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Use  of the  term “data science” is increasingly 
common, as is “big data.” But what does it mean? Is 
there something unique about it? What skills do “data 
scientists” need to be productive in a world deluged by 
data? What are the implications for scientific inquiry? 
Here, I address these questions from the perspective 
of predictive modeling. 

The term “science” implies knowledge gained 
through systematic study. In one definition, it is 
a systematic enterprise that builds and organizes 
knowledge in the form of testable explanations and 
predictions.11 Data science might therefore imply a 
focus involving data and, by extension, statistics, or 
the systematic study of the organization, properties, 
and analysis of data and its role in inference, 
including our confidence in the inference. Why then 
do we need a new term like data science when we have 
had statistics for centuries? The fact that we now have 
huge amounts of data should not in and of itself  
justify the need for a new term. 

The short answer is data science is different from 
statistics and other existing disciplines in several 
important ways. To start, the raw material, the “data”

part of data science, is increasingly 
heterogeneous and unstructured—
text, images, video—often emanating 
from networks with complex relation-
ships between their entities. Figure 
1 outlines the relative expected vol-
umes of unstructured and structured 
data from 2008 to 2015 worldwide, 
projecting a difference of almost 200 
petabytes (PB) in 2015 compared to a 
difference of 50PB in 2012. Analysis, 
including the combination of the two 
types of data, requires integration, in-
terpretation, and sense making that 
is increasingly derived through tools 
from computer science, linguistics, 
econometrics, sociology, and other 
disciplines. The proliferation of mark-
up languages and tags is designed to 
let computers interpret data automat-
ically, making them active agents in 
the process of decision making. Un-
like early markup languages (such as 
HTML) that emphasized the display 
of information for human consump-
tion, most data generated by humans 
and computers today is for consump-
tion by computers; that is, computers 
increasingly do background work for 
each other and make decisions auto-
matically. This scalability in decision 
making has become possible because 
of big data that serves as the raw mate-
rial for the creation of new knowledge; 
Watson, IBM’s “Jeopardy!” champion, 
is a prime illustration of an emerging 
machine intelligence fueled by data 
and state-of-the-art analytics. 

Data Science 
and Prediction 
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Big data promises automated actionable 
knowledge creation and predictive models  
for use by both humans and computers. 

By Vasant Dhar 

 key insights

 � �Data science is the study of the 
generalizable extraction of knowledge  
from data. 

 � �A common epistemic requirement in 
assessing whether new knowledge is 
actionable for decision making is its 
predictive power, not just its ability to 
explain the past. 

 � �A data scientist requires an integrated 
skill set spanning mathematics, 
machine learning, artificial intelligence, 
statistics, databases, and optimization, 
along with a deep understanding of the 
craft of problem formulation to engineer 
effective solutions. 
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not discovery of patterns in massive 
swaths of data when users lack a well-
formulated query. Unlike database 
querying, which asks “What data sat-
isfies this pattern (query)?” discovery 
asks “What patterns satisfy this data?” 
Specifically, our concern is finding 
interesting and robust patterns that 
satisfy the data, where “interesting” 

From an engineering perspective, 
scale matters in that it renders the tra-
ditional database models somewhat 
inadequate for knowledge discovery. 
Traditional database methods are 
not suited for knowledge discovery 
because they are optimized for fast ac-
cess and summarization of data, given 
what the user wants to ask, or a query, 

is usually something unexpected and 
actionable and “robust” is a pattern 
expected to occur in the future. 

What makes an insight actionable? 
Other than domain-specific reasons, 
it is its predictive power; the return 
distribution associated with an action 
can be reliably estimated from past 
data and therefore acted upon with a 
high degree of confidence. 

The emphasis on prediction is 
particularly strong in the machine 
learning and knowledge discov-
ery in databases, or KDD, commu-
nities. Unless a learned model is 
predictive, it is generally regarded 
with skepticism, a position mirror-
ing the view expressed by the 20th- 
century Austro-British philosopher 
Karl Popper as a primary criterion 
for evaluating a theory and for 
scientific progress in general.24 
Popper argued that theories that 
sought only to explain a phenom-
enon were weak, whereas those that 
made “bold predictions” that stand 
the test of time despite being read-
ily falsifiable should be taken more 
seriously. In his well-known 1963 
treatise on this subject, Conjec-
tures and Refutations, Popper char-
acterized Albert Einstein’s theory 
of relativity as a “good” one since it 
made bold predictions that could be 
falsified; all attempts at falsification 
of the theory have indeed failed. In 
contrast, Popper argued that theo-
ries of psychoanalyst pioneers Sig-
mund Freud and Alfred Adler could 
be “bent” to accommodate virtu-
ally polar opposite scenarios and are 
weak in that they are virtually unfal-
sifiable.a The emphasis on predictive 
accuracy implicitly favors “simple” 
theories over more complex theories 
in that the accuracy of sparser mod-
els tends to be more robust on future 
data.4,20 The requirement on predic-
tive accuracy on observations that 

