NORMALIZATION: WHY

DO NOT REMOVE
FROM LIBRARY

LIBRARY USE ONLY
NORMALIZATION

Why?

Three types of misbehavior
- UPDATE
- Insertion
- Delete

Each relation should describe a single concept

A relation is in third normal form if every determinant is key

\[A \rightarrow B \quad \text{determines} \]
\[\quad \text{determinant} \]
Normalization

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Date</th>
<th>Qty ordered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toaster</td>
<td>20.00</td>
<td>1/10/75</td>
<td>2</td>
</tr>
<tr>
<td>Toaster</td>
<td>20.00</td>
<td>2/15/75</td>
<td>5</td>
</tr>
<tr>
<td>Mixer</td>
<td>28.00</td>
<td>4/6/75</td>
<td>3</td>
</tr>
</tbody>
</table>

- Insertion Problem
- Deletion Problem
- Lack of info.
- Loss of info.
IF \(A \rightarrow B \)
\(B \rightarrow C \)
THEN \(A \rightarrow C \)

2. IF \(A \rightarrow B \)
THEN \(AB \rightarrow B \)

\[
R(AB, c, D, E) \quad A \rightarrow D
A \rightarrow E
AB \rightarrow C
\]

Let \(X, Y, Z \) be subset of all attributes of a relation \(R \).

Axioms

1. **Reflexivity**
 IF \(Y \subseteq X \subseteq U \) \n Then \(X \rightarrow Y \)

2. **Augmentation**
 IF \(X \rightarrow Y \) and \(Z \subseteq U \)
 Then \(XZ \rightarrow YZ \)

3. **Transitivity**
 IF \(X \rightarrow Y \) and \(Y \rightarrow Z \)
 Then \(X \rightarrow Z \)
ARMSTRONG'S AXIOMS ARE
SOUND and COMPLETE.

SOUND:

If $X \rightarrow Y$ is deduced from F and Axiom F is true,
then $X \rightarrow Y$ is true in any relation in which F is true.

REFLEXIVITY: If two tuples of Y
agree on X, they must agree on
a subset of X.

AUGMENTATION:

If two tuples agree on $X \ast$
but not on $Y \ast$
then they must agree on X but not on Y.

CONTRACTION (\(X \rightarrow Y\))

TRANSITIVITY:

If two tuples agree on X, they
agree on Y. If they agree on Y, they
agree on Z. So $X \rightarrow Z$.
Functional Dependency (Revisited)

\[X \rightarrow Y \]

means

\(X \) functionally determines \(Y \) or \(Y \) is functionally dependent on \(X \)

if it is not possible that relation \(R \) has two tuples that agree on value of \(X \)

and disagree on value of \(Y \)

Many-to-one mapping

\[X \rightarrow Y \]

one-to-one mapping

\[X \rightarrow Y \]

\[i \rightarrow x \]
Some more rules

Union

IF $X \rightarrow Y$, $X \rightarrow Z$

THEN $X \rightarrow YZ$

Pseudotransitivity

IF $X \rightarrow Y$

and $WY \rightarrow Z$

Then $XW \rightarrow Z$

Decomposition

IF

$X \rightarrow Y$ and $Z \subseteq Y$

Then $X \rightarrow Z$

IF F is a set of functional dependencies

F^+ is the set of all functional dependencies derivable from F

F^+ is called closure of F.
Proof

Union Rule

\[x \rightarrow y \Rightarrow x \rightarrow xy \]
\[x \rightarrow z \Rightarrow xy \rightarrow zy \text{ (or } yz \text{)} \]

So \[x \rightarrow xy \rightarrow yz \]

\[\text{QED} \]

Pseudotransitivity Rule

\[x \rightarrow y \Rightarrow xw \rightarrow yw \]

But \[yw \rightarrow z \]

So \[xw \rightarrow z \]

\[\text{QED} \]

