
An MTD-based Self-Adaptive Resilience Approach for Cloud Systems

Miguel Villarreal-Vasquez∗, Bharat Bhargava∗, Pelin Angin†, Noor Ahmed‡, Daniel Goodwin§, Kory Brin§, Jason Kobes§
∗Computer Science, Purdue University
Email: {mvillar, bbshail}@purdue.edu

†Computer Engineering, Middle East Technical University
Email: pangin@ceng.metu.edu.tr
‡Air Force Research Laboratory
Email: norman.ahmed@us.af.mil
§Northrop Grumman Corporation

Email: {daniel.goodwin, kory.brin, jason.kobes}@ngc.com

Abstract—Advances in cloud computing have made it a
feasible and cost-effective solution to improve the resiliency
of enterprise systems. However, the replication approach taken
by cloud computing to provide resiliency leads to an increase
in the number of ways an attacker can exploit or penetrate
the systems. This calls for designing cloud systems that can
accurately detect anomalies and dynamically adapt themselves
to keep performing mission-critical functions even under at-
tacks and failures. In this paper, we propose a self-adaptive
resiliency approach for cloud enterprise systems that employs
a live monitoring and moving target defense based approach
to automatically detect deviations from normal behavior and
reconfigure critical cloud processes through software-defined
networking to mitigate attacks and reduce system downtime.
The proposed solution is promising to present a unified
framework for resilient cloud systems.

Keywords-moving target defense; resiliency; adaptability;
cloud security

I. INTRODUCTION

Recent advances in cloud computing infrastructures have
given increased traction to the adoption of cloud-based sys-
tems for reliable and elastic computing needs of enterprises.
However, in a cloud-based environment, the enlarged attack
surface hampers attack mitigation, especially when attacks
originate at the kernel level. In a virtualized environment,
an adversary that has fully compromised a virtual machine
(VM) and has system privileges, exposes the cloud processes
to attacks that might compromise their integrity, jeopardizing
mission-critical functions.

A major issue with existing cloud defense solutions is that
they target specific threats, which makes them ineffective
for fighting against attacks lying outside their protection
perimeter. In order to provide effective threat mitigation
across various cloud systems, it is critical to design a
resiliency solution in which the protection against attacks
is integrated across all layers of the system at all times.This
requires designing cloud enterprise frameworks that can

Approved for public release by Northrop Grumman, Case # 17-1053

accurately detect system anomalies and dynamically adapt
through starting secure, staying secure, and returning to
secure+ [1] state in cases of cyber-attacks.

We propose an approach for cloud system resiliency that
is capable of dynamically adapting to attack and failure con-
ditions through performance/cost-aware process replication,
automated software-based monitoring and reconfiguration
of virtual machines. The proposed approach offers many
advantages over existing solutions for resiliency in trusted
and untrusted clouds, among which are the following:
• The solution is generic and targets multiple layers of

the cloud software stack, as opposed to traditional
techniques for mitigation targeting specific attacks.

• The proposed resiliency framework facilitates proactive
mitigation of threats and failures through active moni-
toring of the performance and behavior of services and
can incorporate new tools to resiliency and antifragility
under various failures and attacks.

• Continuous monitoring, restoration and healing of
cloud system operations allows for starting secure,
staying secure and returning secure+ by learning from
the attacks and failures and reconfiguring processes
accordingly to increase resiliency.

The rest of this paper is organized as follows: Section II
provides an overview of monitoring and security approaches
in distributed computing. Section III introduces the proposed
resiliency framework. Section IV discusses the results of
preliminary experiments for the feasibility of the approach.
Section V concludes the paper.

II. RELATED WORK

Current industry-standard cloud systems such as Amazon
EC2 1 provide coarse-grain monitoring capabilities (e.g.
CloudWatch) for various performance parameters for ser-
vices deployed in the cloud. Although such monitors are
useful for handling issues such as load distribution and

1https://aws.amazon.com/ec2

elasticity, they do not provide information regarding po-
tentially malicious activity in the domain. Log management
and analysis tools such as Splunk2, Graylog3 and Kibana4

provide capabilities to store, search and analyze big data
gathered from various types of logs on enterprise systems,
enabling organizations to detect security threats through
examination by system administrators. Such tools mostly
require human intelligence for detection of threats and need
to be complemented with automated analysis and accurate
threat detection capability to quickly respond to possibly
malicious activity in the enterprise and provide increased
resiliency by providing automation of response actions.