a	 Popper used opposite cases of a man who 
pushes a child into water with the intention 
of drowning the child and that of a man who 
sacrifices his life in an attempt to save the 
child. In Adler’s view, the first man suffered 
from feelings of inferiority (producing per-
haps the need to prove to himself that he 
dared to commit the crime), and so did the 
second man (whose need was to prove to him-
self that he dared to rescue the child at the 
expense of his own life).

Figure 1. Projected growth of unstructured and structured data. 

2008 2009 2010 2011 2012 2013 2014 2015

π U nstructured 11,430 16,737 25,127 39,237 59,600 92,536 147,885 226,716

π  Database 1,952 2,782 4,065 6,179 9,140 13,824 21,532 32,188

π E mail 1,652 2,552 4,025 6,575 10,411 16,796 27,817 44,091
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Figure 2. Health-care-use database snippet. 
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It is not uncommon 
for two experts in 
the social sciences 
to propose opposite 
relationships 
among the 
variables and 
offer diametrically 
opposite predictions 
based on the same 
sets of facts. 

will occur in the future is a key con-
sideration in data science. 

In the rest of this article, I cover 
the implications of data science from 
a business and research standpoint, 
first for skills, or what people in in-
dustry need to know and why. How 
should educators think about design-
ing programs to deliver the skills most 
efficiently and enjoyably? And what 
kinds of decision-making skills will be 
required in the era of big data and how 
will they differ from the past when data 
was less plentiful? 

The second part of my answer to 
defining big-data skills is aimed at re-
search. How can scientists exploit the 
abundance of data and massive com-
putational power to their advantage 
in scientific inquiry? How does this 
new line of thinking complement tra-
ditional methods of scientific inqui-
ry? And how can it augment the way 
data scientists think about discovery 
and innovation? 

Implications 
A 2011 McKinsey industry report19 
said the volume of data worldwide is 
growing at a rate of approximately 50% 
per year, or a roughly 40-fold increase 
since 2001. Hundreds of billions of 
messages are transmitted through so-
cial media daily and millions of videos 
uploaded daily across the Internet. As 
storage becomes almost free, most of 
it is stored because businesses gener-
ally associate a positive option value 
with data; that is, since it may turn out 
to be useful in ways not yet foreseen, 
why not just keep it? (One indicator 
of how inexpensive storage is today 
is the fact that it is possible to store 
the world’s entire stock of music on a 
$500 device.) 

Using large amounts of data for 
decision making became practical in 
the 1980s. The field of data mining 
burgeoned in the early 1990s as rela-
tional database technology matured 
and business processes were increas-
ingly automated. Early books on data 
mining6,7,17 from the 1990s described 
how various methods from machine 
learning could be applied to a variety 
of business problems. A correspond-
ing explosion involved software tools 
geared toward leveraging transactional 
and behavioral data for purposes of ex-
planation and prediction. 

An important lesson learned in 
the 1990s is that machine learning 
“works” in the sense that these meth-
ods detect subtle structure in data 
relatively easily without having to 
make strong assumptions about lin-
earity, monotonicity, or parameters of 
distributions. The downside of these 
methods is they also pick up the noise 
in data,31 often with no way to distin-
guish between signal and noise, a 
point I return to shortly. 

