
Secure Data Exchange and Data Leakage
Detection in an Untrusted Cloud

Denis Ulybyshev(&), Bharat Bhargava, and Aala Oqab-Alsalem

Computer Science Department, CERIAS, Purdue University,
West Lafayette 47907, USA

{dulybysh,bbshail,alsalema}@purdue.edu

Abstract. In service-oriented architecture, services can communicate and share
data amongst themselves. It is necessary to provide role-based access control for
data. In addition, data leakages made by authorized insiders to unauthorized
services should be detected and reported back to the data owner. In this paper,
we propose a solution that uses role- and attribute-based access control for data
exchange among services, including services hosted by untrusted environments.
Our approach provides data leakage prevention and detection for multiple
leakage scenarios. We also propose a damage assessment model for data leak-
ages. The implemented prototype supports a privacy-preserving exchange of
Electronic Health Records that can be hosted by untrusted cloud providers, as
well as detecting leakages made by insiders.

Keywords: Data leakage detection � Access control � Privacy
Cloud security

1 Introduction

Services in Service-Oriented Architecture (SOA) can communicate and share data
amongst themselves. A methodology for privacy-preserving data exchange among
services in SOA, in which each service can access only those data items the service is
authorized for, was presented in [3, 14]. In this paper, we extend that approach with
data leakage detection capabilities and a damage assessment model for data leakages.
Each service can have a database associated with it. Our solution handles non-relational
databases stored as key-value pairs. The methodology employs Active Bundles
(AB) [2, 3, 14], that contain key-value pairs with values in encrypted form; metadata;
access control policies and a policy enforcement engine (virtual machine) [3]. Each
subset of data (e.g. contact, medical or billing information of a patient) is encrypted
with its own symmetric key, using an AES encryption scheme. Our solution supports
both centralized and decentralized data exchanges. The Active Bundle can be hosted by
the server or cloud provider that serve data requests. We also support fully decen-
tralized architecture, when services in a peer-to-peer network exchange data by sending
Active Bundle amongst themselves. Default implementation of Active Bundles used in
the ‘WAXEDPRUNE’ project [1, 5] provides privacy-preserving data dissemination
among services, but does not protect against data leakages made by insiders to
unauthorized entities. In this paper, we address two scenarios of data leakages: leakage

© Springer Nature Singapore Pte Ltd. 2018
G. C. Deka et al. (Eds.): ICACCT 2018, CCIS 899, pp. 99–113, 2018.
https://doi.org/10.1007/978-981-13-2035-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2035-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2035-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2035-4_10&domain=pdf

of the whole Active Bundle and leakage of the plaintext data to unauthorized services.
In the first scenario, leakage is prevented by an Active Bundle kernel, which prohibits
unauthorized data accesses and, in addition, contains digital watermark. The second
scenario is more challenging since protection provided by the Active Bundle is
removed in this case. As a solution, we employ digital and visual watermarks, as well
as monitoring network traffic between web services in SOA. A web crawler with built-
in classifier detects digital watermark, embedded into RGB images, if the leaked image
is located in public network directory. Digital watermarks for RGB images are based
on a pixel transformation function. Monitoring network messages and validating data
packets with a specific pattern allows detecting data leakage for cases when data pattern
can be validated. For instance, credit card number always follows the specific pattern
that can be validated using regular expressions [18]. We embed visual watermarks on a
web page when data retrieved from an Active Bundle are displayed in a client’s
browser. Zoomed visual watermarks can be used as evidence of data ownership. Our
approach helps to investigate data leakages and do forensics based on provenance
records that are made each time a data request is served by the Active Bundle.
Provenance [8] records contain information regarding who is trying to access what
class of data, when, and the origin of the Active Bundle.

The rest of the paper is organized as follows: Sect. 2 contains a brief overview of
related work. Section 3 describes the core design. Section 4 presents the evaluation.
Section 5 concludes the paper.

2 Related Work

There are variety of Digital Rights Management (DRM) protection tools [11] that
provide role-based access control. These tools are supposed to protect against data
leakages. Microsoft has DRM-service, called Windows Media DRM [12]. It is
designed to provide dissemination of audio and video content over an IP network. The
“MediaSnap©” DRM solution [24] was proposed to protect PDF documents. Most of
its principles are applicable to other digital media content. The core component of the
“MediaSnap©” system is a pdf-plugin. Our data exchange model considers the context
and client’s attributes, such as the trust level, which is constantly recalculated, cryp-
tographic capabilities of a browser and authentication method. A Digital Cosine
Transformation [9] can be used to create watermarks for images.