Various moving target defense (MTD) solutions have been
proposed to provide protection against specific threats in
systems. However, these are only effective against attacks
within their scope. For instance, while application-level
replication schemes mitigate attacks targeting the application
code base, they fail in the case of code injection attacks
targeting runtime execution. Randomizing runtime [2], and
system calls [3], instruction set randomization [4] and
address space randomization [5], have been successfully
used to mitigate system-level attacks. Althought most of
these security mechanisms are effective for attacks they
target, modern complex attacks against cloud systems call
for defense approaches that are deeply integrated into the
architecture, at all system layers and at all times.

III. PROPOSED APPROACH

We propose a novel approach that uses cloud-based
domain activity monitors to audit service behavior and
performance changes to detect anomalies that trigger the
reconfiguration of the system. The reconfiguration is based
on our virtualization-based MTD strategy for distributed
applications, which benefits from the flexibility offered by
software-defined networking (SDN) and its capability of dy-
namically configuring network devices via OpenFlow5. By
integrating components for service performance monitoring
and dynamic reconfiguration, the proposed model aims to
provide a unified framework for agile and resilient comput-
ing in trusted and untrusted clouds. Figure 1 illustrates a high
level view of the framework, based on the idea of starting,
staying, and returning secure in the cloud process lifecycle
as proposed by Goodwin et al. [1].

General characteristics of the solution are as follows:
• The operations of each cloud-based service and domain

are monitored using monitoring tools (e.g. Heat6 and
Monasca7 for OpenStack8) built on top of the cloud

2https://www.splunk.com
3https://www.graylog.org
4https://www.elastic.co/products/kibana
5http://archive.openflow.org
6https://wiki.openstack.org/wiki/Heat
7https://wiki.openstack.org/wiki/Monasca
8http://www.openstack.org

Figure 1: High-level view of resiliency framework

platform. These tools report performance and security
parameters such as response time, response status, CPU
usage, memory usage, etc. to anomaly detection tools
built on top of the same infrastructure.

• The analysis results by the anomaly detection tools are
reported to a central monitor in the form of summary
statistics for the services/VMs. The central monitor
utilizes data submitted by the monitors to update trust
values of services and reconfigure services to provide
resiliency against attacks and failures.

• A moving target defense approach that migrates ser-
vices to different platforms periodically to narrow the
exposure window of a node to attacks is utilized,
which increases the cost of attacks on a system and
lowers the likelihood of success. Detection of service
failures and/or suboptimal service performance, as well
as integrity violations detected with virtual machine in-
trospection also trigger restoration of optimal behavior
through replication of services and adaptable migration
of virtual machines to different platforms.

The following subsections provide details of the main
components of the proposed resiliency approach.

A. Live Monitoring

Cyber-resiliency is the ability of a system to continue
degraded operations, self-heal, or deal with the present
situation when attacked [1]. For this we need to measure the
assurance level (integrity/accuracy/trust) of the system from
the Quality of Service (QoS) parameters such as response
time, throughput, packet loss, delays, consistency, etc.

The solution developed for dynamic reconfiguration of
service compositions as described in [6] involved a dis-
tributed set of monitors in every service domain for tracking
performance and security parameters and a central monitor
to keep track of the health of various cloud services. Even
though the solution enables dynamic reconfiguration of en-
tire service compositions in the cloud, it requires replication,
registration and tracking of services at multiple sites, which
could have performance and cost implications for the en-
terprise. To overcome these challenges, the framework pro-
posed in this work utilizes live monitoring of cloud resources

to dynamically detect deviations from normal behavior and
integrity violations, and self-heal by reconfiguring service
compositions through software-defined networking [7] of
automatically migrated service/VM instances.