Decomposition Rule

\[x \rightarrow y \]

Tuples that agree on \(x \) do agree on \(x \) and so they do agree on \(\text{Subset of } y \)

But \[z \subseteq y \]

So \[x \rightarrow z \]

\[\text{QED.} \]
Example

\[R = (A, B, C, D, E, G) \]

\[F : \]

\[AB \rightarrow C \quad D \rightarrow EG \]
\[C \rightarrow A \quad BE \rightarrow C \]
\[BC \rightarrow D \quad CG \rightarrow BD \]
\[ACD \rightarrow B \quad CE \rightarrow AG \]

\[(BD)^+ = \text{Set of attributes that are dependent on attributes } B, D \]

\[= ABCDEG = R \]

Thus BD determines R
We call BD as the key of R
A relation by definition is in FIRST NORMAL FORM

- A relation is in 2nd NF if any one of the following is true

 1. The key consists of a single attribute
 2. There are no non-key attributes
 3. Every non-key attribute depends on all of the key

Example

\[R(A, B) \] \hspace{2cm} \text{Case 1}
\[R(A, B, C) \] \hspace{2cm} \text{Case 2}
\[R(A, B, C, D) \] \hspace{2cm} \text{Case 3}

\[\text{and } AB \rightarrow C \]
\[AB \rightarrow D \]

- A relation is in 3NF, if it is in 2nd NF and has no transitive dependencies
Mathematically

R is in 3NF

if \(\exists \) key X for R and Y \(\subseteq \) R

and a non-key attribute A not in X or Y

Such that

1. \(X \rightarrow Y \)
 \[X \quad \underline{A} \]

2. \(Y \rightarrow A \) \(Y \notin X \)
 \[X \quad \underline{A} \quad Y \]

3. \(Y \nrightarrow X \) \(Y \subseteq X \)
 \[\underline{X} \quad \underline{Y} \quad \underline{A} \]

If Y is a subset of X

Then R has a partial dependency

If Y is not a subset of X

Then R has a transitive dependency
A set of F is minimal if

a) Every right side is a single attribute

b) For no $x \rightarrow A$, $F - \{x \rightarrow A\} \neq F$

c) For no $x \rightarrow A$, $\exists c x$

\[
[F - \{x \rightarrow A\}] U \{z \rightarrow A\} = F
\]

Lemma:

F is covered by G, in which no right side has more than one attribute.

If $x \rightarrow A$ in G and $x \rightarrow Y$ in F and $A \in \{x \rightarrow A\}$

By decomposition $x \rightarrow A$ in F^+

So $G \subseteq F^+$

Let $Y = A_1 \cdot A_2 \cdots A_n$

If $x \rightarrow Y$ in F, then $x \rightarrow A_1$ in G.

$x \rightarrow A_2$

\vdots

$x \rightarrow A_n$

So $F \subseteq G^+$

So $F^+ = G^+$
Lossless Join Decomposition

Let \(\gamma \) be a relation for scheme \(R \) satisfying dependencies \(D \).

Let \(P = \{ R_1, \ldots, R_n \} \) be a decomposition satisfying \(D \).

Then the decomposition is lossless if

\[
\gamma = \Pi_{R_1}(\gamma) \times \Pi_{R_2}(\gamma) \times \cdots \times \Pi_{R_n}(\gamma)
\]

= Natural Join of its projections on the \(R_i \)'s.