The hardware-based DRM approach provides a trusted hardware space for exe-
cuting only permitted applications. “DRM services such as content decryption,
authentication and rights rendering take place only in this trusted space” [11].
Advantages of hardware-based DRM are that it is resistant to security breaches in used
operating systems, it is infeasible to bypass security features and it provides memory
space protection. The main disadvantages are higher costs, limited flexibility and less
interoperability [13].

Ranchal et al. [10] proposed a Framework for Enforcing Security Policies in
Composite Web Services (EPICS), which protects data privacy throughout the service
interaction lifecycle. The framework uses the Active Bundle concept [3, 14] for SOA.
The solution ensures that the data are distributed along with the access control policies

100 D. Ulybyshev et al.

and with an execution monitor that controls data disclosures. The framework provides
cross-domain privacy-preserving data dissemination in untrusted environments and
reduces the risk of unauthorized access. We extend that approach with capabilities of
detecting data leakages made by authorized insiders to unauthorized entities. We also
consider wider set of attributes in attribute-based access control model.

Nevase et al. [19] proposed a steganography-based approach to detect leakages of
images, text, video and audio content. Steganography provides covert communication
channel between data entity and data owner by hiding the message in the sensitive
content, e.g. in the image or text. The existence of sensitive message in the content is
hidden for everyone except the data owner, who is able to decipher it. Steganography-
based “forensic readiness model” [20] identifies and prevents emails, which attempt to
leak data. Kaur et al. [21] also addressed prevention of data leakages that can be made
by malicious insiders via emails. Email is protected via gateway during data transfer.
The algorithm matches the email pattern with the stored keywords in order to detect
leakage and take the action to prevent it.

Gupta and Singh [22] presented an approach for detecting intentional and inad-
vertent data leakages using a probabilistic model. Detecting a data leaking malicious
entity is based on the allocation and distribution of data items among the agents using
Bigraph.

3 Core Design

3.1 Data Leakage Detection

In our solution web services exchange data by means of Active Bundles [2, 3, 14].
Active Bundle is the core component that provides data leakage prevention in our
system. Active Bundle is a self-protected structure that includes key-value pairs with
encrypted values, access control policies, metadata and policy enforcement engine
(virtual machine) [2, 3, 14]. Each subset of data (e.g. contact information of a patient,
billing or medical information such as medical history, test results, diagnosis, pre-
scriptions, etc.) is encrypted with its own symmetric key, using an AES encryption
scheme. The key is generated on-the-fly using unique information produced in the
execution control flow of an Active Bundle [3], depending on the subject’s (service’s)
role, extracted from X.509 certificate of the subject (e.g. doctor, insurance agent or
researcher), set of access control policies and on Active Bundle code, including
authentication and authorization code. Details of the on-the-fly key derivation proce-
dure are covered in [3]. One of the novelties offered by Active Bundle concept is that
the symmetric keys used to encrypt/decrypt sensitive data are not stored neither on a
cloud provider nor inside an Active Bundle nor on any Trusted Third Party (TTP).
Firstly, the identity of service requesting data from an Active Bundle is verified.
Services present their X.509 certificates signed by a trusted Certificate Authority
(CA) to the Active Bundle [3]. Then, if authentication is granted, the client’s attributes,
such as browser’s cryptographic capabilities, are evaluated. Then, access control
policies stored in the Active Bundle are evaluated. Based on the evaluations made by
the Active Bundle kernel, symmetric decryption keys are created to decrypt the

Secure Data Exchange and Data Leakage Detection 101

accessible data items. Access control policies are enforced by the open-source policy
enforcement engine “Balana” [4]. Based on derived decryption keys, the values from
corresponding key-value pairs belonging to accessible data subsets are decrypted and
sent back to the client by means of an https protocol. If a doctor requests for medical
data, contact and billing information, the data will be extracted from Active Bundle,
decrypted and sent back to the doctor. However, if the doctor sends a data request from
an outdated and insecure browser, then a lesser portion of the medical data will be
retrieved from the Electronic Health Record (EHR) of a patient. Each EHR is stored as
an Active Bundle, one per patient. One of the key-value pairs (with encrypted value)
from our Active Bundle is given below:

A Javascript object notation (JSON) [7] is used to store key-value pairs, where
value is encrypted with a symmetric key generated for each data class. An Active
Bundle has a built-in tamper-resistance mechanism, which is based on the digest of the
Active Bundle components and their resources. This digest is calculated when an
Active Bundle is created. Modification of any of the components’ resources will lead to
a different digest and to incorrect decryption key generation. It protects from an
attacker that tries to:

(a) modify an Active Bundle code in order to bypass authentication phase or evalu-
ation of access control policies and a client’s attributes;

(b) modify access control policies in order to get access to unauthorized data;
(c) impersonate service identity by using the wrong certificate in order to get access to

unauthorized data.

