, USA
{dulybysh, spalacio, manig, alsalema, bbshail}@purdue.edu

Puneet Goyal
Computer Science and Engineering
Indian Institute of Technology
Ropar, India
puneet@iitrpr.ac.in

Abstract—In Vehicle-to-Everything (V2X) networks, vehicles can communicate and exchange data related to road events, such as traffic jams and accidents, road constructions and safety warnings. This capability is used in Intelligent Transportation System applications, aiming to provide road assistance and more safety. However, V2X networks and autonomous vehicles are a target for attackers. A malicious message sent to a vehicle can put the vehicle in jeopardy. Thus, it is essential to provide data confidentiality and integrity in untrusted V2X environments. Also, it is highly desirable for an Intelligent Transportation System to have a capability of building fast-speed data analytics over vehicle records, including encrypted records.

In this paper, we propose a solution for decentralized data analytics that can be built over encrypted data on local nodes in V2X communication systems. Our solution provides confidentiality and integrity of data, as well as data leakage detection/prevention capabilities for several types of leakages made by insiders to unauthorized parties in V2X networks. Furthermore, we enhance our model through a novel mix of convolutional neural networks and Attribute-Based Encryption (ABE). This improved model diminishes the attack surface of the impersonation and forgery attacks.

I. INTRODUCTION

In V2X networks vehicles and roadside objects can communicate and share data with each other. It is critical to provide data confidentiality and integrity in V2X communication systems. To address this, we use a self-protected Vehicle Data Record (VDR) which incorporates encrypted datasets in the form of key-value pairs, access control and metadata policies and policy enforcement engine. VDR uses the concept of Active Bundle [1], [2], [3]. VDR provides role-based and attribute-based access control [4]. VDR is used for data exchange in vehicular networks without necessity of having central authority to enforce access control policies [5]. In addition, VDR provides capabilities of detecting and preventing data leakages, that could be made by authorized parties to unauthorized ones in V2X networks [6]. In this paper, we propose a method to perform decentralized on-the-fly data analysis over encrypted data records. Additionally, this paper provides alternative solutions to alleviate the effect of impersonation and forgery attacks. The former implies that vehicles disguise as different entities to alter the behavior of cars or network [7]. Forgery attack means that the vehicles send incorrect or false messages (e.g., emergency messages, warnings, etc.) that can alter the normal behavior of the network [7]. We provide an enhancement to our security model that can diminish the possibility of those attacks. Our solution comprises a novel mix of previous work on convolutional neural networks [8] and Attribute-Based Encryption (ABE) [9], [10]. The idea is to capture unique attributes of the vehicle and, based on them, derive a key which is used to encrypt and decrypt a dataset, incorporated in VDR, used for data analysis. We utilize the Make, Model, and Color Recognition (MMCR) [8] to detect the vehicle’s attributes and construct an access tree that serves as a guarantee of the existence of that node in the network. This paper has two main contributions:

1) Methodology to build decentralized data analytics over encrypted data on local nodes in V2X communication system. Our solution provides confidentiality and integrity of data, as well as data leakage detection/prevention capabilities for several types of leakages made by insiders to unauthorized parties in V2X networks [6]. Our secure data transfer method works for both centralized and decentralized peer-to-peer network architectures, which is essential for V2V communication system. Our approach supports role-based and attribute-based access control, as well as large subset of SQL queries over encrypted data [11].

2) A novel key derivation technique utilizing convolutional neural networks (i.e., for make, model, and color recognition) and Attribute-Based Encryption (ABE) to diminish the attack surface for impersonation and forgery attacks.

The rest of the paper is organized as follows: section II presents related work. Section III presents the core design of our system. Section IV evaluates performance of the system. Section V concludes the paper.

