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Introduction	and	Background

• CPHS	is	Integration	of	Cyber,	Physical,	and	Human	
Elements.	

• Internet	of	Things	is	used	as	a	methodology	to	deploy	CPH	
Systems.

• Due	to	their	unpredictability,	human	behavior	is	difficult	to	
model.

• Dynamic	human	involvement	in	the		context	of	
collaborative	attacks	needs	further	research
– Multiple	adversaries	collude,	interleave,	and	attack

• Results	in	sophisticated	CPS	attacks
• System	behaves	in	byzantine	manner

• Securing	such	system	is	tougher 2



Motivation	and	Rationale		

• CPH	Systems	in	ICU	
– Risk	of	life	threatening	situations

• Stressful	and	unfriendly	environments
– Possibilities	of	attacks	are	high

– Effective	and	immediate	intervention	is	needed	to	reduce		the	risk

• Intrusion	tolerance,	prevention,	and	detection	should	work	
in	coordinated	and	integrated	fashion

• Research		is	needed	to	study	human	interactions	in	various	
roles	in	CPHS
– Requires	proper	modeling	and	tools
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Security	Framework	for	IoT	Based	CPHS	
Environment
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Security	Framework	for	IoT Based	CPHS	
Environment	(Cont)

• The	proposed	framework	uses	a	feedback	control	
scheme.	

• Analogous	to	a	human	biological	model	- where		
attack	is	detected	by	measuring	the	body	
parameters.	

• Various	parameters	of	CPHS	components	are	
monitored	to	detect	an	attack.

• Our	philosophy	is	that	by	identifying	the	parameters	
and	monitoring	the	change	rapidly	in	a	given	time	
frame,	the	appropriate	threat	can	be	identified	and	
a	corrective	action	can	be	taken.	5



IoT-based	CPHS		environment
• Notation	of	IoT	based	CPHS		environment

– Attack	sensitive	parameters	(xn(t))
• Examples	- Packet	Drop,	Queue	Length,	Energy	Consumption

– Non	attack	sensitive	parameters(vn(t))
• Examples	– Patient	Demographic	Details,	Vehicle	Location

– Attack	parameters	(k(t))
• Examples	- DoS,	Command	Injection,	ARP	Spoofing

– Control	parameter	(u(t))
• Examples	– IDM,	Fault	tolerance

– Human	behaviour	parameters	(h(t))
• Examples	–Login	Patterns,	Password	Changes,	Access	details
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Threat	Modeling	in	CPHS	- Threat	Index	(TI)

– Metric	used	to	detect	if	a	CPHS	node	is	under	
attack	or	not.

– TI	quantifies	the	threat	of	node	in	CPHS.

– Computed	using	fuzzy	logic	based	on	significant	
parameters.



TI	Evaluation	Example
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• NS is normal state, US is uncertain state and VS is vulnerable state
• Parameters:  x1 is packet drop, x2  is queue length and x3 is energy consumption
• μj (xi) is the grade of membership of parameter xi for fuzzy rule j.



• For	the	parameters	identified	to	detect	threat
– Normal	state,	Uncertain	state	and	Vulnerable	state	
thresholds	are	identified	

• X	axis	indicates	the	values	of	the	parameters
• Y	axis	indicates	the	fuzzy	membership	
functions
– For	eg.,	if	the	packet	drop	is	less	than	119	membership	function	of	NS	

is	1	and	the	MF	for	US	and	VS	are	0
– If	the	PD	is	greater	than	208	MF	of	VS	is	1	and	the	MF	for	US	and	NS	

are	0
– If	the	PD	is	exactly	163	MF	of	US	is	1	and	the	MF	for	VS	and	NS	are	0
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TI	Evaluation	Example	(Cont.)
• k	=	number	of	states	=	3	[NS,	US,	VS]
• i	is	number	of	parameters	=	3	[PD,QL,	EC]
• m	is	no	of	rules	=	ki =	33	=	27;	
• Rule	output	[yj]	can	take	any	value	from	1	to	10
• For	each	rule	j,	the	rule	strength	[wj]	and	rule	
output	[yj]	are	identified
– Rule	strength	is	the	minimum	MF	value	[μj (xi)] among	all	
parameters	i	for rule j

– For	eg.,	for	rule	7	if	μ7 (x1) is 1, μ7 (x2) is 0.5 and μ7 (x3) is 0.25  
• Min (μ7 (xi)) is 0.25

– Assuming rule output for rule 7 [[y7] is 7, 
– then w7y7		is 7*0.25 =1.75
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TI	Evaluation	Example	(Cont.)