Despite their drawbacks, a lot can 
be said for methods that do not force 
us to make assumptions about the na-
ture of the relationship between vari-
ables before we begin our inquiry. This 
is not trivial. Most of us are trained to 
believe theory must originate in the 
human mind based on prior theory, 
with data then gathered to demon-
strate the validity of the theory. Ma-
chine learning turns this process 
around. Given a large trove of data, the 
computer taunts us by saying, “If only 
you knew what question to ask me, I 
would give you some very interesting 
answers based on the data.” Such a 
capability is powerful since we often 
do not know what question to ask. For 
example, consider a health-care da-
tabase of individuals who have been 
using the health-care system for many 
years, where among them a group has 
been diagnosed with Type 2 diabetes, 
and some subset of this group has 
developed complications. It could be 
very useful to know whether there are 
any patterns to the complications and 
whether the probability of complica-
tions can be predicted and therefore 
acted upon. However, it is difficult to 
know what specific query, if any, might 
reveal such patterns. 

To make this scenario more con-
crete, consider the data emanating 
from a health-care system that essen-
tially consists of “transactions,” or 
points of contact over time between 
a patient and the system. Records in-
clude services rendered by health-care 
providers or medication dispensed 
on a particular date; notes and obser-
vations could also be part of the re-
cord. Figure 2 outlines what the raw 
data would look like for 10 individu-
als where the data is separated into 
a “clean period” (history prior to di-
agnosis), a red bar (“diagnosis”), and 
the “outcome period” (costs and other 
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A new powerful 
method is  
available for theory 
development not 
previously practical 
due to the paucity  
of data. 

outcomes, including complications). 
Each colored bar in the clean period 
represents a medication, showing the 
first individual was on seven differ-
ent medications prior to diagnosis, 
the second on nine, the third on six, 
and so on. The sixth and tenth indi-
viduals were the costliest to treat and 
developed complications, as did the 
first three, represented by the upward-
pointing green arrows. 

Extracting interesting patterns is 
nontrivial, even from a tiny tempo-
ral database like this. Are complica-
tions associated with the yellow meds 
or with the gray meds? The yellows in 
the absence of the blues? Or is it more 
than three yellows or three blues? The 
list goes on. Even more significant, per-
haps if we created “useful” features or 
aggregations from the raw data, could 
physicians, insurers, or policy makers 
predict likely complications for indi-
viduals or for groups of people? 

Feature construction is an impor-
tant creative step in knowledge discov-
ery. The raw data across individuals 
typically needs to be aggregated into 
some sort of canonical form before 
useful patterns can be discovered; for 
example, suppose we could count the 
number of prescriptions an individual 
is on without regard to the specifics 
of each prescription as one approxi-
mation of the “health status” of the 
individual prior to diagnosis. Such a 
feature ignores the “severity” or other 
characteristics of the individual medi-
cations, but such aggregation is none-
theless typical of feature engineering. 

Suppose, too, a “complications da-
tabase” would be synthesized from 
the data, possibly including demo-
graphic information (such as patient 
age and medical history); it could 
also include health status based on a 
count of current medications; see Fig-
ure 3, in which a learning algorithm, 
designated by the right-facing blue ar-
row, could be applied to discover the 
pattern on the right. The pattern rep-
resents an abstraction of the data, or 
the type of question we should ask the 
database, if only we knew what to ask. 
Other data transformations and ag-
gregations could yield other medically 
insightful patterns. 

What makes the pattern on the 
right side of Figure 3 interesting? Sup-
pose the overall complication rate in 

the population is 5%; that is, a ran-
dom sample of the database includes, 
on average, 5% complications. In this 
scenario, the snippet on the right side 
of Figure 3 could be very interesting 
since its complication rate is many 
times greater than the average. The 
critical question is whether this is a 
pattern that is robust and hence pre-
dictive, likely to hold up in other cases 
in the future. The issue of determin-
ing robustness has been addressed 
extensively in the machine learning 
literature and is a key consideration 
for data scientists.23 

If Figure 3 is representative of the 
larger database, the box on the right 
tells us the interesting question to ask 
the database: “What is the incidence 
of complications in Type 2 diabetes 
for people over age 36 who are on six 
or more medications?” In terms of ac-
tionability, such a pattern might sug-
gest being extra vigilant about people 
with such a profile who do not current-
ly have a complication in light of their 
high susceptibility to complications. 