II. RELATED WORK

A. Attribute-Based Encryption

Goyal et al. [9] introduced Key-Policy Attribute-Based Encryption (KP-ABE) in which the key defines the access
structure (i.e., keys determine the ciphertext that they are allowed to decrypt). Also, a set of descriptive attributes serve as labels in the ciphertext. In the Ciphertext-Policy ABE (CP-ABE) the access policy is included in the ciphertext [10]. It has been shown that CP-ABE is computationally expensive [12]. CP-ABE requires an access tree based on the attributes of the data.

B. Vehicle Image Classification

Liu and Wang utilize large datasets to train and test classifiers [13]. Dehghan et al. introduce Sighthound [8] a vehicle make, model, and color recognition system. Sighthound relies on a deep convolutional neural network. In this paper, we utilize Sighthound JavaScript API [14] to retrieve results from the classifier.

C. Secure Data Exchange in V2X networks

European standards (ETSI) and US standards (WAVE) for Intelligent Transport System (ITS) have privacy requirements for vehicles data. ETSI require anonymity, pseudonymity, unlinkability and unobservability of vehicles data [15]. Ranchal et al [16] proposed an EPICS framework to protect data privacy throughout the service interaction lifecycle. This solution relies on Active Bundle [2], [1], [3] which transfers data together with the access control policies, specified by data owner, and with an execution monitor that controls data accesses. In this paper, we extended this approach with capabilities of performing on-the-fly data analytics over encrypted data stored in Active Bundle. We also came up with a novel mix of previous work on convolutional neural networks [8] and Attribute-Based Encryption (ABE) [9], [10] to derive encryption key.

D. Performing on-the-fly local data analysis

Due to the on-the-move nature of autonomous vehicles in V2X environment, decentralized computations are the important components of the core autonomous vehicle-to-vehicle (V2V) design. Several methods have been proposed in literature to perform decentralized data analysis. A decentralized data neural network has been proposed in [17]. Instead of performing analytics after transferring the data, this method only transfers gradients calculated through backpropagation. This eliminates data transfer from individual entities to a centralized location but performs machine learning analytics through gradients, which also enables privacy-preserving data analytics. Similarly, authors in [18] introduced a decentralized data analysis framework that is assisted by low-cost hardware such as MEMS. The data acquisition and processing are performed at the local MEMS sensor nodes. Results alone are transmitted and used for decision processes. The framework avoids gathering data in a centralized location for data analysis.

III. CORE DESIGN

A. Vehicle Data Record

In order to provide data confidentiality and integrity, we use a self-protected Vehicle Data Record (VDR) which incorporates encrypted datasets in the form of key-value pairs, access control and metadata policies and policy enforcement engine. Here is the example of key-value pair:

table of data

<table>
<thead>
<tr>
<th>PrimKey</th>
<th>Owner Info</th>
<th>Vehicle Info</th>
<th>Road Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Name</td>
<td>License Plate</td>
<td>Accident</td>
</tr>
<tr>
<td>Home Address</td>
<td>VIN</td>
<td>Obstacle</td>
<td></td>
</tr>
<tr>
<td>Drivers License</td>
<td>Health Report</td>
<td>Traffic Jam</td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td>Engine parameters</td>
<td>Road Work</td>
<td></td>
</tr>
<tr>
<td>Email</td>
<td>Fluid Level</td>
<td>Weather Alert</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tire Pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Performance Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip Mileage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VDR supports authorized on-the-fly data updates.
is authorized. Details of communication procedure between web service and Active Bundle are covered in [2]. Demo video, illustrating this concept extended with data leakage capabilities for our implemented prototype is available [19]. “Summary” field of VDR is special since it does not require evaluation of access control policies. It is encrypted with MMCP key, which is derived based on captured attributes of a vehicle, including make, model, color and license plate. Convolutional neural networks technique is utilized. Details are given in section III C below. The service who has MMCP-key can decrypt Summary without going through policy evaluation. It allows to perform fast on-the-fly data analytics. Summary field contains vehicle ID, license plate number, health and performance data, including average speed, trip duration, fuel consumption, engine temperature, etc. Other data, necessary for Intelligent Transportation System, might be included in Summary as well. More sensitive data such as owner’s home address are not included in Summary and clients are required to go through full policy evaluation check to access these sensitive data.

