
Privacy – Preserving Data Dissemination

in Untrusted Cloud

Denis Ulybyshev, Bharat Bhargava,

Miguel Villarreal-Vasquez, Aala Oqab Alsalem

Computer Science Department, CERIAS

Purdue University

West Lafayette, United States of America

dulybysh, bbshail, mvillar, alsalema@purdue.edu

Harry Halpin

W3C / MIT

Boston, United States of America

hhalpin@w3.org

Donald Steiner, Leon Li, Jason Kobes
Northrop Grumman

McLean, United States of America

Donald.Steiner, Leon.Li, Jason.Kobes@ngc.com

Rohit Ranchal

IBM Watson Health Cloud

Cambridge, United States of America

ranchal@us.ibm.com

Abstract—B2B (business-to-business) systems often use

service-oriented architecture (SOA) with decomposed business

services. These services can interact and share data among each

other. Service might use a cloud – hosted database, such as a non -

relational encrypted key – value store. However, the cloud

platform hosting the database can be untrusted. Data owner needs

to be sure that each service can access only those segments of a

shared database for which the service is authorized. Furthermore,

data requests can come from a service also hosted by untrusted

cloud. Hence, there is a need for designing a cloud enterprise

framework that can ensure privacy-preserving data dissemination

in SOA and accurately detect data leakages. We design and

prototype a solution that ensures privacy – preserving

dissemination of data. The solution is based on (a) role-based

access control, (b) cryptographic capabilities of client's browser,

(c) authentication method, (d) subject's trust level. The prototype

enables privacy – preserving dissemination of Electronic Health

Records (EHRs) hosted in an untrusted cloud.

Keywords—privacy; trust management; data dissemination;

access control; SOA; database privacy; cloud computing

I. INTRODUCTION

Non-relational databases in the form of encrypted key-value
pairs can be hosted by an untrusted cloud. Cloud platforms are
vulnerable to large attack surface that could violate the privacy
of data stored in cloud or shared with web services. Services
can interact and share data with each other, including services
from untrusted environments. The problem statement is to
ensure for the data owner that each service can access only those
data items for which the service is authorized. A mechanism
which guarantees that unauthorized data accesses are denied is
needed. In our approach we rely on an Active Bundle [5, 6] in
order to store non-relational database in encrypted form. An
Active Bundle (AB) is a self-protecting structure that consists
of key-value pairs in encrypted form, access control policies
and policy enforcement engine (Virtual Machine) [1]. The
novelty of our approach is that, in addition to access control
policies, used in role-based access control, our cloud data
dissemination model depends on client’s attributes. These
attributes are:

1. Level of cryptographic capabilities of client’s browser,
which sends data request by means of https message.

2. Client’s authentication method (password – based vs.
hardware – based vs. fingerprint). Password – based
authentication method is considered to be least secure.

3. Client’s network (trusted vs. unknown network).

4. Type of the client’s device (Mobile vs. Desktop).

Our approach, compared to Attribute-Based Encryption, has
the following advantages: (a) it does not rely on Trusted Third
Party (TTP) to issue keys for the recipient services; (b) it
supports complex policies that can be written in Java language,
whereas ABE policies are expressed as boolean and threshold
operations over a set of attributes [1]. Such operations have
limited ability to express access control policies.

II. RELATED WORK

A mechanism of micro-policies [15] enforced at a browser's
side was proposed to provide confidentiality and integrity of
web sessions. The mechanism, implemented as a Google
Chrome extension Michrome [16], can be used to ensure secure
access to web data by means of http(s) protocol. Micro-policies
are specified in terms of tags, used to label URLs, network
connections, cookies, etc; and a transfer function, which
monitors security-relevant operations based on these tags and
defines which operations are permitted by the browser. In our
approach, in contrast, the policies are enforced in the Active
Bundle, by its policy enforcement engine. Our solution provides
the following advantages: (1) role – based access control; (2)
trust level of clients is constantly monitored and recalculated;
(3) modification of browser's source code is not required.