• For	all	m	rules	
– rule	strength	[wj]	and	rule	output	[yj]	are	calculated

• TI	is	then	calculated	as	

• For	example	if	only	one	rule	has	Wj to	be	0.25,	
whose	output		yj is	7	and	the	rest	of	Wj	are	0

–TI	will	be	1.75	/	0.25	=	7
11

∑

∑

=

=

m

j
j

m

j
jj

w

yw

1

1TI =



Detecting	Collaborative	Attacks

• Detection	of	multiple	human	entities	using	two	key	
mechanisms,
– Data	Routing	Information	(DRI)	Table
– Cross	Checking

• DRI	table	will	have	information	about	device	identities,	
network	connection	information,	and	log	of	interactions	of	
entities.	

• Cross	checking	is	nothing	but	a	mechanism	where	inside	
entities	check	each	other	and	DRI	table	to	identify	
malicious	entities.	 12



Detecting	Collaborative	Attacks

• Anomaly	detection	by	means	of	data	mining	from	
uncategorized	sensor	data	and	ordered	DRI	table	data

• Clustering-layout	approach	to	CPH	Systems	where	a	Central	
Monitor	(CM)	can	validate	new	entities	in	the	system	and	
cross	check	in	regular	time	intervals.	
– CPH	system	entities	will	be	grouped	in	clusters
– Each	cluster	with	CM	and	backup	CMs
– Beacon	the	compromised	entities’	identities	to	other	entities	in	
CPH	Systems
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Detecting	Collaborative	Attacks

• Deceptive	Security	Loopholes:	in	this	approach,	CPH	System	
will	appear	to	be	vulnerable	to	lure	attackers.	

• Each	attempt’s	information	and	type	of	attack	will	be	
classified	and	stored.
– Create	a	knowledge	repository	

• Underlying	system	and	its	vulnerabilities
• Defendable	attacks
• Novel	attacks
• Attack	sources

– Collaborative	attackers	can	be	identified	with	cross	checking	the	
knowledge	repositories.
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Why	Intrusion	Tolerance	is	required	in	CPH	
Systems?

• Detection	is	NOT	always	possible	or	timely	feasible.
– Novel	Attacks
– Security	loopholes
– Insiders’	collaborative	attacks

• Recovering	from	intrusion	detection	is	time	critical.
– Critical	process	may	not	recover
– Affect	distributed	processing
– Redundancy	from	replicas
– Self-healing	is	costly
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Coordinated	Intrusion	Prevention	Using	
Cryptographic	Primitives	

• Design	Hash	function	based	defense	mechanism	
– Generate	CPHS	entity	behavioral	proofs
– Contain	information	from	data	traffic	and	forwarding	
paths

• Measure	and	evaluate	impact	on	parameters	
– Throughput	of	application
– Resources	depletion
– Detection	and	mitigation	capability
– Extent	of	system	unavailability			

16



Co-ordinated	Intrusion	Detection	of	Malicious	
Collaborating	Entities	in	CPHS		

• Threat	Index	TI	for	IoT	node	is	calculated
– Using	attack	sensitive	parameters	and	machine	learning	

• Indicates	vulnerability	of	the	CPHS
• TI	can	be	computed	over	period	of	time	and	
compared	with	benchmark

• Data	collected	from	simulation	environment	with	
and	without	attacks	is	used	for	training

• If	computed	TI(t)	is	greater	than	vulnerable	state	
threshold	reference	TI’,	the	node	is	identified	to	be	
under	threat 17



Co-ordinated	Intrusion	Detection	of	Malicious	
Collaborating	Entities	in	CPHS		- Example

• N1	is	node	under	attack
• Thresholds	of	parameters	[PD,	QL,	EC]	are	
identified	to	construct	fuzzy	MF

• Based	on	the	parameters	[PD,	QL,	EC]	observed	at	
N1
– Fuzzy	rules	are	generated
– TI	is	calculated
– If	value	of	TI	is	7,	it	indicates	node	is	under	threat

• TI	<	4	is	no	threat,	TI	>	6	is	threat,	TI	between	4	and	6	is	
vulnerable
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Adaptive	Coordinated	Intrusion	Response

• Develop	and	apply	autonomic	/self-adaptive	
techniques	to	implement	adaptive	
coordinated	response	in	CPHS

• If	a	node	is	under	threat,	neighboring	nodes	
are	subjected	to	response	and	protection	
algorithm
– To	identify	intruder	and	isolate	intruder	from	
CPHS

19
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Adaptive	Coordinated	Intrusion	Response	Example

• For	the	parameters	observed	for	neighboring	node	for	a	node	under	attack
– If	the	If	the	parameters	with	normal	values	are	greater	than	abnormal	and	uncertain	values

• The	node	 is	flagged	normal	and	accordingly	certain	action	plan	is	taken
– Else	if	the	parameters	with	abnormal	values	are	greater	than	normal	and	uncertain	values

• The	node	 is	flagged	malicious	and	accordingly	certain	action	plan	is	taken

– Else	if	the	parameters	with	uncertain	values	are	greater	than	normal	and	abnormal	values
• The	node	 is	flagged	uncertain	and	accordingly	certain	action	plan	is	taken



Autonomic	Intrusion	Tolerance	Using	Byzantine	
Fault-tolerant	Replication
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Autonomic	Intrusion	Tolerance	Using	Byzantine	
Fault-tolerant	Replication	(cont.)

