
AN MTD-BASED SELF-ADAPTIVE
RESILIENCE APPROACH FOR CLOUD

SYSTEMS

Miguel Villarreal-Vasquez1, Bharat Bhargava1, Pelin Angin2,
Noor Ahmed3, Daniel Goodwin4, Jason Kobes4, Kory Brin4

1 Department of Computer Science, Purdue University
2 Department of Computer Engineering, Middle East Technical University
3 Air Force Research Laboratory
4 Northrop Grumman Corporation

Acknowledgments: This work was funded by the Northrop Grumman Cybersecurity Research Consortium. The
prototype was implemented in collaboration with Northrop Grumman and internally presented to them in April 2017.
The authors would also like to thank Dr. Leszek Lilien and Dr.Weichao Wang for their valuable comments.

Attack Surface

1

MOTIVATION

Attack Surface

2

• Replication approaches in cloud
computing increase the attack surface

• We need resilient/self-healing systems
that can accurately detect anomalies and
dynamically adapt themselves to keep
performing mission-critical functions
even under attacks and failures.

MOTIVATION

3

RESEARCH QUESTION

• Is it possible to construct a generic attack-resilient
framework for distributed cloud systems with a
combination of dynamic network configuration and
continuous replacement of virtual machines?

MOVING TARGET DEFENSE (MTD)

4

- Data
- Code
- Infrastructure
- Communications
- People

- Moving Target Defense
(MTD)

- Proactive Restore/C2
- Least Privilege
Enforcement

- Trust Zone Segmentation
- Identity Attribution
- Encryption
- Root Trust

Attack Vectors Resilient Approaches

MOVING TARGET DEFENSE (MTD)

5

• The proposed Moving Target Defense (MTD)
solution introduces resiliency and adaptability to
the system through live monitoring, which
transforms systems to be able to adapt and self-
heal when ongoing attacks are detected

• Adversaries have an asymmetric advantage:
They have the time to study a system, identify its
vulnerabilities, and choose the time and place of attack
to gain the maximum benefit

• The idea of moving-target defense (MTD):
Imposing the same asymmetric disadvantage on
attackers by making systems dynamic and therefore
harder to explore and predict

MOVING TARGET DEFENSE (MTD)

Threat Avoidance Techniques!

6

Fault-Tolerance Systems
- Solution: Replication/

Redundancy:
- Examples: Quorum, Chain
- Limitation: Gives fault

resiliency but increases
attack surface at application
level (common code base)

Fault-Tolerance Systems
- Solution: MTD
- Examples: ASLR [9],
NVersion [10] & IP-
Hopping [11]

- Limitation: Do not protect
the entire host

DIVERSIFICATION/RANDOMIZATION

STATE OF THE ART AND LIMITATIONS

7

REPLICATION/REDUNDANCY

• The traditional defensive security strategy for
distributed systems is to prevent attackers from gaining
control of the system using well established techniques:
Replication/Redundancy, Encryption, etc.
§ Limitation: Given sufficient time and resources,

existing defensive methods can be defeated

8

STATE OF THE ART AND LIMITATIONS

• The state of the art of MTD solutions focus on
randomization and diversification in particular layers of
the system
§ Limitation: Do not protect the entire host

9

STATE OF THE ART AND LIMITATIONS

• “Stay one-step ahead” of sophisticated attack
• Protect the entire stack through dynamic interval-based spatial

randomization

• Avoid threats in-time intervals rather than defending the
entire runtime of systems through Mobility and Direction

• System will start secure, stay secure and return secure

• Increase agility, anti-fragility and adaptability of the system

• Unified generic MTD framework that enables reasoning about
behavior of deployed systems on cloud platforms

10

PROPOSED APPROACH

• Aims to reduce the need to continuously fight
against attacks by decreasing the gain-loss balance
perception of attackers.

• Narrows the exposure window of a node to
attacks, which increases the cost of attacks on a
system and lowers the likelihood of success and the
perceived benefit of compromising it.