Instead of data, Active Bundles can store software modules in encrypted form. For
instance, different departments within an organization may have different permission
levels for software access and updates. Our approach guarantees that each software
module can only be accessed by authorized entities.

Our methodology for data exchange in SOA supports both centralized and
decentralized architectures. An Active Bundle can be hosted by a server or cloud
provider that serves data requests for the Active Bundle. We also support fully
decentralized architecture, when services in peer-to-peer network can exchange data by
sending Active Bundle amongst each other. That is why all data that can be shared
among services are included in encrypted form into an Active Bundle, but unauthorized
data requests are denied, based on client’s role and attributes, such as the cryptographic
capabilities of the browser [15, 16] and trust level. To demonstrate the core design of
our approach, we consider a hybrid architecture when both centralized and decen-
tralized data exchanges among services are supported (see Fig. 1). A demo video of the
implemented prototype for an EHR management system is available [17]. There is a
Hospital Information System (IS), hosted by the cloud provider. It hosts EHRs of
patients as Active Bundles, one Active Bundle per patient. The EHR of a patient
consists of 3 types of data: contact, medical and billing information. There are three
services (subjects): Doctor, Insurance Agent and Researcher, who can send data

102 D. Ulybyshev et al.

requests to the Hospital Information System, i.e. to Active Bundles (see Fig. 1). The
access control matrix is given in Table 1.

Adversary Model:

1. Cloud provider or server may have curious or malicious administrator that tries to
access confidential data or modify them.

2. Client can be malicious in terms of:
a. leaking data, for which client is authorized, to unauthorized parties;
b. modifying the Active Bundle code to extract the confidential data for which the

client is unauthorized.

Assumptions:

1. The entity that hosts/executes Active Bundle has trusted hardware, a trusted
operating system and a trusted Java Virtual Machine.

2. Http(s) protocol is used for data exchanges amongst all the web services.
3. Leaked data is attempted to be used by the adversary that has it, i.e. the adversary

tries to decrypt data from a leaked Active Bundle or uploads the leaked Active
Bundle to a publicly available network directory. The analogy is that someone, who
is using an unlicensed copy of the Microsoft Windows XP operating system, tries to
update it from an official Microsoft repository.

Table 1. Access control matrix for EHR

Role/Data class Medical data Contact information Billing information

Doctor Allow Allow Allow
Insurance agent Deny Allow Allow
Researcher Allow Deny Allow

Fig. 1. Hospital information system (proposed by Dr. Leon Li, NGC)

Secure Data Exchange and Data Leakage Detection 103

4. Leaked data is accessible on the adversary’s side. In case of investigating leakage
incident by using visual watermarks, the investigator needs permission to search for
leaked data, e.g. having a police order to examine a suspicious hard drive.

Default implementation of Active Bundles used in [1], does not protect against
malicious insiders that leak data to unauthorized entities. We address two leakage
scenarios in our extended solution below: leakage of the whole EHR in the form of
Active Bundle and leakage of decrypted plaintext data without the Active Bundle. The
following implemented features provide leakage detection/prevention:

(a) Active Bundle that stores data in encrypted form and access control policies.
(b) Digital watermark, embedded into Active Bundle.
(c) Digital watermark, embedded into RGB images, stored in Active Bundle.
(d) Visible and nearly invisible visual watermarks, used to display data.
(e) Monitoring network messages and validating data packets with a specific pattern,

e.g. credit card number pattern, using regular expressions [18].

The limitation of digital/visual watermarking approach, used in methods (b), (c) and
(d), is that it does not work once watermark is removed from the data. Ways to mitigate
and prevent data leakages in this case are proposed in Sect. 3.1.3 below.