As the goal of the proposed resiliency solution is to
provide a generic model, for detection of possible threats
and failures in a cloud-based runtime environment, limiting
the utilized anomaly detection models to supervised learning
algorithms will not provide the desired applicability. Hence,
unsupervised learning models such as k-means clustering [8]
and one-class SVM classification [9] to detect outliers
(i.e. anomalies) in service and VM behavior will be more
appropriate. Algorithm 1 shows an adaptation of the k-
means algorithm to cluster service performance data under
normal system operation conditions and algorithm 2 shows
how to detect outliers by measuring the distance of the
performance vector of a service at a particular point in
time to all clusters formed during training. Additionally,
virtual machine introspection (VMI) [10] techniques need
to be utilized to check the integrity of VMs at runtime
to ensure that the application’s memory structure has not
been modified in an unauthorized manner. The results of
the monitoring and anomaly detection processes help decide
when to reincarnate VMs as described in the next section.

Input: Set S of performance vectors
Output: Set Sm of performance vector clusters
assign K centroids C1,...,Ck for each cluster in Sm;
while stopping condition not met do

for xi ∈ S do
find Cj s.t. d(xi, Cj) is min across all Cj ;
assign xi to cluster Sj

end
for Si ∈ Sm do

Ci =
∑

xj∈Si

xj/|Si|

end
end

Algorithm 1: Anomaly training algorithm

Input: performance vector xt at timepoint t
Output: normal or anomalous
status = anomalous;
for Si ∈ Sm do

if d(Ci, xt) ≤ max distance in Si then status =
normal ;

end
return status;

Algorithm 2: Anomaly detection algorithm

B. Moving Target Defense
Moving target defense (MTD) as defined by the US

Department of Homeland Security is controlling change

across multiple system dimensions to increase uncertainty
and complexity for attackers to increase the cost of their at-
tack efforts [11]. The proposed MTD-based attack-resilient
virtualization-based framework is based on [12], a solution
that reduces the vulnerability window of nodes (virtual
machines) mainly through three steps:

1) Partitioning the runtime execution of nodes in time
intervals

2) Allowing nodes to run only with a predefined lifespan
on heterogeneous platforms (i.e. different OSs)

3) Live monitoring

The main idea of this MTD-technique is allowing a node
running a distributed application on a given computing
platform for a controlled period of time before vanishing
it. The allowed running time is chosen in such a manner
that successful ongoing attacks become ineffective and a
new node with different computing platform characteristics
is created and inserted in place of the vanishing node.
The new node is updated by the remaining nodes after
completing the replacement. The required synchronization
time is determined by the application and the amount of
data that needs to be transferred to the new node. as the
reincarnation process do not keep the state of the old node.

The randomization and diversification technique of van-
ishing a node to appear in another platform is called node
reincarnation [12]. One key question is determining when to
reincarnate a node. One approach is setting a fixed period of
time for each node and reincarnating them after that lifespan.
In this first approach nodes to be reincarnated are selected
either in Round Robin or randomly. However, attacks can
occur within the lifespan of each machine, which makes
live monitoring mechanisms a crucial element. Whether an
attack is going on at the beginning of the reincarnation
process determines how soon the old node must be stopped
to keep the system resilient. When no threats are present
both the old node and new node can participate in the
reincarnation process. The old node can continue running
until the new node is ready to take its place. On the contrary,
in case an attack is detected the old node should be stopped
immediately and the reincarnation should occur without its
participation, which from the perspective of the distributed
application represents a greater downtime of the node.

Our main contribution here is the design and implemen-
tation of a prototype that speeds up the node reincarnation
process using SDN, which allows configuring network de-
vices on-the-fly via OpenFlow. We avoid swapping virtual
network interfaces of the nodes involved in the process as
proposed in [12] to save time in the preparation of the
new virtual machine. The new virtual machine is created
and automatically connected to the network. The machine
then starts participating in the distributed application when
routing flows are inserted to the network devices to redirect
the traffic directed to the old VM to the new one.