Let \(m_\rho(\gamma) = \Pi_{i=1}^{n} \Pi_{R_i}(\gamma) \)

Decomp is lossless if

\[
\gamma = m_\rho(\gamma)
\]

Let \(\gamma_i = \Pi_{R_i}(\gamma) \)
Lemma

a) \(\gamma \subseteq m\rho(\gamma) \)

b) If \(S = m\rho(\gamma) \), then \(\Pi_{R_\gamma}(S) = \gamma \)

c) \(m\rho(m\rho(\gamma)) = m\rho(\gamma) \)

Testing Lossless Joins

\(R = A_1 \ldots A_n \quad P = (R_1, R_2, \ldots R_k) \)

\[\begin{array}{c|c|cccc}
\hline
 & A_1 & A_2 & A_j & A_n \\
\hline
R_1 & & & & & \\
R_2 & & & & & \\
& & & \cdots & & \\
R_k & & & & & \\
\hline
\end{array} \]

\[\begin{array}{c|c|cccc}
\hline
x & a_j & b_j & & \\
\hline
x \neq a_j \text{ if } A_j \in R_2 & & & & \\
x = b_j \text{ if } A_j \in R_2 & & & & \\
\hline
\end{array} \]

Do Recursively:

- If one row is all a's, HALT
- If one row is all b's, HALT

let \(x \rightarrow y \)

look 2 rows that agree on \(x \)

Equate elements of \(y \) if one is c

both a or b

if both are a, leave the as a

if both are b, leave the as b.
\[R = (A, B, C, D, E) \]

\[
\begin{align*}
R_1 &= AD \\
R_2 &= AB \\
R_3 &= BE \\
R_4 &= CDE \\
R_5 &= AE
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>a_1</td>
<td>b_{12}</td>
<td>b_{13}</td>
<td>a_4</td>
<td>b_{15}</td>
</tr>
<tr>
<td>AB</td>
<td>a_1</td>
<td>a_2</td>
<td>b_{43}</td>
<td>\ell_{25}</td>
<td>b_{25}</td>
</tr>
<tr>
<td>BE</td>
<td>b_{51}</td>
<td>a_2</td>
<td>b_{53}</td>
<td>b_{54}</td>
<td>a_5</td>
</tr>
<tr>
<td>CDE</td>
<td>b_{41}</td>
<td>b_{42}</td>
<td>a_3</td>
<td>a_4</td>
<td>a_5</td>
</tr>
<tr>
<td>AE</td>
<td>a_1</td>
<td>b_{52}</td>
<td>b_{53}</td>
<td>b_{54}</td>
<td>a_5</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
A &\rightarrow C \\
B &\rightarrow C \\
C &\rightarrow D \\
DE &\rightarrow C \\
CE &\rightarrow A
\end{align*}
\]
Proof: Algorithm correctly determines if a decomposition has a lossless join.

One way

Suppose the final table does not have a row with all a's. Let this be a relation \(\gamma \) for \(R \).

Then we must prove \(\gamma \neq m_p(\gamma) \).

Now for each \(R_i \), \(\exists t_i \in \gamma \) with all a's in its row.

\[
mp(\gamma) = \prod_{i=1}^{K} R_i(\gamma) \text{ contains a row with all a's}
\]

So \(\gamma \) with no rows of a \neq mp(\gamma) with a row of all a's.

Reverse

Please read yourself.
Superkey - superset of a key
Candidate key - minimal set of attributes
key - one designated Candidate key

\[R \left(\text{city}, \text{st}, \text{zip} \right) \]
\[\text{city}, \text{st} \rightarrow \text{zip} \]
\[\text{zip} \rightarrow \text{city} \]
\[\left(\text{city}, \text{st} \right), \left(\text{st}, \text{zip} \right) \text{ are keys} \]

An Att is primary att of \(R \)
if it is a member of any key \(Y \) of \(R \)
Non primary att = not a member of any key \(Y \) of \(R \)
3NF

X is a superkey of R

or A is a prime attr of R

3 Arel is 3NF

if every non-prime attr of R

is

1) Fully functionally dep

on every key of R

2) Non-transitively dep

on every key of R

A rel is 2NF

if every non-prime attr A

in R is not partially dep

on any key of R
Boyce-Codd Normal Form

A rel R with attr F in
in BCNF if

\[X \rightarrow A \text{ holds in } R \]

and \(A \notin X \)

\[X \text{ is a superkey of } R \]

\[X \text{ is or contains the key.} \]

Diff between 3NF and BCNF

3NF allows \(A \) to be prime
if \(X \) is not a superkey.