3.1.1 Leakage of the Active Bundle
In our scenario, illustrated in Fig. 1, clients are allowed to store Active Bundles locally.
For instance, a doctor might want to store the EHR of a patient on her local department
computer in the hospital for cases in which the hospital Information System is down.
When an Active Bundle is saved locally, the identity (or role) of the subject who saved
it is written into the Active Bundle in encrypted form. This identity will be used to
detect data leakage (“Sender Role” column in Table 2). The feature to save the EHR
locally can be disabled, if necessary. In that case, this type of potential data leakage will
be prevented, but the network architecture becomes centralized with having central
storage of EHRs as a single point of failure. After saving the EHR on her local
repository, the doctor can inadvertently or intentionally send the EHR to a service that
is not authorized for some included data items, e.g. to an insurance service. If the
insurance agency tries to access detailed medical data (e.g. X-Ray or blood test results),
this access will be denied by the Active Bundle, since access control policies embedded
into the Active Bundle don’t permit insurers to read the medical data of a patient; they
only allow them to read contact and billing information. An attempt to decrypt data
made by an unauthorized service will be recorded by a trusted Central Monitor (CM).
Every Active Bundle transaction in the data exchange network is monitored by the CM,
who is notified each time a client tries to decrypt a data subset from an Active Bundle.
The notification message contains information on what service attempts to decrypt
what type of data, when, who is the origin/sender of the Active Bundle. The Central
Monitor queries its local database of access control policies, called data obligations, in
order to check whether the service that tries to decrypt data is authorized for that class
of data. Without obtaining permission from the trusted Central Monitor, the data
decryption process will not continue. Figure 2 illustrates the process. An Active Bundle

104 D. Ulybyshev et al.

contains encrypted data Enc [Data(D)] = {Enck1 (d1), …, Enckn (dn)} and access
control policies (P) = {p1, … , pk}. Service M is authorized to read di and it may leak
decrypted di (addressed in the Sect. 3.1.2) or the entire Active Bundle to service N,
who is unauthorized to access di. If N attempts to decrypt di, the Active Bundle kernel
sends a message to CM to verify whether di is supposed to be at N. In addition, service
N might be asked to get an activation code from the authentication server, which is
under our control, and which will again notify the Central Monitor that data of type di
has arrived from service M to service N. If di is not supposed to be at N then:

(a) trust level of services M and N is decreased;
(b) data di is marked as compromised and all other services are notified about that;
(c) Active Bundle is re-created with stricter access control policies to make it stronger

against similar leakages:
(c1) separate compromised role (of service M) into Role and Trustworthy_Role;
(c2) send new certificates with Trustworthy_Role to all trustworthy entities;
(c3) create a new Active Bundle with modified policies to prohibit data access for

Role;
(c4) disable the “Save As” functionality to prohibit storing sensitive data locally;
(c5) raise the sensitivity level for leaked data types to prevent leakage repetition.

Table 2. Data obligations (access control policies)

Recipient role Sender role Data type Access result

Doctor Doctor All Allow
Doctor Insurance All Allow
Doctor Researcher All Allow
Insurance Doctor All Deny
Insurance Researcher All Deny
Researcher Doctor All Deny
… … … …

Insurance Doctor Medical Deny
Insurance Doctor Contact Allow
Researcher Doctor Contact Deny
… … … …

Researcher Insurance Contact Deny
Doctor Researcher Contact Deny
Insurance Researcher Contact Deny

Fig. 2. Data leakage detection by central monitor

Secure Data Exchange and Data Leakage Detection 105

Service trust level is calculated by CM, based on the following parameters:
(a) number of sent/received data requests, (b) number of rejected data requests,
(c) number of communication errors, (d) CPU/Memory usage.

If the trust level goes below the specified threshold, future data requests coming
from that service to the Active Bundle will be denied, even if access control policies
allow that service to access a certain data item. Figure 3 illustrates the control flow for
data request with added data leakage detection capability. As shown above, a data
request is processed by the Leakage Detector and Trust Calculator. If a leakage is
detected or the trust level is not sufficient, the data request is denied; otherwise, the data
request will be transferred from the Central Monitor service to the Active Bundle
(EHR), where a client’s attributes and access control policies are evaluated. The Central
Monitor hosts the relational database of obligations, i.e. of access control policies. To
make a data leakage check, the Central Monitor issues a SQL query to this database.
An example of the database used in our scenario with EHR sharing is given in Table 2.

In addition to the data obligations enforced by trusted Central Monitor, we
implemented a web crawler to verify digital watermarks that are embedded into the
Active Bundles. If an Active Bundle is uploaded to a publicly available directory in the
network, the crawler verifies the digital watermark to check whether Active Bundle is
supposed to be at that network node. We assume that it is possible to determine the
identity of the node that hosts a public directory (e.g. in the Hospital Intranet). Network
nodes, participating in data exchanges, use X.509 certificates that identify their roles
(e.g. doctor or insurance agent or researcher). Also, identity can be based on node’s IP
address or other attributes.

