

Fig. 5.4. Results of some relational algebra operations.

A	B	C	D	E		A	B	C	D	E
1	2	3	3	1		1	2	3	3	1
4	5	6	6	2		1	2	3	6	2
	8	9		•		4	5	6	6	2
(a) Relation R		(b) Rela	ation S	,		(c) I	$\begin{cases} R & \bowtie \\ B < \end{cases}$	$\int_{D}^{1} S$		

Fig. 5.6. Example of a <-join.

A	В	C		B	C	D		A	B	C	D
\overline{a}	b	c	_	b	c	\overline{d}	·	a	b	c	d
d	b	c		b	c	e		a	b	c	e
b	b	f		a	d	b		d	b	c	d
c	a	d						d	b	c	$egin{array}{c} e \ b \end{array}$
		*						c	a	d	b
(a) Relation R			(b) F	Relati	on S		(0	e) R	$\bowtie S$	

Fig. 5.7. Example of a natural join. .

Example 5.8: The union of R and S is expressed by the calculus expression

$$\{t \mid R(t) \vee S(t)\}$$

In words, the above is "the set of tuples t such that t is in R or t is in S." Note that union only makes sense if R and S have the same arity, and similarly, the formula $R(t) \vee S(t)$ only makes sense if R and S have the same arity, since tuple variable t is assumed to have some fixed length.

The difference R-S is expressed by $\{t \mid R(t) \land \neg S(t)\}$. If R and S are relations of arity r and s, respectively, then $R \times S$ can be expressed in calculus by:

$$\{ t^{(r+s)} \mid (\exists u^{(r)})(\exists v^{(s)})(R(u) \land S(v) \\ \land t[1] = u[1] \land \dots \land t[r] = u[r] \\ \land t[r+1] = v[1] \land \dots \land t[r+s] = v[s]) \}$$

Recall that $t^{(i)}$ indicates that t has arity i. In words, $R \times S$ is the set of tuples t (which we understand to be of length r+s) such that there exist u and v, with u in R, v in S; the first r components of t form u, and the next s components of t form v.

The projection $\pi_{i_1,i_2,...,i_k}(R)$ is expressed by

$$\{t^{(k)} \mid (\exists u)(R(u) \land t[1] = u[i_1] \land \dots \land t[k] = u[i_k])\}$$

The selection $\sigma_F(R)$ is expressed by $\{t \mid R(t) \land F'\}$, where F' is the formula F with each operand i, denoting the i^{th} component, replaced by t[i].

As a last example, if R is a relation of arity two, then

$$\{t^{(2)} \mid (\exists u)(R(t) \land R(u) \land (t[1] \neq u[1] \lor t[2] \neq u[2]))\}$$

is a calculus expression that denotes R if R has two or more members and denotes the empty relation if R is empty or has only one member.

Example 5.10: If R and S are binary relations, their composition in the ordinary set-theoretic sense is expressed by the relational algebra expression $\pi_{1,4}(\sigma_{2=3}(R \times S))$. Using the algorithm of Theorem 5.1, we construct for $R \times S$ the relational calculus expression

$$\{ t \mid (\exists u)(\exists v)(R(u) \land S(v) \land t[1] = u[1] \land t[2] = u[2] \land t[3] = v[1] \land t[4] = v[2]) \}$$

For $\sigma_{2=3}(R \times S)$ we add to the above formula the term $\wedge t[2] = t[3]$. Then, for $\pi_{1,4}(\sigma_{2=3}(R \times S))$ we get the expression

$$\{w \mid (\exists t)(\exists u)(\exists v)(R(u) \land S(v) \land t[1] = u[1] \land t[2] = u[2] \land t[3] = v[1] \land t[4] = v[2] \land t[2] = t[3] \land w[1] = t[1] \land w[2] = t[4])\}$$

employee-name street city							
Coyote	Toon	Hollywood					
Rabbit	Tunnel	Carrotville					
Smith	Revolver	Death Valley					
Williams	Seaview	Seattle					

employee-name	branch-name	salary
Coyote	Mesa	1500
Rabbit	Mesa	1300
Gates	Redmond	5300
Williams	Redmond	1500

Figure 3.31 The *employee* and *ft-works* relations.

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500

Figure 3.32 The result of *employee* \bowtie *ft-works*.

employee-name	street	city ***	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null

Figure 3.33 Result of *employee* \bowtie *ft-works*.

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Gates	null	null	Redmond	5300

Figure 3.34 Result of *employee* \bowtie *ft-works*.

employee-name	street :	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null
Gates	null	null	Redmond	5300

Figure 3.35 Result of *employee* \bowtie *ft-works*.