The general point is that when data 
is large and multidimensional, it is 
practically impossible for us to know a 
priori that a query (such as the one here 
concerning patterns in diabetes com-
plications) is a good one, or one that 
provides a potentially interesting and 
actionable insight. Suitably designed 
machine learning algorithms help 
find such patterns for us. To be useful 
both practically and scientifically, the 
patterns must be predictive. The em-
phasis on predictability typically favors 
Occam’s razor, or succinctness, since 
simpler models are more likely to hold 
up on future observations than more 
complex ones, all else being equal;4 for 
example, consider the diabetes com-
plication pattern here: 

Age > 36 and #Medication >  
6 → Complication_rate=100% 

A simpler competing model might 
ignore age altogether, stating simply 
that people on six or more medications 
tend to develop complications. The 
reliability of such a model would be 
more apparent when applied to future 
data; for example, does simplicity lead 
to greater future predictive accuracy in 
terms of fewer false positives and false 
negatives? If it does, it is favored. The 
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practice of “out of sample” and “out of 
time” testing is used by data scientists 
to assess the robustness of patterns 
from a predictive standpoint. 

When predictive accuracy is a pri-
mary objective in domains involving 
massive amounts of data, the com-
puter tends to play a significant role in 
model building and decision making. 
The computer itself can build predic-
tive models through an intelligent 
“generate and test” process, with the 
end result an assembled model that 
is the decision maker; that is, it auto-
mates Popper’s criterion of predictive 
accuracy for evaluating models at a 
scale in ways not feasible before. 

If we consider one of these pat-
terns—that people with “poor health 
status” (proxied by number of medi-
cations) have high rates of complica-
tions—can we say poor health status 
“causes” complications? If so, perhaps 
we can intervene and influence the 
outcome by possibly controlling the 
number of medications. The answer 
is: it depends. It could be the case that 
the real cause is not in our observed set 
of variables. If we assume we have ob-
served all relevant variables that could 
be causing complications, algorithms 
are available for extracting causal 
structure from data,21 depending how 
the data was generated. Specifically, 
we still need a clear understanding of 
the “story” behind the data in order to 
know whether the possibility of causa-
tion can and should be entertained, 
even in principle. In our example of 
patients over age 36 with Type 2 diabe-
tes, for instance, was it the case that the 
people on seven or more medications 
were “inherently sicker” and would 
have developed complications anyway? 
If so, it might be incorrect to conclude 
that large numbers of medications 
cause complications. If, on the other 
hand, the observational data followed 
a “natural experiment” where treat-
ments were assigned randomly to com-
parable individuals and enough data 
is available for calculating the relevant 
conditional probabilities, it might be 
feasible to extract a causal model that 
could be used for intervention. This is-
sue of extracting a causal model from 
data is addressed in the following sec-
tions; for a more complete treatment 
on causal models, see Pearl,21 Slo-
man,29 and Spirtes et al.30 

Skills 
Machine learning skills are fast be-
coming necessary for data scientists 
as companies navigate the data deluge 
and try to build automated decision 
systems that hinge on predictive accu-
racy.25 A basic course in machine learn-
ing is necessary in today’s marketplace. 
In addition, knowledge of text process-
ing and “text mining” is becoming es-
sential in light of the explosion of text 
and other unstructured data in health-
care systems, social networks, and oth-
er forums. Knowledge about markup 
languages like XML and its derivatives 
is also essential, as content becomes 
tagged and hence able to be interpret-
ed automatically by computers. 

Data scientists’ knowledge about 
machine learning must build on more 
basic skills that fall into three broad 
classes: The first is statistics, especially 
Bayesian statistics, which requires a 
working knowledge of probability, dis-
tributions, hypothesis testing, and mul-
tivariate analysis. It can be acquired in 
a two- or three-course sequence. Mul-
tivariate analysis often overlaps with 
econometrics, which is concerned with 
fitting robust statistical models to eco-
nomic data. Unlike machine learning 
methods, which make no or few as-
sumptions about the functional form 
of relationships among variables, mul-
tivariate analysis and econometrics by 
and large focus on estimating param-
eters of linear models where the rela-
tionship between the dependent and 
independent variables is expressed as 
a linear equality. 

The second class of skills comes 
from computer science and pertains 
to how data is internally represented 

and manipulated by computers. This 
involves a sequence of courses on data 
structures, algorithms, and systems, 
including distributed computing, 
databases, parallel computing, and 
fault-tolerant computing. Together 
with scripting languages (such as Py-
thon and Perl), systems skills are the 
fundamental building blocks required 
for dealing with reasonable-size data-
sets. For handling very large datasets, 
however, standard database systems 
built on the relational data model have 
severe limitations. The recent move 
toward cloud computing and non-
relational structures for dealing with 
enormous datasets in a robust manner 
signals a new set of required skills for 
data scientists. 

