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MOTIVATION



Attack Surface
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• Replication approaches in cloud
computing increase the attack surface

• We need resilient/self-healing systems
that can accurately detect anomalies and
dynamically adapt themselves to keep
performing mission-critical functions
even under attacks and failures.

MOTIVATION
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RESEARCH QUESTION

• Is it possible to construct a generic attack-resilient
framework for distributed cloud systems with a
combination of dynamic network configuration and
continuous replacement of virtual machines?



MOVING TARGET DEFENSE (MTD)
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- Data
- Code 
- Infrastructure
- Communications
- People

- Moving Target Defense 
(MTD)

- Proactive Restore/C2
- Least Privilege 
Enforcement

- Trust Zone Segmentation
- Identity Attribution
- Encryption 
- Root Trust  

Attack Vectors                                   Resilient Approaches



MOVING TARGET DEFENSE (MTD)
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• The proposed Moving Target Defense (MTD)
solution introduces resiliency and adaptability to
the system through live monitoring, which
transforms systems to be able to adapt and self-
heal when ongoing attacks are detected



• Adversaries have an asymmetric advantage:
They have the time to study a system, identify its
vulnerabilities, and choose the time and place of attack
to gain the maximum benefit

• The idea of moving-target defense (MTD):
Imposing the same asymmetric disadvantage on
attackers by making systems dynamic and therefore
harder to explore and predict

MOVING TARGET DEFENSE (MTD)

Threat Avoidance Techniques!
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Fault-Tolerance Systems
- Solution: Replication/

Redundancy:
- Examples: Quorum, Chain
- Limitation: Gives fault 

resiliency but increases  
attack surface at application 
level (common code base)

Fault-Tolerance Systems
- Solution: MTD
- Examples: ASLR [9], 
NVersion [10] & IP-
Hopping [11]

- Limitation: Do not protect 
the entire host

DIVERSIFICATION/RANDOMIZATION

STATE OF THE ART AND LIMITATIONS
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REPLICATION/REDUNDANCY



• The traditional defensive security strategy for
distributed systems is to prevent attackers from gaining
control of the system using well established techniques:
Replication/Redundancy, Encryption, etc.
§ Limitation: Given sufficient time and resources,

existing defensive methods can be defeated
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STATE OF THE ART AND LIMITATIONS



• The state of the art of MTD solutions focus on
randomization and diversification in particular layers of
the system
§ Limitation: Do not protect the entire host
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STATE OF THE ART AND LIMITATIONS



• “Stay one-step ahead” of sophisticated attack
• Protect the entire stack through dynamic interval-based spatial

randomization

• Avoid threats in-time intervals rather than defending the
entire runtime of systems through Mobility and Direction

• System will start secure, stay secure and return secure

• Increase agility, anti-fragility and adaptability of the system

• Unified generic MTD framework that enables reasoning about
behavior of deployed systems on cloud platforms
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PROPOSED APPROACH



• Aims to reduce the need to continuously fight
against attacks by decreasing the gain-loss balance
perception of attackers.

• Narrows the exposure window of a node to
attacks, which increases the cost of attacks on a
system and lowers the likelihood of success and the
perceived benefit of compromising it.
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OBJECTIVES OF THE MTD SOLUTION
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OBJECTIVES OF THE MTD SOLUTION

• The reduction in the vulnerability window of
nodes is mainly achieved through three steps:

• Partitioning the runtime execution of nodes in time
intervals

• Allowing nodes to run only with a predefined lifespan (as
low as a minute) on heterogeneous platforms (i.e. different
OSs)

• Proactively monitoring their runtime below the OS
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• State of the Art System View:

Sate Verification

BENEFITS OF THE PROPOSED SOLUTION

At a given time only 
some layers of the 
stack (Application, 
OS or Network) are 
checked/ protected
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• Proposed Solution System View:

Sate Verification Time Intervals (< 1 sec)
1 2 3 n

BENEFITS OF THE PROPOSED SOLUTION

At a given time all 
layers of the stack 
(Application, OS or 
Network) are 
checked/protected.
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APPROACH OVERVIEW
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MTD ARCHITECUTRE

Components:
(1) Virtual Reincarnation (ViRA)    (3) SDN Network Dynamics
(2) Proactive Monitoring                (4) Systems States and Application Runtime
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MTD ARCHITECUTRE

• The MTD framework consists of the following four
components:
• Virtual Machine Reincarnation (ViRA)
• Proactive Monitoring
• SDN Network Dynamics
• Systems States and Application Runtime

• The framework will protect the whole stack; not
only particular layers



• Nodes run a distributed application on a given platform for a
controlled period of time

• The running time is chosen in a way that successful ongoing
attacks become ineffective

• The new fresh machine will integrate to the system and continue
running the application after its data is updated

SDN Network
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APPROACH DETAILS



SDN Network
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• Nodes run a distributed application on a given platform for a
controlled period of time

• The running time is chosen in a way that successful ongoing
attacks become ineffective

• The new fresh machine will integrate to the system and continue
running the application after its data is updated

APPROACH DETAILS



• Randomization and diversification technique where nodes
(virtual machines) running a distributed application vanish
and reappear on a different virtual state with different
guest OS, Host OS, hypervisor, and hardware .

