CS348 - Project 3

Overview

In this project you are going to use PL/SQL (Oracle's procedural extension to SQL) to
write a few functions and procedures to process data. You will need to use your Oracle
account as you did in Project 2 for storing data.

Step 1: Setup

The schema for the database is the same as that you used in Project 2, i.e.:

1. STUDENT(*snum: integer, sname: string, deptid: integer, slevel: string, age: integer)
2. CLASS(*cname: string, meets_at: date, room: string, fid: integer)

3. ENROLLED(*snum:integer, *cname: string)

4. FACULTY(*fid: integer, fname: string, deptid: integer)

5.DEPARTMENT (*deptid: integer, dname: string, location:string)

If you have the tables in your database from the previous project, drop all five tables
using the command “Drop Table X”, where X is the name of the table. Keep in mind you
will need to drop the tables in the correct order to avoid referential integrity errors (e.g.
you will need to drop the table “Enrolled” before the table “Student”, etc.).

Create the tables with all the key and referential integrity constraints necessary to
model the application. Make sure that your field & table names correspond to those
listed above. Then populate your database by executing the file data.sql provided with
the project.

Step 2: PL/SQL
Create a file named procedures.sql. The first line of this file should be:
set serveroutput on size 32000

Your file should contain code to create and run five procedures:
pro_department_report, pro_student_stats, pro_faculty_stats, pro_histogram,
pro_enroll. The description of each procedure is provided below.

Your file should look something like this:
/* create the procedure */
create or replace procedure pro_department_report as
/* declarations */
begin
/* code */
end;

/

/* actually run the procedure */

begin
pro_department_report;
end;

/

create or replace procedure pro_faculty _stats as

begin
/*code*/
end;

/

begin
pro_faculty_stats
end;

/

Procedures:

1. pro_department_report: Generate a report that lists, for each department, the
students in that department. For each department, you should first print the
department name on a line followed by the number of students in that department
on the next line and a numbered list of student names in that department. The
output should be modeled as follows: Sort by the department name (ascending and
sort by student name (ascending) for each department.

Sample output:

Department: Computer Sciences
Total number of students: 3

1. Alice

2. Bob

3. Joe

Department: ECE
Total number of students: 2

Department: Management
Total number of students: 0

2.

pro_student_stats: Generate a report that contains statistics about students. Print
out the number of classes that each student is taking; omit students taking no
classes. Sort by student name.

Sample output:

Student Name # Classes

Bob 3
Joe 2
3. pro_faculty_stats: Generate a report about the total number of students each

faculty teaches. Sort results by faculty name. The number of students for each
faculty should be marked with an X under the corresponding bin.

You should create 4 equal-sized bins for the number of students based on the
minimum and maximum number of students any faculty teaches. For example, if the
minimum number of students any faculty teaches is 0 and the maximum is 8, the
bins created should be those in the sample output below. If the difference between
the minimum and maximum number of students is not divisible by 4, your output
should include an extra bin for the remainder of the numbers. For example, if the
minimum is 0 and maximum is 7, the categories would be {0}, {>0, <=1}, {>1, <=2},
{>2, <=3}, {>3, <=4}, {>4}. If the minimum is 2 and maximum is 12, the categories
would be {2}, {>2, <=4}, {>4, <=6}, {>6, <=8}, {>8, <=10}, {>10}. This means your
output will have either 5 or 6 categories for the number of students. You can assume
that the difference between the minimum and maximum number of students will
always be greater than or equal to 4.

Note that the number of students for each faculty should be calculated as the total
number of students (NOT DISTINCT) in the classes that faculty is teaching. The
maximum number of characters in a faculty name will not exceed 12 and the total
number of students for each faculty will not have more than two digits, so you can
format your output accordingly. Make sure the X’s in your output align with the bins
of students corresponding to each faculty.

Sample output:

Faculty name # Students: 0 >0, <=2 >2, <=4 >4, =<6 >6, <=8
Alice X

Bob X

Joe X

4. pro_histogram: Generate a histogram for the ages of students. Include all discrete

integer values in the range min(age) .. max(age). Mark the on the
graph (in the sample output below, it's 19). [Aside: Do you really know the definition
of median? What if the size of your input set is even? Be careful on this one.] Only
mark the median if it’s an integer value.

Sample output:

Age | number of students

17
18
19
20
21
22
23
24

5.

|1
| 10
| 5 <-- median
|2
| 8
|3
|0
|1

pro_enroll: Write a procedure to enroll a student in a class. The input parameters
will be as follows: sname_in, cname_in. You can assume that student names are
unique (i.e. there is a single snum for every sname in the Student table). You can also
assume that the given sname_in and cname_in already exist in the database. The
result will be a new enrollment record added to the database.

Execute this procedure to insert the enrollments (M.Lee, CS448) and (A.Smith,
ENG320) to the database. Do aselect * from Enrolled before and after this
procedure is run (i.e. include a query that retrieves the whole content of the
Enrolled table before and after the statements for executing this procedure to insert
data).

Step 3: Run your procedures

You can run your procedures file by typing ‘@procedures.sql’ after executing the
sqlplus command in a terminal. If there are errors in creating the procedures, you
can see the errors by typing the command “show errors;”. Note that the sample
outputs provided above are not the sample outputs for data.sql, they are just to give
you an idea about the formatting.

Evaluation:

Your project will mostly be evaluated based on the correctness of your output for the
procedures. Make sure you comply with the database schema provided above when
creating the tables. We will test your procedures on a database populated with the
correct tables and the table field names in your procedures have to match those given in
the assignment to produce correct output.

Submission Instructions:
Please create a README file that contains identifying information. For example:

CS348 - Project 3

Author: John Doe
Login: jdoe
Email: jdoe@cs.purdue.edu

Include here anything you might want us to know when grading your project.
To turn in your project, ssh to lore.cs.purdue.edu, create a folder named project3 in your
home directory and copy your procedures.sql file and your README to that folder.

After copying your files in the folder project3, execute the following command in your
home directory:

turnin -c ¢s348 -p proj3 project3

To verify the contents of your submission, execute the following command right after
submission:

turnin -c ¢s348 -p proj3 —v

Resources:
You can find additional information about creating stored procedures/functions in
PL/SQL on the following websites.

1. http://infolab.stanford.edu/~ullman/fcdb/oracle/or-plsql.html
2.