Fig. 3. Secure EHR sharing framework with data leakage detection capability

106 D. Ulybyshev et al.

3.1.2 Leakage of Plaintext Data
A second, more challenging data leakage scenario that we address in this work, is when
the service that is authorized for data di can get it from an Active Bundle (see Fig. 2),
store it locally in plaintext form and then send it behind the scene as a plaintext to an
unauthorized service without the Active Bundle. Even if local storage functionality is
prohibited, an authorized client (malicious insider) can still take a picture of a displayed
di on a mobile phone’s camera when di is displayed on the screen.

Protection provided by Active Bundle is gone in this case, and we cannot prevent
plaintext di leakage. We aim to help investigating the leakage and do forensics based
on provenance records that are stored on the trusted Central Monitor each time a data
request is served by the Active Bundle. Provenance [8] records contain information on
who is trying to access what class of data, when, and who is the origin/sender of that
Active Bundle. To mitigate a leakage problem, we embed visual watermarks on a web
page when data retrieved by client from an Active Bundle is displayed in the client’s
browser. Zoomed visual watermarks can be used as an evidence of data owner-
ship. There are two types of visual watermarks that we use to display data: clearly
visible (see text “Secure Dissemination of EHR” on Fig. 4) and very small ones that are
only visible if zoomed. These watermarks will remain on the image if picture of a
screen is taken by a malicious client. For some types of data, e.g. on Fig. 4, it is easy to
reproduce the screen’s content and write it down e.g. on a piece of paper. It removes the
visual watermark. But for some types of medical data, e.g. X-Ray images, it is hard to
reproduce them on a piece of paper and easier to take picture of a screen, which will
contain both our visual watermarks: large visible and small invisible.

Additionally, we embed digital watermarks into RGB images. The conversion
function F (r, g, b) is applied to every pixel. It changes the RGB image in such a way
that it is indistinguishable by the human eye from the original RGB image. If we add
+1 to the RGB values of every pixel, if the value is less than 255, it will not be
distinguishable to human eye. However, our web crawler, which has a built-in

Fig. 4. Retrieved medical information on a web page with visual watermarks

Secure Data Exchange and Data Leakage Detection 107

classifier, is able to determine whether the RGB image has the embedded watermark or
not. We assume an RGB values range from 0 to 255. This watermarking method works
only if the RGB image is stored in a publicly available folder. The simple way to
modify an RGB image is to change the RGB values for every pixel by adding or
subtracting 1 in such a way that the sum of RGB values is always odd for every pixel.
Initial values should be less than 255 for adding and greater than zero for subtracting. If
all pixels of the RGB image follow this rule of odd sum of RGB values, our classifier
considers this image to have a watermark. Once it is detected, the Central Monitor is
notified, and it checks whether the given RGB image is supposed to be at that network
node. We assume that it is possible to determine the identity of the node that hosts a
public directory. Network nodes, participating in data exchanges, use X.509 certifi-
cates, that identify their roles (e.g. Doctor or Insurance Agent or Researcher). Also,
identity can be based on node’s IP address or other attributes. For instance, if a data
obligations database (see Table 2) has no record that an ‘Unknown’ recipient is
allowed to access a patient’s medical data, a leakage alert will be raised. Instead of
applying such a simple conversion function F (r, g, b) to every pixel such that the sum
r + g + b is odd, more secure conversion functions F can be used.

3.1.3 Proposed Work
The following additional data leakage detection/prevention methods [23] are proposed:

• Partial data disclosure

(a) Authorized client after the first data request is only given a portion of accessible
data;

(b) Monitoring the client’s trust level, which is constantly re-computed by the
Central Monitor using the following metrics: (a) number of sent/received data
requests, (b) number of rejected data requests, (c) number of communication
errors, (d) CPU/Memory usage;

(c) Disclose the next accessible chunk of data, provided trust level is satisfactory.

• “Fake” leakage
In case of detected data leakage, e.g. if the exam questions got leaked, several other
“fake” versions of data, i.e. other exam questions, might be intentionally leaked to
lower the value of leaked data.

• Data classification level elevation
The idea is to raise the classification level for leaked data class to prevent leakage
repetition.

3.2 Data Leakage Damage Evaluation

Data leakage damage is evaluated using the following information [23]:

• How malicious is the recipient of unauthorized data;
• Sensitivity of data that got leaked;

108 D. Ulybyshev et al.

• Leakage timing
• Inference threat, which indicates whether other data can be inferred from the data

that got leaked

Damage = Kds Data Sensitivityð Þ � Ksm Service Maliciousnessð Þ � F tð Þ ð1Þ

Kds denotes data sensitivity coefficient, Ksm is service maliciousness coefficient, F
(t) is data sensitivity function.