• n-t replicas	to	replace	up	to	t compromised	systems

l Intelligent adversary requires combination of 
replica diversity, voting and cryptographic schemes

l Dynamic and complex nature of CPHS requires 
self-manageable behaviour 

l Feedback loop for sensing and adapting to current 
conditions 22



Our	Ongoing	Work	on	Byzantine	Replication

• BFT protocol that implements a series of
performance optimization mechanisms: request
batching, replica rejuvenation, etc.

l Need	right	configuration	of	the	system	to	achieve:	
Size	and	timeout	for	batching,		checkpoint	period,	
rejuvenation	period,	primary	backup	failure	
detection	timeout,	etc.
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Our	Ongoing	Work	on	Byzantine	Replication	
(cont.)

• Developed	a	self-manageable	version	of	BFT	to	
optimize	the	relation	throughput	/	delivery	time.

• It	is	online	adaptive	because	the	objective	
“optimizing	delay/throughput”	is	not	modified	at	
runtime.

24
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Autonomic	BFT	:	One	step	ahead

• BFT	Adaptation	policies	should	be	dynamically	
defined	by	Coordinated	Intrusion	Response.

• Distinct	action	plans	will	trigger	distinct	adaptation	
policies	or	operation	modes	for	BFT.	For	example,
– Action	Plan	3	may	require	BFT	to	optimize	throughput	
to	handle	a	possible	DoS	attack,	even	on	the	expense	of	
delaying	services	responses.

– Or	Action	4	may	require	BFT	to	immediately	check-
pointing	state	to	deal	with	a	possible	shut	down.

25



Threat	Modeling	With	Human	Entities

• Nearly	95%	of	the	all	the	Security	incidents	are	
caused	by	human	errors		[Report:	2014	IBM’s	
Cyber	Security	Intelligence	Index].	

• Human	entities	add	uncertainty	to	CPH	Systems.
– Intentional	(malicious)	errors
– Malicious	collaborative	attacks
– Unintentional	(common	mistakes)	errors
– Identity	compromise
– Privacy	breach

26
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Modeling	Attacks	Using	Causal	Relationships

• Human	errors	(intentional	or	intentional)	are	
considered	as	events	(en).
– One	or	more	can	occur	at	the	same	time
– They	sequentially	follow	other	event(s)

• e1	à e2à e3e4
• Events	can	be	(a)	individual	attacks	or	(b)	collaborative	
attacks

• The	causal	model:	a	state	of	an	individual	attack	
caused	by	a	sequence	of	intentional	human	errors	
represents	finite	period	of	individual	attack	
execution. 28



Type	of	collaboration

• We	identify	two	distinct	events	called	“positive”	
and	“negative”	collaboration.

• Positive	happens	when	two	independent	attacks	
collaborate	to	increase	the	number	and	effects	of	
the	resultant	damage	events.

• One	attack	interfering	with	another	attack	and	
nullifying	the	effect	known	as	negative		
collaboration.

29



Modeling	Attacks	Using	Causal	Relationships	
(cont.)

• We	employ	causal	graph	to	map	the	attack	
patterns	through	human	errors.

• A	causal	graph	G=<V,	E>	for	a	set	of	causal	rules	of	
an	attack	is	a	labeled	digraph	with	
– vertices	V={e|	events}	
– edges	E={<p,	q>|	∃

• a	causal	relationship	c
• local	operation	L
• predicate	B	such	that	<p,	c,	q,	L,	B>	is	a	causal	model}.	

30



Advantages	of	Causal	Model

• By	identifying	all	attack	events	we	can	produce	a	
Causal	Attack	Graph	(CAG):	it	can	model	attacks	
that	are	sequential	as	well	as	concurrent.

• The	pre-conditions	and	post-conditions	of	attacks	
that	satisfy	change	dynamically,	the	causal	model	
can	capture	the	change	that	the	state-of-art	attack	
graph	reduction	techniques	cannot.

• The	causal	model	can	help	us	in	modelling	large	
scale	networks. 31



Advantages	of	Causal	Model	(cont.)

• The	causal	model	can	describe	timing	of	attacks.
– Attacks	may	need	to	be	operating	within	a	specific	time	
interval	and	traditional	attack	graph	analysis	did	not	
consider	it.	