A privacy – preserving information brokering (PPIB)
system was proposed for secure sharing and information access
via overlay network of brokers, coordinators, and a central
authority [2]. This approach relies on centralized TTP to
manage keys, metadata, joining and leaving brokers.
Centralized TTP creates a single point of failure. Suggested
methodology does not consider trust levels of services. [4]

Approved for public release by Northrop Grumman, Case #17-0995.

mailto:dulybysh@purdue.edu
mailto:dulybysh@purdue.edu
mailto:hhalpin@w3.org
mailto:Jason.Kobes@ngc.com
mailto:rranchal@ibm.com

Pearson et al. proposed a solution for secure data
dissemination when the recipients are not known in advance.
‘EnCoRe’ project uses sticky policies to manage the privacy of
shared data across different domains [3]. Data and policies are
made inseparable. Sticky policies are enforced by a TTP and
data dissemination provenance is supported. Sticky policies are
prone to tamper attacks from malicious recipients and the
approach itself is prone to TTP – related issues [4].

III. CORE DESIGN

A. Active Bundle

Our solution relies on Active Bundle (AB) [1] for secure
data exchanges between services. Active Bundle is a self –
protecting structure that incorporates sensitive data in encrypted
form, access control policies and policy enforcement engine
(Virtual Machine). Sensitive data is a non-relational database
stored in the form of encrypted key-value pairs. Here is the
example of key – value pair stored in the Active Bundle:

{ “ab.patientID” : “Enc(0123456)” }. Patient ID is 0123456
and it is stored in the Active Bundle in encrypted form. Each
data item is encrypted with a separate symmetric key, which is
generated on-the-fly based on execution flow. When service
requests data from an Active Bundle, the identity of the
requesting service requesting is verified, as a first interaction
step. Authentication is based on signed digital certificates. The
services present their X.509 certificates signed by a trusted
Certificate Authority (CA) to the Active Bundle to verify their
authenticity [1]. After service authenticates itself, its attributes
(trust level, cryptographic capabilities of a browser, etc) and the
context (e.g. emergency or attack) are evaluated and enforced
by the policy enforcement engine embedded into an Active
Bundle. Then evaluation of applicable access control policies
determines what data can be disclosed to the requesting service.
Symmetric decryption keys will be generated to decrypt those
data items for which the authenticated service is authorized,
based on access control policies, stored in the Active Bundle.
Service requests keys from key – value pairs and corresponding
values are decrypted, based on derived decryption keys.
Decrypted values will be sent to the client using https protocol,
provided client’s trust level is sufficient, its browser's
cryptographic capability level is sufficient and client's
authentication method is secure. Symmetric key generation is
based on the unique information generated in the execution
control flow path of an Active Bundle [1]. This information
depends on the Active Bundle modules and their resources:
authentication code; subject's role (e.g. doctor, insurance agent,
researcher), extracted from the X.509 certificate of the subject
(service); authorization code; applicable access control policies
and policy evaluation code. To ensure proper entropy in the key,
hash of this information is transformed into a secret. This secret
is then used to derive the symmetric key, using
SecretKeyFactory, PBEKeySpec and SecretKeySpec methods
from javax.crypto library. During AB creation, the data owner's
policies are first embedded into the Active Bundle template,
which is then executed to obtain the information and to derive
the corresponding symmetric keys for each data item [1].
Decryption key derivation procedure is similar to encryption
key derivation. Active Bundle execution control steps generate
the information, based on the Active Bundle modules and their

resources. Hash of this information is then used to derive the
symmetric key, employing SecretKeyFactory, PBEKeySpec
and SecretKeySpec methods. This symmetric key is able to
decrypt the corresponding data item. Active Bundle is tamper-
resistant so that modification of any items from the list below:

a) authentication code (when attacker try to bypass
authentication phase); service certificate (when attacker
tries to impersonate his identity or use wrong certificate);

b) authorization code (when attacker tries to bypass
evaluation of access control policies);

c) applicable access control policies (when attacker tries to
modify them to gain access to data he is not authorized for);

will result in digest change and lead to the incorrect decryption
key derivation. Assumptions behind an “untrusted” cloud
include direct access to confidential data and to encryption keys
by the curious or malicious cloud provider. In our solution
decryption keys are not stored neither on a cloud provider nor
inside Active Bundle nor on TTP. Tamper – resistance
mechanism provides data integrity and storing data in encrypted
form provides data confidentiality in untrusted cloud. Active
Bundle protects data communications between services from
man-in-the-middle and masquerade attacks.