B. System Architecture

In our architecture, there are vehicles, roadside units which transfer data to/from cloud provider, speed cameras and high-resolution toll gate cameras. VDR-based solution supports both centralized and decentralized peer-to-peer network architectures. In our design, V2X communication objects are represented as web services, e.g. Driver, Law Enforcement, Insurance Service, Corporate Brand Vehicle, etc. Client can be a vehicle or the computer which represents Intelligent Transportation System or Law Enforcement. Data exchange scenario for V2X network is shown on Fig. 2.

At step 1, speed camera captures vehicle speed and license plate and sends them together with the speed limit at step 2 to the cloud provider. At step 3, once vehicle reaches the toll gate, the high-resolution camera captures vehicles make, model, color, license plate number and sends these attributes at step 4 to the cloud provider, where they are used to derive a unique encryption MMCP key at step 5. Details of key derivation are given in section III C below. At step 6, this encryption key is sent to the vehicle, along with previously captured at steps 1, 2 pairs of (speed, speed limit).

Assumptions:

1. Hardware platform and OS that run VDR are trusted.
2. HTTPS protocol is used for communications between all the web services.

C. Key Derivation

1) Bilinear Maps: Since we use KP-ABE, the Bilinear Maps are a building block of our construction. Bilinear Maps include cyclic groups of prime order q. Moreover, a bilinear map is an injective function with the properties of bilinearity, non-degeneracy, and computability [9], [10]

2) Key-Policy Attribute-Based Encryption: Ciphertexts in KP-ABE are associated with a set of attributes. KP-ABE needs an access tree that defines the access policy. Also, the key generation depends on the access tree. The KP-ABE includes four algorithms:

- The setup algorithm sets the attributes to be considered an outputs a public key PK and a Master Key MK.
- The encryption algorithm takes the input m (i.e., a message), the public key PK, and a set of attributes γ and produces a ciphertext CT.
- The key generation algorithm uses the master key MK, an access tree τ, and the public key PK to produce a secret key SK so that SK can decrypt CT iff τ matches γ.
- The decryption algorithm utilizes the secret key SK, the public key PK, and the ciphertext CT and decrypts CT iff τ matches γ, otherwise returns ⊥.
3) Automated Highway Toll Systems: Automated highway toll systems utilize sensors and high-resolution cameras that scan vehicle’s shape, the number of axles, make, color, model, and license plate [20]. Sensors in the pavement trigger signal to the overhead camera to capture the vehicle’s color photo (i.e., these photos help to identify the owner and ensure the correct billing for the toll zone transaction). When the camera fails to capture and recognize the owner and proper billing; some alternatives include a computerized image of the shape and size of the car. We rely on Electronic Toll Systems and toll cameras (sometimes called toll booth cameras with high resolution) to recognize the make, model, color, and license plate. Then, we feed the MMCR system (via RESTful requests to the cloud [14]). This framework has an accuracy of 93.6% on the Stanford car dataset [21]. Since we utilize current infrastructure with high-resolution toll booth cameras, we expect similar accuracy.

Our work is inspired by [12]. Our access control relies on a tree-based access structure embedded in the key (KP-ABE). Our nodes/vehicles are described using unique attributes attached to it (e.g., make, model, color, license plate.) We can model multiple use cases (e.g., when the recognition algorithm catches some attributes of the node, but not all) that will imply different reputation level in the system.

The access tree \(\tau \) depicted in Fig. 3 shows the attributes as the leaves and threshold-gates as non-leaf nodes. As mentioned in [12], OR and AND gates can be represented using 1-out-of-n and 2-out-of-2 threshold gates respectively. Therefore, we can express a rich set of rules.