NP Complete to determine
if \(A \) is in 3NF.
Theorem

Every set of dependencies F is equivalent to a set of dependencies F' that is minimal.

Proof by construction

Step 1
Change F to get single attribute on right side

Step 2
If a dependency $x \rightarrow y$ can be eliminated without changing F', do it.
(you may have several choices)

Step 3
Eliminate attributes from the left side.

$XY \rightarrow z \quad \Rightarrow \quad \text{Eliminate } X$

$Y \rightarrow z$
Theorem

If a relation R is in BCNF
Then it is in 3NF.

Proof
Let R in BCNF and not in 3NF

Then X \rightarrow Y \rightarrow A is in F(Partial or Transitive)
X is a key for R
A \in X or A \in Y and Y \not\rightarrow X

If Y \not\rightarrow X
Then Y does not include the key for R
But Y \rightarrow A violates that R in BCNF

4th NF, Multivalued Dependencies.
Theorem:

If \(P = (R_1, R_2) \)

Then \(P \) has a lossless join w.r.t. \(F \)

iff

\[R_1 \cap R_2 \rightarrow R_1 - R_2 \]

or \(R_1 \cap R_2 \rightarrow R_2 - R_1 \)

\[\in F^+ \]

Example

\(R = (A, B, C) \)

\(F = \{ A \rightarrow B \} \)

\(R_1 (A, B) \)

\(R_2 (B, C) \)

\(R_1 \cap R_2 = B \)

\(R_1 - R_2 = A \)

\(R_2 - R_1 = C \)

\(B \rightarrow A, B \rightarrow C \)

So decomposition is Lossy

\(R_1 (A, B) \)

\(R_2 (A, C) \)

\(R_1 \cap R_2 = A \)

\(R_1 - R_2 = B \)

\(A \rightarrow B \)

\(R_1 \cap R_2 \rightarrow R_1 - R_2 \)

Decomposition has a lossless join
Algorithm for Lossless Join Decomposition into BCNF.

Initially \(P = R. \)

For \(S \in P \) if \(S \) not in BCNF

then \(X \rightarrow A \) holds in \(S \)

\(\exists \) \(X \) does not include a key for \(S \)

and \(A \notin X \)

let attribute \(AK \in S \)

\(\& A \notin X \)

Then \(S = (S_1, S_2) \)

\(\exists \) \(S_1 = (X, A) \)

\(S_2 = (S - A) \neq \emptyset \) \(\because \) contains \(AK \)

Decomposition of \(S \) is \((S_1, S_2) \)

Keep Iterating till all \(S_i \) in BCNF.
Lemma

\[P = (R_1, \ldots, R_i, \ldots, R_k) \]

Decomposition (lossless join)

\[S_1, S_2, \ldots, S_m \]

If \(P \) has a lossless join w.r.t. \(F \)

\[P_1 = (R_1, \ldots, R_i, S_1, S_2, \ldots, S_m, R_{i+1}, \ldots, R_k) \]

\[P_1 \text{ has a lossless join w.r.t. } F \]

\[P_2 = (R_1, \ldots, R_i, \ldots, R_k, R_{k+1}, \ldots, R_n) \]

\(P_2 \) include \(P \) and some more

then \(P_2 \) also has a lossless join w.r.t. \(F \)
Decompositions that Preserve Dependence

Projection of F onto $Z(\pi_z(F))$ is set of dependencies $X \rightarrow Y$ in F^+ such that $XY \subseteq Z$.