The third class of skills requires 
knowledge about correlation and cau-
sation and is at the heart of virtually 
any modeling exercise involving data. 
While observational data generally lim-
its us to correlations, we can get lucky. 
Sometimes plentiful data might repre-
sent natural randomized trials and the 
possibility of calculating conditional 
probabilities reliably, enabling dis-
covery of causal structure.22 Building 
causal models is desirable in domains 
where one has reasonable confidence 
as to the completeness of the formulat-
ed model and its stability, or whether 
the causal model “generating” the ob-
served data is stable. At the very least, a 
data scientist should have a clear idea 
of the distinction between correlation 
and causality and the ability to assess 
which models are feasible, desirable, 
and practical in different settings. 

The final skill set is the least stan-
dardized and somewhat elusive and to 

Figure 3. Extracting interesting patterns in health outcomes from health-care system use. 

Patient Age #Medications Complication

1 52 7 Yes

2 57 9 Yes

3 43 6 Yes

4 33 6 No

5 35 8 No

6 49 8 Yes

7 58 4 No

8 62 3 No

9 48 0 No

10 37 6 Yes

Age >= 37
	 AND
	 #Medications >= 6
	 →
	 Complication = Yes (100% confidence)
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tational thinking” coined by Papert21 
and elaborated by Wing32 is similar 
in spirit to the skills described here. 
There is considerable activity in uni-
versities to train students in problem-
formulation skills and provide elec-
tives structured around the core that 
are more suited to specific disciplines. 

The data science revolution also 
poses serious organizational chal-
lenges as to how organizations manage 
their data scientists. Besides recogniz-
ing and nurturing the appropriate skill 
sets, it requires a shift in managers’ 
mind-sets toward data-driven decision 
making to replace or augment intuition 
and past practices. A famous quote by 
20th-century American statistician W. 
Edwards Demming—“In God we trust, 
everyone else please bring data”—has 
come to characterize the new orienta-
tion, from intuition-based decision 
making to fact-based decision making. 

From a decision-making stand-
point, we are moving into an era of 
big data where for many types of prob-
lems computers are inherently bet-
ter decision makers than humans, 
where “better” could be defined in 
terms of cost, accuracy, and scalabil-
ity. This shift has already happened 
in the world of data-intensive finance 
where computers make the majority 
of investment decisions, often in frac-
tions of a second, as new information 
becomes available. The same holds in 
areas of online advertising where mil-
lions of auctions are conducted in mil-
liseconds every day, air traffic control, 
routing of package delivery, and many 
types of planning tasks that require 
scale, speed, and accuracy simultane-
ously, a trend likely to accelerate in 
the next few years. 

some extent a craft but also a key differ-
entiator to be an effective data scien-
tist—the ability to formulate problems 
in a way that results in effective solu-
tions. Herbert Simon, the 20th-century 
American economist who coined the 
term “artificial intelligence” demon-
strated that many seemingly different 
problems are often “isomorphic,” or 
have the identical underlying struc-
ture. He demonstrated that many re-
cursive problems could be expressed 
as the standard Towers of Hanoi prob-
lem, or involving identical initial and 
goal states and operators. His larger 
point was it is easy to solve seemingly 
difficult problems if represented cre-
atively with isomorphism in mind.28 

In a broader sense, formulation ex-
pertise involves the ability to see com-
monalities across very different prob-
lems; for example, many problems 
have “unbalanced target classes” usu-
ally denoting the dependent variable 
is interesting only sometimes (such as 
when people develop diabetes compli-
cations or respond to marketing offers 
or promotions). These are the cases of 
interest we would like to predict. Such 
problems are a challenge for models 
that, in Popperian terms, must go out 
on a limb to make predictions that are 
likely to be wrong unless the model 
is extremely good at discriminating 
among the classes. Experienced data 
scientists are familiar with these prob-
lems and know how to formulate them 
in a way that gives a system a chance to 
make correct predictions under con-
ditions where the priors are stacked 
heavily against it. 