4) Simplified Protocol: Our simplified protocol behaves in the following way. We utilize toll stations (e.g., \(T_k \)) since those incorporate high-resolution cameras that can give a better performance for the MMCR \(^2\) algorithm\(^3\).

- Using MMCR algorithm, we build a data structure (i.e., a JSON file \(JS_i \)) with the set of attributes of the vehicle.
- In the setup phase, the certifying authority (e.g., toll station \(T_i \)) generates the master key \(MK \) and the public key \(PK \).
- The certifying authority \(T_i \) creates an access tree \(\tau_i \) using the attributes of step 1 and adding a random nonce \(N_i \) (128-bit) (Fig. 3) that serves as unique id and session id. \(T_i \) generates the secret key \(SK_i \) over \(\tau_i \).
- \(T_i \) encrypts the secret key \(SK_i \) and the random nonce \(N_i \) with \(T_i \)’s public key \(TPK_i \) (we call this ciphertext \(CT_i \)).
- \(T_i \) encrypts the random session key with the key policy attribute-based encryption.
- The certifying authority \(T_j \) decrypts the contents of \(CT_i \) and obtains the random nonce \(N_i \) and the secret key \(SK_i \).
- \(T_j \) retrieves a set of attributes (\(JS_j \)) utilizing the MMCR algorithm.
- \(T_j \) decrypts the random session key utilizing \(SK_i \) and the access tree \(\tau_j \). Then \(T_j \) verifies the correct value and elevates the node to the **Authenticated** state.

- The vehicle receives symmetric keys (derived from the session key) to communicate securely.

\[CAR_{\text{speed}} + R_{\text{noise}} = CAR_{\text{speed}} + CAR_{\text{Brakedspeed}} + CAR_{\text{speed}} + Total_{\text{speed}} \]

\[\text{AverageSpeed} = \frac{Total_{\text{speed}} - R_{\text{noise}}}{Total_{\text{NumberofCars}}} \]

The perturbation keeps the data anonymized hence preserving the privacy of individual vehicle. Aggregate analytics such as this are localized in which the local area can be specified by the administrator and the car requests data from the cars that are present in that local area. This reduces computation, communication, and storage overhead of the autonomous vehicle. Even insurance companies and car companies can utilize such analytics to enhance their services. For example, insurance company can calculate the accident rates in a particular area with speeds and the insured vehicles, and alert the policy holder to monitor the autonomous car for safe driving.

Unsupervised learning methods can aid in effective knowledge discovery and cognitive autonomy of the autonomous vehicles. In order to classify streaming data, we need efficient and fault-tolerant system. The scheme should also carry a low computational overhead. Based on clustering through error-correcting codes [22], vehicle records categories (or) features can be classified into 23 bit vectors. Each feature is
classified with 23 one-bit attributes (0 or 1 i.e., characteristics of a feature is present or absent in the incoming data). This increases the clustering size and scales the analysis for large number of records. Unlike the traditional clustering mechanism, error-correcting code clustering can be completed in O(N) time.

IV. Evaluation

Section A evaluates round-trip time (RTT) for inter-vehicle communication made in the form of VDR. RTT is measured between the moments when service, representing a vehicle, issues data request to another vehicle and retrieved data are received at the recipient’s side. RTT includes authentication, authorization, key derivation and data disclosure phases. ApacheBench, ver.2.3, utility is used on client side to send series of data requests. In section A we also compare latency of data request sent to VDR with just decryption of the same dataset without involving evaluation of access control policies and client’s attributes. In section B we evaluate the performance of MMCR algorithm for detecting vehicle attributes, including make, model and color. Time required to transfer the captured attributes over the network is also evaluated.