11

OBJECTIVES OF THE MTD SOLUTION

12

OBJECTIVES OF THE MTD SOLUTION

• The reduction in the vulnerability window of
nodes is mainly achieved through three steps:

• Partitioning the runtime execution of nodes in time
intervals

• Allowing nodes to run only with a predefined lifespan (as
low as a minute) on heterogeneous platforms (i.e. different
OSs)

• Proactively monitoring their runtime below the OS

13Time Intervals (< 1 sec)
1 2 3 n

Application

OS

Network

Application

OS

Network

Application

OS

NetworkR
ep

lic
a

1

R

ep
lic

a
2

R
ep

lic
a

3

R
an

do
m

iz
at

io
n

Sp
ac

e

• State of the Art System View:

Sate Verification

BENEFITS OF THE PROPOSED SOLUTION

At a given time only
some layers of the
stack (Application,
OS or Network) are
checked/ protected

14

Application

OS

Network

Application

OS

Network

Application

OS

NetworkR
ep

lic
a

1

R

ep
lic

a
2

R
ep

lic
a

3

R
an

do
m

iz
at

io
n

Sp
ac

e

• Proposed Solution System View:

Sate Verification Time Intervals (< 1 sec)
1 2 3 n

BENEFITS OF THE PROPOSED SOLUTION

At a given time all
layers of the stack
(Application, OS or
Network) are
checked/protected.

15

APPROACH OVERVIEW

16

MTD ARCHITECUTRE

Components:
(1) Virtual Reincarnation (ViRA) (3) SDN Network Dynamics
(2) Proactive Monitoring (4) Systems States and Application Runtime

17

MTD ARCHITECUTRE

• The MTD framework consists of the following four
components:
• Virtual Machine Reincarnation (ViRA)
• Proactive Monitoring
• SDN Network Dynamics
• Systems States and Application Runtime

• The framework will protect the whole stack; not
only particular layers

• Nodes run a distributed application on a given platform for a
controlled period of time

• The running time is chosen in a way that successful ongoing
attacks become ineffective

• The new fresh machine will integrate to the system and continue
running the application after its data is updated

SDN Network

18

APPROACH DETAILS

SDN Network

19

• Nodes run a distributed application on a given platform for a
controlled period of time

• The running time is chosen in a way that successful ongoing
attacks become ineffective

• The new fresh machine will integrate to the system and continue
running the application after its data is updated

APPROACH DETAILS

• Randomization and diversification technique where nodes
(virtual machines) running a distributed application vanish
and reappear on a different virtual state with different
guest OS, Host OS, hypervisor, and hardware .

Improve
Resiliency

Improve
Anti-Fragility

Virtualized
Environment

20

VIRTUAL REINCARNATION

How do we create replicas?
• PrimaryVM runs as no failures are detected.

• AlternateVM takes place when a failure occurs

• Acceptance tests are adjusted independently to guarantee
system operation

• Alternate learn from Primary and become more robust to
failures/attacks experimented by primary

21

CREATION OF REPLICAS

PRIMARY ALTERNATE

Acceptance Test Acceptance Test

OK OK
FAILFAIL

Challenges:

• Reduce downtime when Primary is replaced by Alternate and
vice versa

• Keep the state of the machine (either Primary or Alternate)
after the replacement to achieve uninterrupted operation

• Keeping the state (stateful reincarnation) allows the system to
be application-agnostic

22

CREATION OF REPLICAS

PRIMARY ALTERNATE

Acceptance Test Acceptance Test

OK OK
FAILFAIL

Stateful Reincarnation Ideas:

23

CREATION OF REPLICAS

D

T

D’

T’

D’’

T’’’

Quorum

D*: Synchronized Data
T*: Different version of Text
VM4 replaces VM1

T’’

VM1 VM2 VM3

VM4

D’’’

Stateful Reincarnation Ideas:

24

CREATION OF REPLICAS

• Create different versions of binaries
• The original code is kept and set with

read-only permission so that it can be
used as part of the reference to the
new locations of the blocks in the re-
randomized version.

• We avoid identifying and updating code
position pointers in each
randomization process by keeping a
table of trampolines as shown in (b).
Each block is located at a fixed offset
(i.e., off_c) with respect to the
trampoline table.

• The pointers (in the original code
space) are dynamically redirected to its
respective address in the code variant
when it is de-referenced

(a) (b)
Z. Wang, C. Wu, J. Li, Y. Lai, X. Zhang, W. Hsu and Y. Cheng. ReRANZ: A Ligh-
Weight Virtual Machine to Mitigate Memory Disclosure Attacks. To appear
in VEE2017.