Measurements Times
VM restart time ∼ 7s

VM creation time ∼ 11s
Open vSwitch flow injection time ∼ 250ms

Table I: Reincarnation process times

IV. EXPERIMENTS

Experiments to evaluate the operation times of the pro-
posed MTD solution were conducted. Figure 2 shows the
experiment setup. A Byzantine fault tolerant (BFT-SMaRt)
distributed application was run on a set of Ubuntu (either
12.04 or 14.04 randomly selected) VMs in a private cloud,
which are connected with an SDN network using Open
vSwitch9. The reincarnation is stateless, i.e. the new node
(e.g. VM1’) does not inherit the state of the replaced
node (e.g. VM1). The set of new VMs are periodically
refreshed to start clean and the network is reconfigured using
OpenFlow when a VM is reincarnated to provide continued
access to the application. Table I presents the results: virtual
machine restarting and creation time, and Open vSwitch flow
injection time. Note that the important factor for system
downtime here is the Open vSwitch flow injection time, as
VM creation and restart take place periodically to create
fresh backup copies, and do not affect the downtime.

Figure 2: Experiment setup

V. CONCLUSION

We proposed a novel approach to introduce resiliency
into cloud systems such that they can mitigate attacks
and failures to provide uninterrupted operation of critical
functions. The solution is based on distributed monitoring
of cloud service/VM behavior and periodic refreshing of the
related cloud resources to allow self-adaptive reconfiguration
through SDN with a moving target defense approach. We
demonstrated with preliminary experiments that the MTD-
based solution is able to achieve acceptable reconfiguration

9http://openvswitch.org/

times. In future work we will focus on the development and
evaluation of a full resiliency framework for cloud systems
based on the ideas presented in this work, not only for
stateless but also for stateful distributed applications.

ACKNOWLEDGMENT

This work was funded by the Northrop Grumman Cybersecurity
Research Consortium. The prototype was implemented in collab-
oration with Northrop Grumman and internally presented to them
in April 2017. The authors would also like to thank Dr. Leszek
Lilien and Dr. Weichao Wang for their valuable comments.

REFERENCES

[1] S. Norman, J. Chase, D. Goodwin, B. Freeman, V. Boyle,
and R. Eckman, “A condensed approach to the cyber resilient
design space,” INSIGHT, vol. 19, no. 2, pp. 43–46, 2016.

[2] J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Transparent runtime
randomization for security,” Tech. Rep. UILU-ENG-03-2207,
2003.

[3] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting
intrusions using system calls: Alternative data models,” in
Proceedings of the 1999 IEEE Symposium on Security and
Privacy, 1999, pp. 133–145.

[4] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering
code-injection attacks with instruction-set randomization,” in
Proceedings of the 10th ACM Conference on Computer and
Communications Security, 2003, pp. 272–280.

[5] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh, “On the effectiveness of address-space ran-
domization,” in Proceedings of the 11th ACM Conference on
Computer and Communications Security, 2004, pp. 298–307.

[6] B. Bhargava, P. Angin, R. Ranchal, and S. Lingayat, “A
distributed monitoring and reconfiguration approach for adap-
tive network computing,” in Proceedings of the 2015 IEEE
34th Symposium on Reliable Distributed Systems Workshop
(SRDSW), 2015, pp. 31–35.

[7] K. Kirkpatrick, “Software-defined networking,” Communica-
tions of the ACM, vol. 56, no. 9, pp. 16–19, Sep. 2013.

[8] M. H. Marghny and A. I. Taloba, “Outlier detection using im-
proved genetic k-means,” International Journal of Computer
Applications, vol. 28, no. 11, pp. 33–36, August 2011.

[9] L. M. Manevitz and M. Yousef, “One-class svms for docu-
ment classification,” Journal of Machine Learning Research,
vol. 2, pp. 139–154, Mar. 2002.

[10] T. Garfinkel and M. Rosenblum, “A virtual machine in-
trospection based architecture for intrusion detection,” in
Proceedings of the Network and Distributed Systems Security
Symposium, 2003, pp. 191–206.

[11] DHS, “Moving target defense,” https://www.dhs.gov/science-
and-technology/csd-mtd, Accessed Feb. 2017.

[12] N. Ahmed and B. Bhargava, “Mayflies: A moving target
defense framework for distributed systems,” in Proceedings
of the 2016 ACM Workshop on Moving Target Defense, 2016,
pp. 59–64.

	Introduction
	Related Work
	Proposed Approach
	Live Monitoring
	Moving Target Defense

	Experiments
	Conclusion
	References