Active Bundle is written in Java and implemented as a Java
Executable Archive (JAR). Access control policies can be
specified either using Javascript Object Notation (JSON) [10]
or Extensible Access Control Markup Language (XACML)
[11] policy language. We use JSON-based policies since they
impose less performance overhead, compared to XACML-
based policies. WSO2 Balana [14] is used for policy evaluation.

Assumptions: Hardware on a site where AB is hosted /
executed is trusted. OS kernel is trusted, as well. The services
(e.g. Doctor, Insurance, Researcher) interact with the Active
Bundle on a server side. For communication between all the
web services https protocol is used. It provides protection
against eavesdropping attacks.

In our implemented prototype, we provide secure
dissemination of Electronic Health Records (EHRs), stored in
the form of Active Bundles in untrusted cloud, one Active
Bundle per one EHR. JSON [10] is used to store key – value
pairs. Hospital Information System has all the EHRs and is
hosted by a cloud provider. There are three clients: doctor,
insurance and researcher. Access control policies specify that
doctor can access medical data (test results, diagnosis,
prescriptions, etc) of a patient, as well as contact and billing
information. Table 1 shows access control policies for the
Medical and Contact Information of a Patient, correspondingly.

TABLE 1. ACCESS CONTROL POLICY FOR MEDICAL DATA

ALLOW

Resource Patient's Medical Data Patient's Contact Info

Subject's Role Doctor, Researcher Doctor, Insurance

Action Read Read

Insurance can access contact and billing information only,
access to medical information is not allowed. Researcher can

only access anonymized records of patients, i.e. medical and
billing information. Three services (Doctor, Researcher,
Insurance), as well as Hospital service, that serves data requests,
are running as NodeJS servers (daemons) at
http://www.waxedprune.cs.purdue.edu:3000 on a cloud
provider and are listening to the corresponding opened ports.
Initial data request from unauthenticated client is redirected
from Cloud Provider to Authentication Server (AS) where
client needs to authenticate itself in order to receive a valid
Ticket. Along with the authentication procedure, the level of
cryptographic capabilities of client's browser and client's
authentication method are determined and are included to the
authentication ticket, which is signed by AS.

Fig. 1. EHR framework architecture (created by Dr. Leon Li, NGC)

If client authentication procedure is successful then AS
redirects client's data item request to the proper service,
corresponding to client's role, with the new valid Ticket. Once
a corresponding service running in cloud receives data request
and authentication ticket from the client, the ticket (signature,
client ID, expiration time) and access control policies are
evaluated, based on client's role. Based on evaluation of access
control policies, of the client's browser cryptographic
capabilities and of client's authentication method, Active
Bundle responds to the requesting service with the authorized
data. Then service transfers authorized data to the client. For a
doctor, who logs in and requests for data from an insecure
browser with WebCrypto not enabled (see Fig.2), the set of
retrieved data is smaller than for the same doctor who logs in
from a secure browser with WebCrypto enabled. Cryptographic
capabilities, i.e. “WebCrypto enabled”, assume existence and
support of certain cryptographic libraries in the client's browser.
The threshold of sufficient amount of cryptographic libraries
supported by the browser, can be tuned, depending on the
context. Demo video for our prototype is available [9].

B. Attribute-based Data Dissemination

In addition to access control policies, our selective data
dissemination model is based on cryptographic capabilities of
client’s browser, requesting data from an Active Bundle; and on
client’s authentication method. Thus, if client requests data
from an old browser with low level of cryptographic
capabilities, then either limited or no data can be retrieved from
an Active Bundle even if the client’s authorization level and
trust level are sufficient. The W3C Web Cryptography API [12]
provides generic cross-browser access to cryptographic
primitives such as AES and ECDSA in browsers. In our
application, we are aiming at multi-level access where available
services are selected based on the users attributes, including
geolocation and the level of security given by their
authentication using the browser. Once client opens the