“Active machines are replaced by new ones with a totally new image”

25
https://www.dropbox.com/s/fqjh75su0p908ic/NGCRC-2017-Bhargava-DEMO2.mp4?dl=0

VIRTUAL REINCARNATION

• Operates at the hypervisor level

• Helps for performing node reincarnation effectively rather
than blindly

• Based on Virtual Machine Introspection (VMI)

• Proactively gathers live memory data (at host OS) in intervals
and reacts if anomalous behavior is detected

• Use libvmi library for introspection with negligible
performance overhead

• When application is hijacked, address offsets show new entries for
injected code

• When application is terminated and a new malicious one created, it
could end up with a different process ID or memory address offset

26

PROACTIVE MONITORING

• Network devices are reconfigured via OpenFlow on-the-fly

• New added flows redirect traffic intended for the old machine
to the new machine

SDN Network

27

SDN NETWORK DYNAMICS

• Network devices are reconfigured via OpenFlow on-the-fly

• New added flows redirect traffic intended for the old machine
to the new machine

SDN Network
OpenFlow Tables:
table=0,priority=0,actions=…
:
table=1,priority=0,actions=…
:
table=2,ip,nw_dst=10.0.0.10,...

28

SDN NETWORK DYNAMICS

29

SDN NETWORK DYNAMICS

• New machines can be integrated to the system with their own
IP addresses

• No waiting for the IP address of the old machine

• Downtime is reduced

• A Byzantine fault tolerant (BFT-SMaRt)
distributed application was run on a set
of Ubuntu (either 12.04 or 14.04
randomly selected).

• VMs run in a private cloud, and are
connected with an SDN network using
Open vSwitch

• The reincarnation is stateless, i.e. the
new node (e.g. VM1’) does not inherit
the state of the replaced node (e.g.
VM1).

• The set of new VMs are periodically
refreshed to start clean and the network
is reconfigured using OpenFlow when a
VM is reincarnated to provide continued
access to the application.

30

MEASUREMENTS

1. VM restart time: Time it takes the machine to respond to be full
operational since it is started.

2. Virtual creation time: Time to create the new image of the VM.
3. Open vSwitch flow injection time: Time it takes to inject new

flows to Open vSwitch

31

MEASUREMENTS

Note: that the important factor for system downtime here is the Open
vSwitch flow injection time, as VM creation and restart take place before
the reincarnation process

• Aim to estimate the time it takes the new machine to be full
operational.

• VM creation and restart take place before the reincarnation
process

• The important factor for system downtime here is the Open
vSwitch flow injection time

32

MEASUREMENTS

• Enhanced live monitoring techniques

• Instrumentation to measure overhead more
accurately

• Test other stateless applications on the MTD
framework

• E.g.: Upright (Public and Subscribe System)

33

FUTURE WORK

• Stateful Virtual Reincarnation Support:
§ Can we preserve the state of the virtual machine during the

reincarnation process to make the solution application-
agnostic?

§ Test the framework with Secure SOA Services (stateful
reincarnation)

34

FUTURE WORK

35

PRESENTATION AND PUBLICATIONS

1. NGC Cyber Resilient Systems IRAD (http://www.northropgrumman.com)

2. Enterprise Resiliency IRAD (http://www.northropgrumman.com)

3. Ahmed, N., and Bhargava, B. Towards Targeted Intrusion Detection Deployments in Cloud Computing. In the Int. Journal of Next-
Generation Computing Vol. 6, No 2, IJNGC - JULY 2015.

4. N. Ahmed. Design, Implementation, and Experiments for Moving Target Defense. PhD Thesis, Purdue University, 2016.

5. N. Ahmed and B. Bhargava. From Byzantine Fault-Tolerance to Fault-Avoidance: An Architectural Transformation to Attack
and Failure Resilience. To Appear in IEEE Transactions on Cloud Computing, TCC 2016.

6. N. Ahmed and B. Bhargava. Disruption-Resilient Publish/Subscribe: A Moving Target Defense Approach. The 6th
International Conference on Cloud Computing and Services Science, CLOSER 2016.

7. N. Ahmed and B. Bhargava. Mayflies: A Moving Target Defense Framework for Distributed Systems. 3rd ACM workshop on
MTD in conjunction with ACM Conference on Computer and Communications Security (CCS), Vienna, 2016.

8. R. Ranchal, D. Ulybyshev, P. Angin, and B. Bhargava. Policy-based Distributed Data Dissemination. CERIAS Security
Symposium, April 2015 (Best poster award)

9. V. Pappas, M. Polychronakis and A. Keromytis. Smashing the gadgets: Hindering return-oriented programming using in-place
code randomization.” In IEEE Security and Privacy (SP), 2012.

10. L. Chen and A. Avizienis. N-version programming: A fault-tolerance approach to reliability of software operation. Digest of
Papers FTCS-8: Eighth Annual International Conference on Fault Tolerant Computing. 1978.

11. M. Carvalho and R. Ford. Moving-target defenses for computer networks. IEEE Security & Privacy 12.2 (2014).