Figure 5 illustrates different data sensitivity functions. The data event (e.g. final
exam) happens at time t0. Damage from data being leaked before t0 is high. Damage
from data being leaked after t0 either immediately drops to zero (e.g. final exam got
leaked after the exam is over) or decreases linearly (e.g. newly invented cryptographic
hash function, which is examined by users and attackers) or remains high (e.g. export-
sensitive technology).

4 Evaluation

We measured performance for clients sending data requests to EHR, represented as an
Active Bundle, one per patient. Data request round-trip time (RTT) is measured
between times of sending a data request and data retrieval from an Active Bundle. RTT
is a sum of times spent for authentication, evaluation of access control policies and
client’s attributes, data leakage checks (if the data leakage detection feature is enabled),
key generation and data retrieval. ApacheBench utility (version 2.3), as well as browser
developer consoles (for Firefox browser) are used for RTT evaluation. Details of
framework implementation are covered in [6].

Experiment 1
In this experiment, we aim to measure the latency of a data request sent to EHR, which
is hosted by the Hospital Server, located in the same network as the requesting client.
The Hospital Server that hosts EHR has the following characteristics:

Fig. 5. Data sensitivity functions

Secure Data Exchange and Data Leakage Detection 109

Hardware: MacBook Pro, Intel Core i7 CPU @ 2.2 GHz, 16 GB memory
OS: macOS Sierra 10.12.6.

The client sends a request for Patient ID to the EHR, represented as an extended
Active Bundle, and to the basic Active Bundle, which supports neither attribute-based
access control nor tamper-resistance. In contrast, EHR supports tamper-resistance and
extended attribute-based access control with checking cryptographic capabilities of the
client’s browser [1]. The Basic Active Bundle, as well as EHR, contains four access
control policies. The access control matrix for EHR is shown in Table 1. Basic Active
Bundle and EHR are running on a Hospital Server, located in the same network as the
client. We measure RTT for data request processing at the server side, and do not
consider network delays between client and server in this experiment. Results in Fig. 6
represent latency when a first initial data request is sent to EHR. We consider it to be a
special case, since the very first request to the basic AB and to EHR (which is an
extended AB) takes significantly longer to be executed due to the initial authentication
phase and initial evaluation of attributes. The EHR with embedded attribute-based
access control and tamper resistance imposes a 12.9% performance overhead as
compared with basic AB. Tamper-resistance imposes performance overhead because
the digest of an Active Bundle is validated by its kernel whenever the data request
arrives. Detection of the cryptographic capabilities of client’s browser and checking
whether it is sufficient imposes extra overhead.

In the next experiment, we run 50 similar data requests for Patient ID in a row. As
shown in Fig. 7, mean RTT has been decreased 33.5 times for basic AB and 35.9 times
for EHR. Having embedded attribute-based access control and tamper resistance in
EHR imposes a 5.2% performance overhead as compared with basic AB.

Experiment 2
In this experiment, we aim to measure the latency of a data request sent to EHR which
is hosted by Google Cloud Provider and has the following characteristics:

Hardware: Intel(R) Xeon(R) CPU 2.30 GHz
OS: Linux Debian 4.9.65-3 + deb9u2 (2018-01-04) x86 64, kernel 4.9.0-5-amd64
Ephemeral IP: 35.192.160.136

The procedure is same as in experiment 1, but now the client queries basic AB and
EHR, running on a Google cloud instance. For the data request, we measure the overall
RTT that includes network delays between client and cloud server in this experiment.

Fig. 6. EHR performance (initial request) Fig. 7. EHR performance

110 D. Ulybyshev et al.

Results in Fig. 8 represent latency when the first initial data request is sent to EHR. As
pointed in the previous experiment 1, we consider it to be a special case. EHR with
embedded attribute-based access control and tamper resistance imposes a 2.6% per-
formance overhead as compared with basic AB.

In the next experiment, we run 50 similar data requests for Patient ID in a row. As
shown in Fig. 9, mean RTT has been decreased 5.85 times for basic AB and 5.59 times
for EHR. Having embedded attribute-based access control and tamper resistance in
EHR imposes a 7.4% performance overhead as compared with basic AB.