Problem-formulation skills repre-
sent core skills for data scientists over 
the next decade. The term “compu-

Knowledge Discovery 
Former editor of Wired magazine 
Chris Anderson1 drew on the quote by 
British-born statistician George Box 
that “All models are wrong, but some 
are useful,” arguing, with the huge 
amounts of data available today, we do 
not need to settle for wrong models or 
any models at all. Anderson said pre-
diction is of paramount importance to 
businesses, and data can be used to let 
such models emerge through machine 
learning algorithms, largely unaided 
by humans, pointing to companies like 
Google as symbolizing the triumph of 
machine learning over top-down the-
ory development. Google’s language 
translator does not “understand” lan-
guage, nor do its algorithms know the 
contents of webpages. IBM’s Watson 
does not “understand” the questions it 
is asked or use deep causal knowledge 
to generate questions to the answers 
it is given. There are dozens of lesser-
known companies that likewise are 
able to predict the odds of someone 
responding to a display ad without a 
solid theory but rather based on gobs 
of data about the behavior of individu-
als and the similarities and differences 
in that behavior. 

Anderson’s 2008 article launched 
a vigorous debate in academic circles. 
How can one have science and predic-
tive models without first articulating 
a theory? 

The observation by Dhar and Chou5 
that “patterns emerge before reasons 
for them become apparent” tends to 
resonate universally among profession-
als, particularly in financial markets, 
marketing, health care, and fields that 
study human behavior. If this is true, 
Box’s observation becomes relevant: If 
a problem is nonstationary and a mod-
el is only an approximation anyway, 
why not build the best predictive model 
based on data available until that time 
and just update it periodically? Why 
bother developing a detailed causal 
model if it is poor at prediction and, 
more important, likely to get worse over 
time due to “concept drift”? 

Some scientists would say there is 
no theory without causality, that all 
observational data, except total cha-
os, must be generated from a causal 
model. In the earlier health-care ex-
ample involving medical complica-
tions in patients with Type 2 diabetes, 

Figure 4. Sources of error in predictive models and their mitigation. 

1.  Misspecification of the model

2.  Using a sample to estimate the model

3.  Randomness

Big data admits a larger space of functional forms

With big data, sample is a good estimate  
of the population

Predictive modeling attempts to minimize  
the combination of these two errors



contributed articles

december 2013  |   vol.  56  |   no.  12  |   communications of the acm     71

Big data makes 
it feasible for a 
machine to ask and 
validate interesting 
questions humans 
might not consider.

this seems obvious; some underlying 
mechanism must have been respon-
sible for the observed outcomes. But 
we may not have observed or been ca-
pable of observing the causal picture. 
Even if we observed the right variables 
we would need to know how the obser-
vational data was generated before we 
can in principle draw causal connec-
tions. If the observations represent 
a natural experiment (such as physi-
cians using a new drug vs. other physi-
cians using an old one for comparable 
individuals), the data might reveal 
causality. On the other hand, if the 
new drug is prescribed primarily for 
“sicker” individuals, it would repre-
sent a specific kind of bias in the data. 

Anderson’s point has particular rel-
evance in the health, social, and earth 
sciences in the era of big data since 
these areas are generally character-
ized by a lack of solid theory but where 
we now see huge amounts of data that 
can serve as grist for theory build-
ing3,12,13 or understanding large-scale 
social behavior and attitudes and how 
they can be altered.14 Contrast physics 
and social sciences at opposite ends 
of the spectrum in terms of the predic-
tive power of their theories. In physics, 
a theory is expected to be “complete” 
in the sense a relationship among cer-
tain variables is intended to explain 
the phenomenon completely, with no 
exceptions. Such a model is expected 
to make perfect predictions—sub-
ject to measurement error but not to 
error due to omitted variables or un-
intended consequences. In such do-
mains, the explanatory and predictive 
models are synonymous. The behav-
ior of a space shuttle is, for example, 
explained completely by the causal 
model describing the physical forces 
acting on it. This model can also be 
used to predict what will happen if 
any input changes. It is not sufficient 
to have a model 95% sure of outcomes 
and leave the rest to chance. Engineer-
ing follows science. 

In contrast, the social sciences are 
generally characterized by incomplete 
models intended to be partial approxi-
mations of reality, often based on as-
sumptions of human behavior known 
to be simplistic. A model correct 95% 
of the time in this world would be con-
sidered quite good. Ironically, how-
ever, the emphasis in social science 

theory development is often on pro-
posing theories that embody causality 
without serious consideration of their 
predictive power. When such a theory 
claims “A causes B,” data is gathered to 
confirm whether the relationship is in-
deed causal. But its predictive accuracy 
could be poor because the theory is in-
complete. Indeed, it is not uncommon 
for two experts in the social sciences to 
propose opposite relationships among 
the variables and offer diametrically 
opposite predictions based on the 
same sets of facts; for example, econo-
mists routinely disagree on both theory 
and prediction, and error rates of fore-
casts tend to be high. 