Improve 
Resiliency

Improve 
Anti-Fragility

Virtualized 
Environment
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VIRTUAL REINCARNATION



How do we create replicas?
• PrimaryVM runs as no failures are detected.

• AlternateVM takes place when a failure occurs

• Acceptance tests are adjusted independently to guarantee
system operation

• Alternate learn from Primary and become more robust to
failures/attacks experimented by primary
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CREATION OF REPLICAS

PRIMARY ALTERNATE

Acceptance Test Acceptance Test

OK OK
FAILFAIL



Challenges:

• Reduce downtime when Primary is replaced by Alternate and
vice versa

• Keep the state of the machine (either Primary or Alternate)
after the replacement to achieve uninterrupted operation

• Keeping the state (stateful reincarnation) allows the system to
be application-agnostic
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CREATION OF REPLICAS

PRIMARY ALTERNATE

Acceptance Test Acceptance Test

OK OK
FAILFAIL



Stateful Reincarnation Ideas:
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CREATION OF REPLICAS

D

T

D’

T’

D’’

T’’’

Quorum

D*: Synchronized Data
T*: Different version of Text
VM4 replaces VM1

T’’

VM1 VM2 VM3

VM4

D’’’



Stateful Reincarnation Ideas:
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CREATION OF REPLICAS

• Create different versions of binaries
• The original code is kept and set with

read-only permission so that it can be
used as part of the reference to the
new locations of the blocks in the re-
randomized version.

• We avoid identifying and updating code
position pointers in each
randomization process by keeping a
table of trampolines as shown in (b).
Each block is located at a fixed offset
(i.e., off_c) with respect to the
trampoline table.

• The pointers (in the original code
space) are dynamically redirected to its
respective address in the code variant
when it is de-referenced

(a) (b)
Z. Wang, C. Wu, J. Li, Y. Lai, X. Zhang, W. Hsu and Y. Cheng. ReRANZ: A Ligh-
Weight Virtual Machine to Mitigate Memory Disclosure Attacks. To appear 
in VEE2017.



“Active machines are replaced by new ones with a totally new image”
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https://www.dropbox.com/s/fqjh75su0p908ic/NGCRC-2017-Bhargava-DEMO2.mp4?dl=0

VIRTUAL REINCARNATION



• Operates at the hypervisor level

• Helps for performing node reincarnation effectively rather 
than blindly

• Based on Virtual Machine Introspection (VMI)

• Proactively gathers live memory data (at host OS) in intervals 
and reacts if anomalous behavior is detected

• Use libvmi library for introspection with negligible 
performance overhead

• When application is hijacked, address offsets show new entries for 
injected code

• When application is terminated and a new malicious one created, it 
could end up with a different process ID or memory address offset 
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PROACTIVE MONITORING



• Network devices are reconfigured via OpenFlow on-the-fly

• New added flows redirect traffic intended for the old machine 
to the new machine

SDN Network
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SDN NETWORK DYNAMICS



• Network devices are reconfigured via OpenFlow on-the-fly

• New added flows redirect traffic intended for the old machine 
to the new machine

SDN Network
OpenFlow Tables:
table=0,priority=0,actions=…
:
table=1,priority=0,actions=…
:
table=2,ip,nw_dst=10.0.0.10,...
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SDN NETWORK DYNAMICS
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SDN NETWORK DYNAMICS

• New machines can be integrated to the system with their own 
IP addresses

• No waiting for the IP address of the old  machine

• Downtime is reduced



• A Byzantine fault tolerant (BFT-SMaRt) 
distributed application was run on a set 
of Ubuntu (either 12.04 or 14.04 
randomly selected).

• VMs run in a private cloud, and are 
connected with an SDN network using 
Open vSwitch

• The reincarnation is stateless, i.e. the 
new node (e.g. VM1’) does not inherit 
the state of the replaced node (e.g. 
VM1). 

• The set of new VMs are periodically 
refreshed to start clean and the network 
is reconfigured using OpenFlow when a 
VM is reincarnated to provide continued 
access to the application. 
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MEASUREMENTS



1. VM restart time: Time it takes the machine to respond to be full 
operational since it is started.

2. Virtual creation time: Time to create the new image of the VM.
3. Open vSwitch flow injection time: Time it takes to inject new 

flows to Open vSwitch
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MEASUREMENTS

Note: that the important factor for system downtime here is the Open
vSwitch flow injection time, as VM creation and restart take place before
the reincarnation process



• Aim to estimate the time it takes the new machine to be full
operational.

• VM creation and restart take place before the reincarnation
process

• The important factor for system downtime here is the Open
vSwitch flow injection time
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MEASUREMENTS



• Enhanced live monitoring techniques

• Instrumentation to measure overhead more 
accurately

• Test other stateless applications on the MTD 
framework

• E.g.: Upright (Public and Subscribe System)
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FUTURE WORK



• Stateful Virtual Reincarnation Support:
§ Can we preserve the state of the virtual machine during the

reincarnation process to make the solution application-
agnostic?

§ Test the framework with Secure SOA Services (stateful
reincarnation)
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FUTURE WORK
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