• The	casual	model	can	represent	unsuccessful	
attacks.	
– Some	attempted	attacks	are	never	successful	and	
cannot	be	modeled	by	traditional	attack	graphs	

32



Contributions

• Holistic	Framework	to	mitigate	security	issues	in	CPHS	
environment

• Guidelines	for	developing	adaptive	defense	mechanisms	for		
malicious	collaborative	attacks	in	CPHS.

• Leads	to	improved	understanding	and	dealing	with	
collaborative	attacks	and	coordinated	defense	through

– Faulty	human	component
– Byzantine	fault	tolerance,	
– Identity	management	(IDM)	

• Autonomic,	self-adaptive	techniques	to	prevent,	detect	and	
counter	those	CPHS	attacks.
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Conclusion

• Discussed	security	issues	in	IoT	based	CPS
• Human	participation		in	CPHS	deepens	those	
security	issues

• Proposed	holistic	security	framework	for	IoT	
based	CPHS

• Threat	modeling	involving	human	elements	in	
CPHS

• Proposed	research	questions	and	directions	for	
the	CPHS	security
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Questions
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Appendix
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TI	Evaluation	Example	(Contd.)

TI =

FOR PD=174, QL =843 
and EC = 1.8Joules

m is no of rules = kn  = 33 = 27; 

Here, j ε {1, 2, …m },  n is the number of input 
metrics and k the number of membership 
functions for each metric
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Here m is the number of fuzzy rules, j ε {1, 2, …m }, and m = kn where n is the 
number of input metrics and k the number of fuzzy membership functions.  

Here, wj = min(μj (xi))  where μj (xi)  indicate MF of 
significant parameters of that rule.
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TI	Evaluation	Example	(Contd.) FOR PD=174, QL =843 
and EC = 1.8Joules

Rule Number (j) μj (PD)
μj (QL) μj(EC) Rule Strength, wj ,           min(μj(PD)μj(QL)

μj(EC))

Output, yj wjyj

1
0 0.25 0

0
1 0

2
0 0.25 0.4

0
1 0

3
0 0.25 0.6

0
1 0

4
0 0.75 0

0
1 0

5
0 0.75 0.4

0
4 0

6
0 0.75 0.6

0
4 0

7
0 0 0

0
1 0

8
0 0 0.4

0
4 0

9
0 0 0.6

0
7 0

10
0.75 0.25 0

0
1 0

11
0.75 0.25 0.4

0.25
4 1

12
0.75 0.25 0.6

0.25
4 1

13
0.75 0.75 0

0
4 0

14
0.75 0.75 0.4

0.4
4 1.6

15
0.75 0.75 0.6

0.6
4 2.4

16
0.75 0 0

0
4 0

17
0.75 0 0.4

0
4 0

18
0.75 0 0.6

0
7 0

19
0.25 0.25 0

0
1 0

20
0.25 0.25 0.4

0.25
4 1

21 0.25 0.25 0.6 0.25 7 1.75
22

0.25 0.75 0
0

4 0
23

0.25 0.75 0.4
0.25

4 1
24 0.25 0.75 0.6 0.25 7 1.75
25

0.25 0 0
0

7 0
26

0.25 0 0.4
0

7 0
27

0.25 0 0.6
0

7 0

m is no of rules = kn  = 33 = 27; 

Here, j ε {1, 2, …m },  n is the number of input 
metrics and k the number of membership 
functions for each metric

= 11.5/2.5 = 4.6
TI =
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N1

M0,1

M2,1

M3,1

M4,1

M5,1

Parameter UCLvs UCLus M01to N1 M21toN1 M31to N1 M41to N1 M51toN1 Average

(PD) 208.63 119.1 155/ US 2000/VS 20/NS 20/NS 20/NS 443

(QL) 1157.72 656.0 120/ NS 12000
/VS

120/NS 120/NS 120/ NS 2496

(EC) 1.9941 1.34 1.3 /NS 3.92 /VS 2.33 /VS 2.36 /VS 2.61/ VS 2.51

Rule Number (j) μj (PD) μj (QL) μj(EC) Rule Strength, wj ,           
min(μj(PD)μj(QL) μj(EC))

Output, yj wjyj1
0 0 0 1 02
0 0 1

0
1 03

0 0 0
0

4 04
0 0 1

0
4 05

0 1 0
0

1 06
0 1 0

0
4 07

0 1 1
0

7 08
1 0 0

0
1 09

1 0 0
0

4 010
1 0 1

0
7 0

11 1 1 0
0
0 7 012

1 1 1
1
1 7 7

TI = = 7/1 = 7
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Co-ordinated	Intrusion	Detection	of	Malicious	
Collaborating	Entities	in	CPHS		- Example