Experiment 3
In this experiment, we measure performance overhead imposed by a data leakage
detection feature added to the framework. There are four services (Hospital, Doctor,
Researcher and Insurance), that are running as NodeJS servers at http://www.
waxedprune.cs.purdue.edu:3000. Local data requests from a client with the role
‘Doctor’ are sent from the browser to the Active Bundle, hosted by the Hospital
Information System at localhost: 3000. Network delays do not affect RTT measure-
ments. The hospital server has the following specification:

Hardware: Intel Core i7, CPU 860 @2.8 GHz x8, 8 GB memory
OS: Linux Ubuntu 14.04.5, kernel 3.13.0-107-generic, 64 bit

The client sends a request to EHR, hosted by the server, from Mozilla Firefox,
version 50.1.0, browser. In our experiment, the doctor requests all available informa-
tion of a patient. Active Bundles, used in Data Leakage OFF/ON scenarios, contain the
same data and access control policies. The tamper-resistance mechanism and the cli-
ent’s browser cryptographic capabilities detection are the same and are used in both
scenarios. The only difference is the data leakage detection feature. If it is enabled, it
requires the Central Monitor to examine every data access before accessible data can be
retrieved from the EHR, if a leakage is not detected. As shown in Fig. 10, data leakage
detection support adds a 60.8% performance overhead. Before approving or denying a
data request, the Central Monitor issues a SQL query to the relational database of
obligations (see Table 2) in order to check whether requested data is accessible by the
requesting client. Then either data request is denied or approved, and the accessible
data decryption process starts. Active Bundle also contains metadata of its origin and
who currently hosts the Active Bundle. In the case of a leakage alert, the hosting site
will be marked as potentially malicious.

Fig. 8. Cloud EHR performance (initial request) Fig. 9. Cloud EHR performance

Secure Data Exchange and Data Leakage Detection 111

http://www.waxedprune.cs.purdue.edu:3000
http://www.waxedprune.cs.purdue.edu:3000

5 Conclusion

We presented a comprehensive solution for privacy-preserving data exchange, which
supports data leakage detection/prevention for several types of leakage scenarios. Data
exchange mechanism does not need the data owner to be available since data, access
control policies and policy enforcement engine are incorporated into a self-protected
structure, called an “Active Bundle”. The Active Bundle mechanism provides data
integrity and confidentiality, protecting data from malicious/curious cloud adminis-
trators. Active Bundle supports role-and attribute-based access control. A client’s
attributes used by the data exchange model include level of cryptographic capabilities
of a browser, authentication method and trust level of a client, which is constantly
recomputed by a trusted Central Monitor. Data exchange also considers the context,
e.g. normal vs. emergency. Data can be updated on-the-fly by multiple parties.
Implemented data leakage detection mechanism imposes a 60.8% performance over-
head. We also came up with a damage assessment model for data leakages. A demo
video of the implemented EHR management system is available.

Acknowledgments. This work was funded by the Northrop Grumman Cybersecurity Research
Consortium. The prototype was implemented in collaboration with Northrop Grumman and
W3C/MIT and presented internally to Northrop Grumman in April 2017. We would like to thank
Prof. Leszek Lilien (Purdue University, Western Michigan University) and Harry Halpin
(MIT) for their collaboration and valuable feedback. We are also thankful to Miguel Villarreal-
Vasquez, Ganapathy Mani, Rohit Ranchal and Savvas Savvides for their help and valuable
feedback.

References

1. Ulybyshev, D., et al.: Privacy-preserving data dissemination in untrusted cloud. In:
IEEE CLOUD, pp. 770–773 (2017)

2. Othmane, L.B., Lilien, L.: Protecting privacy in sensitive data dissemination with active
bundles. In: 7th Annual Conference on Privacy, Security and Trust (PST 2009), Saint John,
New Brunswick, Canada, pp. 202–213, August 2009

3. Ranchal, R.: Cross-domain data dissemination and policy enforcement. Ph.D. thesis, Purdue
University (2015)

4. WSO2 Balana Implementation. https://github.com/wso2/balana. Accessed Mar 2018

Fig. 10. Performance overhead with data leakage detection OFF/ON

112 D. Ulybyshev et al.

https://github.com/wso2/balana

5. ‘WAXEDPRUNE’ prototype demo video, part 1, https://www.dropbox.com/s/
30scw1srqsmyq6d/BhargavaTeam_DemoVideo_Spring16.wmv?dl=0. Accessed Mar 2018

6. Ulybyshev, D., et al.: Secure dissemination of EHR in untrusted cloud, Project Tutorial.
Purdue University (2016)

7. Lightweight data-interchange format JSON. http://json.org/. Accessed Mar 2018
8. Simmhan, Y.L., Plale, B., Gannon, D.A.: A survey of data provenance in e-science.