How could big data put these 
domains on firmer ground? In the 
“hard” sciences, where models can be 
assumed, for practical purposes, to 
be complete, there exists the possibil-
ity of extracting causal models from 
large amounts of data. In other fields, 
large amounts of data can result in 
accurate predictive models, even 
though no causal insights are imme-
diately apparent. As long as their pre-
diction errors are small, they could 
still point us in the right direction for 
theory development. As an example of 
being pointed in the right direction, a 
health-care research scientist recent-
ly remarked on an observed pattern 
of coronary failure being preceded 
months earlier by a serious infection. 
One of his conjectures was infections 
might have caused inflamed arter-
ies and loosened plaque that sub-
sequently caused coronary failure. 
There could be other explanations, 
but if the observed pattern is predic-
tive, it might be worthy of publication 
and deeper inquiry. The questions 
such a case raise for gatekeepers of 
science is whether to more strongly 
consider the Popperian test of predic-
tive accuracy on future data and favor 
simple accurate predictive models as 
potential components of future theo-
ry instead of requiring a causal model 
up front tested by the data. 

What makes predictive models ac-
curate? Conversely, where do errors 
come from? 

Hastie et al.10 said errors in predic-
tion come from three sources: The 
first is misspecification of a model, 
so, for example, a linear model that 
attempts to fit a nonlinear phenom-
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enon could generate an error simply 
because the linear model imposes an 
inappropriate bias on the problem. 
The second is the samples used for es-
timating parameters; the smaller the 
samples, the greater the bias in the 
model’s estimates. And the third is 
randomness, even when the model is 
specified perfectly. 

Big data allows data scientists to 
significantly reduce the first two types 
of error (see Figure 4). Large amounts 
of data allow us to consider models 
that make fewer assumptions about 
functional form than linear or logistic 
regressions simply because there is a 
lot more data to test such models and 
compute reliable error bounds.27 Big 
data also eliminates the second type 
of error, as sample estimates become 
reasonable proxies for the population. 

The theoretical limitation of ob-
servational data of the sort in these 
examples, regardless of how big it is, 
is that the data is generally “passive,” 
representing what actually happened 
in contrast to the multitude of things 
that could have happened had circum-
stances been different. In health care, 
it is like having observed the use of the 
health-care system passively and now 
having the chance of understand it in 
retrospect and extract predictive pat-
terns from it. Unless we are fortunate 
enough that the data provided us the 
right experiments naturally, it does 
not tell us what could have happened 
if some other treatment had been ad-
ministered to a specific patient or to 
an identical patient; that is, it does not 
represent a clean controlled random-
ized experiment where the researcher 
is able to establish controls and mea-
sure the differential effect of treat-
ments on matched pairs. 

Interestingly, however, the Inter-
net era is fertile ground for conduct-
ing inexpensive large-scale random-
ized experiments on social behavior; 
Kohavi et al.15 provide a number of 
examples. A 2012 controlled experi-
ment by Aral and Walker2 on the adop-
tion of video games asked whether it 
was “influence” or “homophily” that 
affected choice uncovered profiles of 
people who are influential and suscep-
tible. Results include patterns (such as 
“older men are more influential than 
younger men” and “people of the same 
age group have more influence on each 

other than from other age groups”). 
While specific to games, these results 
suggest influence is nuanced, certain-
ly more so than existing theories like 
Malcolm Gladwell’s concept of “super 
influencers”8 and myriad other popu-
lar theories. Big data provides a basis 
for testing them. 