browser, the cryptographic capabilities of this browser are
assessed by the server to determine their level of trust. Web
Cryptography and future APIs that support advanced
authenticators then is used to detect the capabilities of their
device for authentication. Hardware and biometric support is in
progress via the FIDO-based Web Authentication API and
future work will continue to add hardware token-based
authentication as soon as the W3C Web Authentication API
[13] is deployed in modern browsers. Currently, the Web
Cryptography API is supported by all modern browsers, but
many users still use out-of-date browsers that are less trusted. If
the Web Cryptography API is supported, a 'secure
authentication' is enabled that uses a protocol beyond just user-
names and passwords. In detail, the Web Cryptography API
allows high-value authentication via Secure Remote Password
(SRP), a zero-knowledge proof protocol that essentially is a
form of password-based key derivation where the private key
never leaves the client, and only a verifier database is required
on the server (as given by IETF RFC 2945). Thus, if a server is
compromised, the database of user passwords is still secure
against popular “cloud-cracking” tools for password encryption
using weak hashing algorithms such as MD5. This makes
Secure Remote Password the most secure password – based
authentication scheme available, and by taking advantage of
WebCrypto's AES functions, we are able to make it much faster
and more secure than a pure Javascript implementation. SRP
also has the advantage as a key-based authentication protocol
that key material stored on hardware tokens that can be accessed
by future browser-based versions of WebCrypto could be easily
incorporated into the key generation of SRP, or even replace the
password component by deriving the initialization of the
'password' from secret key material in combination with the
domain name of the origin. In general the user's (subject's) role
and the cryptographic capabilities of their device in terms of the
support of WebCrypto allow them to access different kinds of
data, with more and sensitive data being visible only if the client
device supports authentication using SRP.

IV. EVALUATION

We evaluated performance overhead for service requesting
data from an Active Bundle. Round-trip time (RTT) is
measured between the moments when service issues data
request and data retrieved from Active Bundle are received by
the service. Thus, it includes authentication, authorization, key
derivation and data disclosure phases. ApacheBench, ver.2.3
utility is used for RTT measurements. Detailed configuration
setup can be found in the prototype tutorial [8].

Experimental setup 1

Hardware: Intel Core i7, CPU 860 @2.8GHz x8, 8GB DRAM
OS: Linux Ubuntu 14.04.5, kernel 3.13.0-107-generic, 64 bit
Browser: Mozilla Firefox for Ubuntu, ver. 50.1.0

In the following experiment (see Fig.2), we use Active Bundle
which, in addition to tamper – resistance, supports client’s
browser cryptographic capabilities and authentication method
detection. Local request for Patient's Contact Information is
sent to an Active Bundle, which represents EHR and runs on a
Purdue University Server waxedprune.cs.purdue.edu:3000. We
use an Active Bundle with 8 access control policies, similar in
terms of complexity. Examples of access control policies are

http://www.waxedprune.cs.purdue.edu:3000/

given in table 1. Data request is issued from the service running
on the same host with an Active Bundle. Thus, we measure RTT
for a local data request to an Active Bundle. Network delays,
that would be imposed if the request is issued from the remote
service and that can affect the measurements, are excluded.

 Fig.2. AB performance overhead with browser's crypto capabilities on / off

Tamper-resistance support adds 12.3% performance
overhead since the hash value of an Active Bundle and its
modules (code, access control policies, certificates) is verified
by an Active Bundle when the data request comes. Support of
client's browser cryptographic capabilities and authentication
method detection, imposes additional performance overhead of
82.8%. RTT for data request increases because now, before
responding to the client's request, Active Bundle needs to check
the cryptographic capabilities of the browser and authentication
method, which are sent to AB by means of https message.

Experimental setup 2: Google cloud Platform
OS Version: Linux Debian 3.16.39-1 (2016-12-30) x86 64 bit
Hardware: n1-standard-1 (1 vCPU, 3.75 GB memory)
CPU platform: Intel Sandy Bridge Zone us-central1-a
External IP: ab-cloud-server (104.198.68.1)

 In this experiment, request for Patient ID is sent to an Active
Bundle, which represents EHR of a patient and runs on a
Google cloud server. Google Cloud provider hosts a Hospital
Information System, i.e. database of EHRs. Active Bundle with
embedded tamper – resistance mechanism is evaluated. We
vary number of access control policies included into Active
Bundle, from 1 to 16. To make experiment reasonable, these
policies are made similar in terms of complexity. Active Bundle
runs on a Google Cloud Server, instead of Purdue Server.

 Fig.3. Performance overhead of AB, hosted by Google Cloud

Fig. 3 illustrates that RTT grows linearly. When the number of
policies grows, the number of required checks before data can
be retrieved, grows correspondingly. Support of tamper-
resistance adds up to 5.8% (for 16 policies) performance
overhead, depending on the number of policies, since the hash
value of an Active Bundle and its modules need to be verified
by an Active Bundle when the data request comes.

