Big Data Means at Least Three Different Things....

Michael Stonebraker
The Meaning of Big Data - 3 V’s

- **Big Volume**
 - With simple (SQL) analytics
 - With complex (non-SQL) analytics

- **Big Velocity**
 - Drink from a fire hose

- **Big Variety**
 - Large number of diverse data sources to integrate
Big Volume - Little Analytics

- Well addressed by data warehouse crowd
- Who are pretty good at SQL analytics on
 - Hundreds of nodes
 - Petabytes of data
In My Opinion....

- Column stores will win
- Factor of 50 or so faster than row stores
Big Data - Big Analytics

- Complex math operations (machine learning, clustering, trend detection, ...)
 - the world of the “quants”
 - Mostly specified as linear algebra on array data

- A dozen or so common ‘inner loops’
 - Matrix multiply
 - QR decomposition
 - SVD decomposition
 - Linear regression
Big Analytics on Array Data - An Accessible Example

- Consider the closing price on all trading days for the last 10 years for two stocks A and B.

- What is the covariance between the two time-series?

 \[
 (1/N) \times \sum (A_j - \text{mean}(A)) \times (B_j - \text{mean}(B))
 \]
Now Make It Interesting …

- Do this for all pairs of 4000 stocks
 - The data is the following 4000 x 2000 matrix

<table>
<thead>
<tr>
<th>Stock</th>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>t_5</th>
<th>t_6</th>
<th>t_7</th>
<th>...</th>
<th>t_{2000}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{4000}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hourly data? All securities?
Array Answer

• Ignoring the \((1/N)\) and subtracting off the means

\[
\text{Stock} \times \text{Stock}^T
\]
DBMS Requirements

- Complex analytics
 - Covariance is just the start
 - Defined on arrays
- Data management
 - Leave out outliers
 - Just on securities with a market cap over $10B
These Requirements Arise in Many Other Domains

- Auto insurance
 - Sensor in your car (driving behavior and location)
 - Reward safe driving (no jackrabbit stops, stay out of bad neighborhoods)
- Ad placement on the web
 - Cluster customer sessions
- Lots of science apps
 - Genomics, satellite imagery, astronomy, weather,
In My Opinion....

- The focus will shift quickly from “small math” to “big math” in many domains
- I.e. this stuff will become main stream....
Solution Options
R, SAS, MATLAB, et. al.

• Weak or non-existent data management

• File system storage

• R doesn’t scale and is not a parallel system
 – Revolution does a bit better
Solution Options
RDBMS alone

- SQL simulator (MadLib) is slooooow (analytics * .01)
 - And only does some of the required operations

- Coding operations as UDFs still requires you to simulate arrays on top of tables --- sloooow
 - And current UDF model not powerful enough to support iteration
Solution Options

R + RDBMS

- Have to extract and transform the data from RDBMS table to R data format
- ‘move the world’ nightmare
- Need to learn 2 systems
- And R still doesn’t scale and is not a parallel system
Solution Options
Hadoop

- Analytics * .01
- Data management * .01

- Because
 - No state
 - No “sticky” computation
 - No point-to-point messaging

- Only viable if you don’t care about performance
Solution Options

• New Array DBMS designed with this market in mind
An Example Array Engine DB
SciDB (SciDB.org)

- All-in-one:
 - data management on arrays
 - massively scalable advanced analytics

- Data is updated via time-travel; not overwritten
 - Supports reproducibility for research and compliance

- Supports uncertain data, provenance

- Open source

- Hardware agnostic
Big Velocity

- Trading volumes going through the roof on Wall Street - breaking infrastructure
- Sensor tagging of \{cars, people, \ldots\} creates a firehose to ingest
- The web empowers end users to submit transactions - sending volume through the roof
- PDAs lets them submit transactions from anywhere....
Two Different Solutions

- Big pattern - little state (electronic trading)
 - Find me a ‘strawberry’ followed within 100 msec by a ‘banana’

- Complex event processing (CEP) is focused on this problem
 - Patterns in a firehose

P.S. I started StreamBase but I have no current relationship with the company
Two Different Solutions

- Big state - little pattern
 - For every security, assemble my real-time global position
 - And alert me if my exposure is greater than X

- Looks like high performance OLTP
 - Want to update a database at very high speed
My Suspicion

- Your have 3-4 Big state - little pattern problems for every one Big pattern - little state problem
Solution Choices

- Old SQL
 - The elephants

- No SQL
 - 75 or so vendors giving up both SQL and ACID

- New SQL
 - Retain SQL and ACID but go fast with a new architecture
Why Not Use Old SQL?

• Sloooow
 – By a couple orders of magnitude

• Because of
 – Disk
 – Heavy-weight transactions
 – Multi-threading

• See “Through the OLTP Looking Glass”
 – VLDB 2007
No SQL

- Give up SQL
 - Interesting to note that Cassandra and Mongo are moving to (yup) SQL

- Give up ACID
 - If you need ACID, this is a decision to tear your hair out by doing it in user code
 - Can you guarantee you won’t need ACID tomorrow?
VoltDB: an example of New SQL

• A main memory SQL engine
• Open source
• Shared nothing, Linux, TCP/IP on jelly beans
• Light-weight transactions
 – Run-to-completion with no locking
• Single-threaded
 – Multi-core by splitting main memory
• About 100x RDBMS on TPC-C
In My Opinion

- ACID is good
- High level languages are good
- Standards (i.e. SQL) are good
Big Variety

• Typical enterprise has 5000 operational systems
 – Only a few get into the data warehouse
 – What about the rest?

• And what about all the rest of your data?
 – Spreadsheets
 – Access data bases
 – Web pages

• And public data from the web?
The World of Data Integration

the rest of your data

enterprise
data warehouse
text
Summary

- The rest of your data (public and private)
 - Is a treasure trove of incredibly valuable information
 - Largely untapped
Data Tamer

- Goal: integrate the rest of your data

- Has to
 - Be scalable to 1000s of sites
 - Deal with incomplete, conflicting, and incorrect data
 - Be incremental

- Task is never done
Data Tamer in a Nutshell

• Apply machine learning and statistics to perform automatic:
 – Discovery of structure
 – Entity resolution
 – Transformation

• With a human assist if necessary
 – WYSIWYG tool (Data Wrangler)
Data Tamer

- MIT research project
- Looking for more integration problems
 - Wanna partner?
Take away

• One size does not fit all

• Plan on (say) 6 DBMS architectures
 – Use the right tool for the job

• Elephants are not competitive
 – At anything
 – Have a bad ‘innovator’s dilemma’ problem
Newest Intel Science and Technology Center

- Focus is on “big data” - the stuff we have been talking about
 - Complex analytics on big data
 - Scalable visualization
 - Lowering the impedance mismatch between streaming and DBMSs
 - New storage architectures for big data
 - Moving DBMS functionality into silicon
- Hub is at M.I.T.
- Looking for more partners.....