SIGMOD Rec. 34(3), 31–36 (2005)
9. Xu, Z.J., Wang, Z.Z., Lu, Q.: Research on image watermarking algorithm based on DCT.

J. Procedia Environ. Sci. 10, 1129–1135 (2011)
10. Ranchal, R., Bhargava, B., Angin, P., Othmane, L.B.: Epics: a framework for enforcing

security policies in composite web services. IEEE Trans. Serv. Comput., 1 (2018)
11. Liu, Q., Safavi-Naini, R., Sheppard, N.: Digital rights management for content distribution.

In: Proceedings of Australasian Information Security Workshop, pp. 49–58 (2003)
12. Windows media DRM. https://en.wikipedia.org/wiki/Windows_Media_DRM. Accessed

Mar 2018
13. Nickolova, M., Nickolov, E.: Hardware-based and software-based security in digital rights

management solutions. Int. J. Inf. Technol. Knowl. 2, 163–168 (2008)
14. Othmane, L.B.: Active bundles for protecting confidentiality of sensitive data throughout

their lifecycle. Ph. D. thesis, Western Michigan University, Kalamazoo, MI, USA,
December 2010

15. W3C Web Cryptography API. https://www.w3.org/TR/WebCryptoAPI/. Accessed Mar
2018

16. Web authentication: an API for accessing scoped credentials. http://www.w3.org/TR/
webauthn. Accessed Mar 2018

17. ‘WAXEDPRUNE’ prototype demo video, part 2. https://www.dropbox.com/s/
4wg3vuv52j4s16v/NGCRC-2017-Bhargava-Demo1.wmv?dl=0. Accessed Mar 2018

18. Finding or verifying credit card numbers. http://www.regular-expressions.info/creditcard.
html. Accessed Mar 2018

19. Nevase, J., Chougale, P., Shewale, S., Bhosale, P.: Data leakage detection. Imperial J. Inter-
disc. Res. 3(5), 1232–1236 (2017). http://www.imperialjournals.com/index.php/IJIR/article/
view/4923/4733

20. Stamati-Koromina, V., Ilioudis, C., Overill, R., Georgiadis, C.K., Stamatis, D.: Insider
threats in corporate environments: a case study for data leakage prevention. In: Proceeding of
5th Balkan Conference in Informatics, pp. 271–274 (2012)

21. Kaur, K., Gupta, I., AK, Singh: Data leakage prevention: e-mail protection via gateway.
J. Phys: Conf. Ser. 933(1), 012013 (2018)

22. Gupta, I., Singh, A.K.: A probability based model for data leakage detection using bigraph.
In: 2007 Proceedings of the 7th International Conference on Communication and Network
Security, pp. 1–5. ACM (2017)

23. Bhargava, B.: Secure/resilient systems and data dissemination/provenance. NGCRC Project
Technology Final Report. CERIAS, Purdue University, September 2017

24. Sabadra, P., Stamp, M.: The MediaSnap© digital rights management system. In:
Proceedings of Conference on Computer Science and its Applications, San-Diego, California
(2003)

Secure Data Exchange and Data Leakage Detection 113

https://www.dropbox.com/s/30scw1srqsmyq6d/BhargavaTeam_DemoVideo_Spring16.wmv?dl=0
https://www.dropbox.com/s/30scw1srqsmyq6d/BhargavaTeam_DemoVideo_Spring16.wmv?dl=0
http://json.org/
https://en.wikipedia.org/wiki/Windows_Media_DRM
https://www.w3.org/TR/WebCryptoAPI/
http://www.w3.org/TR/webauthn
http://www.w3.org/TR/webauthn
https://www.dropbox.com/s/4wg3vuv52j4s16v/NGCRC-2017-Bhargava-Demo1.wmv%3fdl%3d0
https://www.dropbox.com/s/4wg3vuv52j4s16v/NGCRC-2017-Bhargava-Demo1.wmv%3fdl%3d0
http://www.regular-expressions.info/creditcard.html
http://www.regular-expressions.info/creditcard.html
http://www.imperialjournals.com/index.php/IJIR/article/view/4923/4733
http://www.imperialjournals.com/index.php/IJIR/article/view/4923/4733

	Secure Data Exchange and Data Leakage Detection in an Untrusted Cloud
	Abstract
	1 Introduction
	2 Related Work
	3 Core Design
	3.1 Data Leakage Detection
	3.1.1 Leakage of the Active Bundle
	3.1.2 Leakage of Plaintext Data
	3.1.3 Proposed Work

	3.2 Data Leakage Damage Evaluation

	4 Evaluation
	5 Conclusion
	Acknowledgments
	References