A. Inter-vehicle communication evaluation

In this experiment, we firstly evaluate performance overhead imposed by VDR compared to just decrypting the same dataset. In both cases, client requests the same dataset of 617 bytes, stored in encrypted form. In the first case, encrypted dataset is just decrypted, using AES algorithm. In the second case, request for the same dataset needs to go through evaluation of access control policies and client’s attributes, as well as leakage detection check. Our selected VDR incorporates four access control policies and uses AES algorithm to encrypt and decrypt the stored data. As it can be seen from Fig. 4, VDR imposes 102% performance overhead compared to just decryption of encrypted dataset. In both cases, we used Raspberry Pi Model B as a hardware platform, with ARMv7 Processor rev 4 @1.2GHz, RAM 1GB, Raspbian GNU/Linux 9.1 (stretch), IP: 128.10.120.158

Vehicle 1 (Raspberry Pi 3 Model B)
Hardware: ARMv7 Processor rev 4 @1.2GHz, RAM 1GB
OS: Raspbian GNU/Linux 9.1 (stretch), IP: 128.10.120.240

We run 50 data requests in a row, using ApacheBench, ver.2.3, utility. As it can be seen from Fig. 5, VDR adds 127% performance overhead, compared to baseline VDRB(4).

B. Vehicle recognition and transfer time evaluation

In this experiment, we measure the total running time for the MMCR algorithm. We set our environment with a modest Internet Connection (i.e., 12 Mbps download, 1 Mbps Upload, the latency is around 53 ms.). Also we craft multiple (i.e., a hundred) requests to the cloud provider (i.e., Sighthound RESTful API [14]). The goal is to simulate a real scenario in which we query the cloud (the cloud will contain our trained model) and return the results to the certifying authority (e.g., toll station). In Fig. 6 we observe that the second vehicle, sends request for 617 bytes of data to the first vehicle over wireless TCP/IP network. Measured RTT includes network delays.

Vehicle 1 (Raspberry Pi 3 Model B)
Hardware: ARMv7 Processor rev 4 @1.2GHz, RAM 1GB
OS: Raspbian GNU/Linux 9.1 (stretch), IP: 128.10.120.158
Vehicle 2 (Raspberry Pi 3 Model B)
Hardware: ARMv7 Processor rev 4 @1.2GHz, RAM 1GB
OS: Raspbian GNU/Linux 9.1 (stretch), IP: 128.10.120.240

We run 50 data requests in a row, using ApacheBench, ver.2.3, utility. As it can be seen from Fig. 5, VDR adds 127% performance overhead, compared to baseline VDRB(4).
total time per request is around one second. We receive a JSON file with the inferred attributes of the car.

This experiment exposes the feasibility of our proposed solution.

Fig. 6. Vehicle recognition and transfer time.

V. CONCLUSION

We presented a privacy-preserving decentralized data exchange model for V2X communication systems, which, in addition to data confidentiality and integrity, provides capability to perform local on-the-fly data analytics. Our solution supports role-based and attribute-based access control, as well as detection of data leakages, made by insiders to unauthorized entities in V2X networks. Transaction latency for data message sent in the form of VDR between two vehicles is 209 msec. Support of attribute-based access control, tamper resistance, data leakage detection capability and fast local on-the-fly analytics capability add 127% performance overhead. VDR concept, that involves evaluation of access control policies (in our use case, four policies) and client attributes, as well as data leakage check, imposes 102% performance overhead compared to just decryption of encrypted dataset without evaluating access control policies and client attributes, and without data leakage check. Our approach demonstrates that security features for inter-vehicle data communication can be implemented without overshading the safety features. Extensive experimental results and more use cases will be included in our future publications. We enhanced our model through a novel mix of vehicle recognition algorithms and attribute-based encryption. Hence, we provide an alternative solution for alleviating the impersonation and forgery attacks. Our experimental results demonstrate the feasibility of our idea.

ACKNOWLEDGMENT

This publication was made possible by NPRP grant # [7-1113-1-199] from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. The authors would like to thank Dr. Leszek Lilien and Dr. Lotfi Ben Othmane for their help and valuable feedback.

REFERENCES