V. CONCLUSION

We presented a privacy – preserving dissemination model,
that provides confidentiality and integrity for data, hosted in
untrusted cloud. Here are the contributions of our approach:

1. It does not rely on TTP to issue secret keys (decryption keys)

for the recipient services

2. Support of complex policies that can be written in Java [1]

3. It does not require data owner's availability

4. Data can be updated by multiple parties (services)

5. Dissemination depends on context and the client's attributes.

ACKNOWLEDGMENT

This work was funded by the Northrop Grumman
Cybersecurity Research Consortium. The prototype was
implemented in collaboration with Northrop Grumman and
W3C / MIT and presented internally to Northrop Grumman in
April, 2016. We are thankful to Prof. Leszek Lilien and Prof.
Weichao Wang for their collaboration and valuable feedback.

REFERENCES

[1] R. Ranchal, “Cross-domain data dissemination and policy enforcement,”
PhD Thesis, Purdue University, 2015

[2] F. Li, B. Luo, P. Liu, D. Lee, and C.-H. Chu, “Enforcing secure and
privacy- preserving information brokering in distributed information
sharing,” IEEE Transactions on Information Forensics and Security, vol.
8, no. 6, pp. 888–900, 2013.

[3] S. Pearson and M. C. Mont, “Sticky policies: an approach for managing
privacy across multiple parties,” IEEE Computer, no. 9, pp. 60–68, 2011.

[4] B. Bhargava, “Privacy – preserving data dissemination and adaptable
service composition in trusted and untrusted cloud,” NGCRC Project
Proposal, CERIAS, Purdue University, Aug.2015

[5] L. Ben Othmane and L. Lilien, “Protecting privacy in sensitive data
dissemination with active bundles,” 7-th Annual Conf. on Privacy,
Security and Trust (PST 2009), Saint John, New Brunswick, Canada,
Aug. 2009, pp. 202-213

[6] L. Lilien and B. Bhargava, ”A scheme for privacy-preserving data
dissemination,” IEEE Trans. on Systems, Man and Cybernetics, Part A:
Systems and Humans, vol. 36(3), May 2006, pp. 503-506.

[7] B. Bhargava, “Secure/resilient systems and data
dissemination/provenance,” NGCRC Project Proposal, CERIAS, Purdue
University, Aug.2016

[8] D. Ulybyshev, B. Bhargava, L. Li, J. Kobes, D. Steiner, H. Halpin, B.An,
M.Villarreal, R.Ranchal, T.Vincent, “Secure dissemination of EHR in
untrusted cloud," Project Tutorial, Purdue University, 2016.

[9] D. Ulybyshev, B.Bhargava, “Secure dissemination of EHR,” demo video
https://www.dropbox.com/s/30scw1srqsmyq6d/BhargavaTeam_Demo
Video_Spring16.wmv?dl=0 , accessed: Feb.2017

[10] “Lightweight data-interchange format JSON,” http://json.org/ ,
accessed: Oct.2016

[11] “eXtensible access control markup language (XACML) version 3.0,”
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html,
accessed: Oct. 2016

[12] “W3C Web Cryptography API,”
https://www.w3.org/TR/WebCryptoAPI/ , accessed: Oct.2016

[13] “Web authentication: an API for accessing scoped credentials,”
http://www.w3.org/TR/webauthn, accessed: Oct.2016

[14] “WSO2 Balana Implementation,” https://github.com/wso2/balana ,
accessed: Oct.2016

[15] S. Calzavara, R. Focardi, N. Grimm and M. Maffei, “Micro-policies for
web session security”. Computer Security Foundations Symp. (CSF),
2016 IEEE 29th (pp. 179-193), June, 2016

[16] Anonymus, “Micro-policies for web session security,” 2016, available
at https://sites.google.com/site/micropolwebsese, accessed: Feb.2017

https://www.dropbox.com/s/30scw1srqsmyq6d/BhargavaTeam_DemoVideo_Spring16.wmv?dl=0
https://www.dropbox.com/s/30scw1srqsmyq6d/BhargavaTeam_DemoVideo_Spring16.wmv?dl=0
http://json.org/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://www.w3.org/TR/WebCryptoAPI/
http://www.w3.org/TR/webauthn
https://github.com/wso2/balana
https://github.com/wso2/balana
https://sites.google.com/site/micropolwebsese