One of the most far-reaching mod-
ern applications of big data is in poli-
tics, as exemplified by the Democratic 
National Committee heavy investment 
in data and analytics prior to Presi-
dent Barack Obama’s winning 2012 
campaign, debunking widely held be-
liefs (such as voters in the “middle” 
are most critical to outcomes, when 
in fact issues that resonate with some 
segments of solidly partisan voters 
can sway them14). In the campaign, 
the DNC crafted predictive models on 
the basis of results from large-scale 
experiments used to manipulate atti-
tudes. The campaign predicted at the 
level of individual voters how each eli-
gible voter would vote, as well as how 
to “turn someone into the type of per-
son it wanted you to be.”14 

Social science theory building is 
also likely to get a good boost from big 
data and machine learning. Never be-
fore have social scientists been able 
to observe human behavior at the 
degree of granularity and variability 
seen today with increasing amounts 
of human interaction and economic 
activity mediated by the Internet. 
While the inductive method has limi-
tations, the sheer volume of data be-
ing generated makes induction not 
only feasible but productive. That is 
not to say the traditional scientific 
method is “dead,” as claimed by An-
derson.1 On the contrary, it contin-
ues to serve us well. However, a new 
powerful method is available for the-
ory development not previously prac-
tical due to the paucity of data. That 
era of limited data and its associated 
assumptions is largely over. 

Conclusion 
Hypothesis-driven research and ap-
proaches to theory development 
have served us well. But a lot of data 
is emanating around us where these 
traditional approaches to identify-
ing structure do not scale well or take 
advantage of observations that would 
not occur under controlled circum-
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stances; for example, in health care, 
controlled experiments have helped 
identify many causes of disease but 
may not reflect the actual complexi-
ties of health.3,18 Indeed, some esti-
mates claim clinical trials exclude 
as much as 80% of the situations in 
which a drug might be prescribed, as 
when a patient is on multiple medica-
tions.3 In situations where we are able 
to design randomized trials, big data 
makes it feasible to uncover the caus-
al models generating the data. 

As shown earlier in the diabetes-
related health-care example, big data 
makes it feasible for a machine to ask 
and validate interesting questions 
humans might not consider. This ca-
pability is indeed the foundation for 
building predictive modeling, which 
is key to actionable business decision 
making. For many data-starved areas 
of inquiry, especially health care and 
the social, ecological, and earth sci-
ences, data provides an unprecedent-
ed opportunity for knowledge discov-
ery and theory development. Never 
before have these areas had data of the 
variety and scale available today. 

This emerging landscape calls for 
the integrative skill set identified here 
as essential for emerging data scien-
tists. Academic programs in comput-
er science, engineering, and business 
management teach a subset of these 
skills but have yet to teach the inte-
gration of skills needed to function 
as a data scientist or to manage data 
scientists productively. Universities 
are scrambling to address the lacunae 
and provide a more integrated skill 
set covering basic skills in computer 
science, statistics, causal modeling, 
problem isomorphs and formulation, 
and computational thinking. 

Predictive modeling and machine 
learning are increasingly central to 
the business models of Internet-based 
data-driven businesses. An early suc-
cess, Paypal, was able to capture and 
dominate consumer-to-consumer 
payments due to its ability to predict 
the distribution of losses for each 
transaction and act accordingly. This 
data-driven ability was in sharp con-
trast to the prevailing practice of treat-
ing transactions identically from a 
risk standpoint. Predictive modeling 
is also at the heart of Google’s search 
engine and several other products. But 

the first machine that could arguably 
be considered to pass the Turing test 
and create new insights in the course 
of problem solving is IBM’s Watson, 
which makes extensive use of learning 
and prediction in its problem-solving 
process. In a game like “Jeopardy!,” 
where understanding the question it-
self is often nontrivial and the domain 
open-ended and nonstationary, it is 
not practical to be successful through 
an extensive enumeration of possi-
bilities or top-down theory building. 
The solution is to endow a computer 
with the ability to train itself auto-
matically based on large numbers of 
examples. Watson also demonstrat-
ed the power of machine learning is 
greatly amplified through the avail-
ability of high-quality human-curated 
data, as in Wikipedia. This trend—
combining human knowledge with 
machine learning—also appears to be 
on the rise. Google’s recent foray in 
the Knowledge Graph16 is intended to 
enable the system to understand the 
entities corresponding to the torrent 
of strings it processes continuously. 
Google wants to understand “things,” 
not just “strings.”26 

Organizations and managers face 
significant challenges in adapting to 
the new world of data. It is suddenly 
possible to test many of their estab-
lished intuitions, experiment cheaply 
and accurately, and base decisions on 
data. This opportunity requires a fun-
damental shift in organizational cul-
ture, one seen in organizations that 
have embraced the emerging world of 
data for decision making. 	
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