A decomposition P preserves a set of dependencies F if

$$\bigcup_{i=1}^{R} \Pi_{R_i}(F) \subseteq F$$

$$\left(\bigcup_{i=1}^{R} \Pi_{R_i}(F) \right)^+ = F^+$$
Relation Schema

- Lossless Join Decomposition
- B-C NF

\[R(C, S, Z) \]

\[R_1(S, Z) \quad C, S \rightarrow Z \]

\[R_2(C, Z) \quad Z \rightarrow C \]

Is it a lossless join Decomposition?

Is it a FD preserving Decomposition?
\[R(\{A, B, C, D\}) \]
\[P = \{ A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A \} \]

\[R_1(\{A, B\}) \]
\[F_1: A \rightarrow B \]
\[\Pi_{R_1}(F^+) = F_1. \]

\[\Pi_{R_1}(F^+) = F_1. \]

\[R(\{A, B, C, D\}), P(\{A, B, C, D\}) \]

\[F: A \rightarrow B, C \rightarrow D. \]

Preserves Functional Dependencies, but yet a lossy join.
\[R_1 = (C, T, H, R, S, G) \]

\[C \rightarrow T \]
\[HR \rightarrow C \]
\[HT \rightarrow R \]
\[CS \rightarrow G \]
\[HS \rightarrow R \]

\[(HS)^+ = \]

Now \(CS \rightarrow G \) violates that \(R_1 \) in \(BC \).

To break \(CS \rightarrow THR \), project \(F^+ \) on \(C, S, T, H, R \):

\[C \rightarrow T \]
\[HR \rightarrow C \]
\[HT \rightarrow R \]
\[HS \rightarrow R \]
What is the key for C*THR, HS
C\rightarrowT violates that C*THR in BCNF

C*THR

CT\rightarrowC*THR

CH\rightarrowR
HS\rightarrowR
HR\rightarrowC

Key HS

CH\rightarrowR violates C*THR in BCNF

C*THR

CHR\rightarrowCHS

R$_1$ = \{CGS, CT, CHR, CHS\} is in BC

Exponential Complexity

To test if BCNF is NP-COMPLETE.
CE \rightarrow A eliminated because C \rightarrow A

✓ ACD \rightarrow B reduced to CD \rightarrow B

✓ CG \rightarrow D, C \rightarrow A, ACD \rightarrow B

\[\Downarrow \]

CG \rightarrow CD

\[\Downarrow \]

CG \rightarrow B

DECOMPOSITION OF RELATION SCHEME

\[R = \{ A_1, A_2, \ldots, A_n \} \]

\[\Downarrow \text{Decompose} \]

\[P = \{ R_1, R_2, \ldots, R_k \} \exists R_1 \cup R_2 \cup \ldots \cup R_k = R \]

Example

\[R = \{ S, A_1, P \} \]

\[R_1 = \{ S, A_1 \} \]

\[R_2 = \{ S, 1, P \} \]
R

| Lossless join
| P = (R₁, R₂, ..., Rₖ)
| Each Rᵢ in BCNF
| ₖ ≥ 50 in 3NF
| Preserve set of dependencies
| \(τ = (S₁, S₂, ..., Sₘ) \)

Let \(τ = σ \cup \{x \mid x \in X \} \)

where \(x \) is the key for \(R \)

All relations in \(τ \) are in 3NF

Decomposition preserves dependencies

And has a lossless Join.

\[Yᵢ \leq X \cup \{R - X \} \]

\[Yᵢ \rightarrow Aᵢ \]
Alg 54: Dependency Preserving Decomp.
into 3NF

- If any attribute not in F
 it is one decomposition

- If any dependencies contains all attributes of R,
 R is one decomp.

- Otherwise

 Decomposition is $X A$
 where $X \rightarrow A$ in F

\[R = \{ C, T, H, R, S, G \} \]

Minimal cover

- $C \rightarrow T$
- $HR \rightarrow C$
- $HT \rightarrow R$
- $CS \rightarrow C$
- $HS \rightarrow R$

\(\Gamma \subseteq \{ CT, HRC, HTR, CSG, HSR \} \)