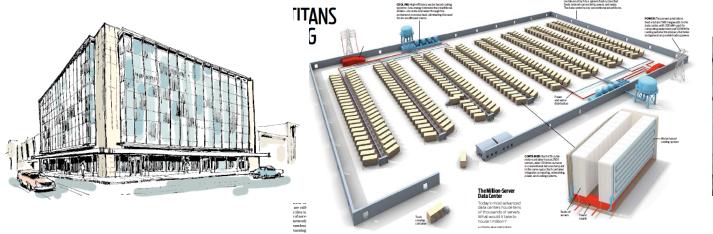


Above the Clouds: A Berkeley View of Cloud Computing

Armando Fox and a cast of tens UC Berkeley Reliable Adaptive Distributed Systems Lab USENIX LISA 2009

© 2009


Image: John Curley http://www.flickr.com/photos/jay_que/1834540/

Datacenter is new "server"

- "Program" == Web search, email, map/GIS, …
- "Computer" == 1000's computers, storage, network
- Warehouse-sized facilities and workloads

RAD Lab

- New datacenter ideas (2007-2008): truck container (Sun), floating (Google), In Tents Computing (Microsoft)
- How to enable innovation in new services without first building & capitalizing a large company?

photos: Sun Microsystems & datacenterknowledge.com

RAD Lab 5-year Mission

Goal: Enable <u>1 person</u> to develop, deploy, operate next -generation Internet application

- Key enabling technology: Statistical machine learning
 - management, scaling, anomaly detection, performance prediction...
- interdisciplinary: 7 faculty, ~30 PhD's, ~6 ugrads, ~1 sysadm
- Regular engagement with industrial affiliates keeps us from smoking our own dope too often

How we got into the clouds

- **Theme**: cutting-edge statistical machine learning works where simple methods fail
 - Resource utilization prediction

RAD

Lab

- Adding/removing storage bricks to meet SLA
- Console log analysis for problem finding
- **Sponsor feedback**: Great, now show that it works on *at least* 1000's of machines

Utility Computing to the Rescue: Pay as you Go

- Amazon Elastic Compute Cloud (EC2)
- "Compute units" \$0.10-0.80/hr. \$0.085/hr & up
 1 CU ≈ 1.0-1.2 GHz 2007 AMD Opteron/Xeon core

"Instances"	Platform	Cores	Memory	Disk
Small - \$0.085 / hr	32-bit	1	1.7 GB	160 GB
Large - \$0.34/ hr	64-bit	4	7.5 GB	850 GB – 2 spindles
XLarge - \$0.68/ hr	64-bit	8	15.0 GB	1690 GB – 3 spindles
Optionsextra memory, extra CPU, extra disk,				

- storage (~0.15/GB/month)
- network (~0.10-0.15/GB external; 0.00 internal)
- Everything virtualized, even concept of independent failure

Cloud Computing is Hot *sigh*

"...we've redefined Cloud Computing to include everything that we already do... I don't understand what we would do differently ... other than change the wording of some of our ads." *Sept. 2008*

"We've been building data center after data center, acquiring application after application, ...driving up the cost of technology immensely across the board. We need to find a more innovative path." Sept. 2009

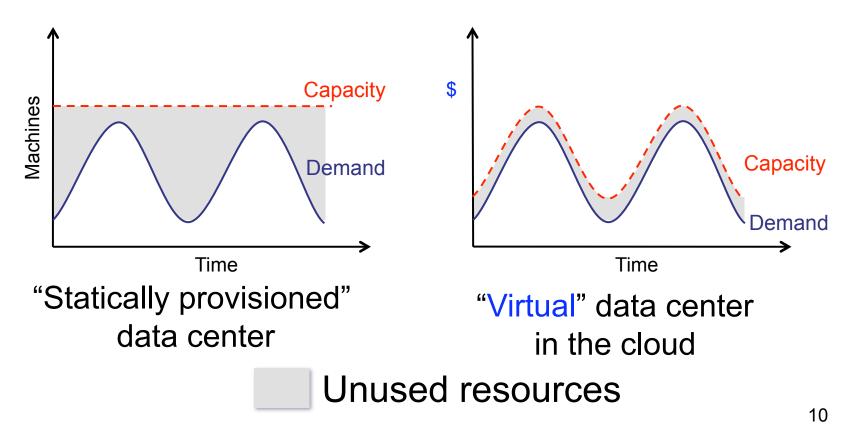
A Berkeley View of Cloud Computing

abovetheclouds.cs.berkeley.edu

- 2/09 White paper by RAD Lab PI's/students
- Goal: stimulate discussion on *what's new*
 - Clarify terminology
 - Quantify comparisons
 - Identify challenges & opportunities
- UC Berkeley perspective
 - industry engagement but no axe to grind
 - users of CC since late 2007

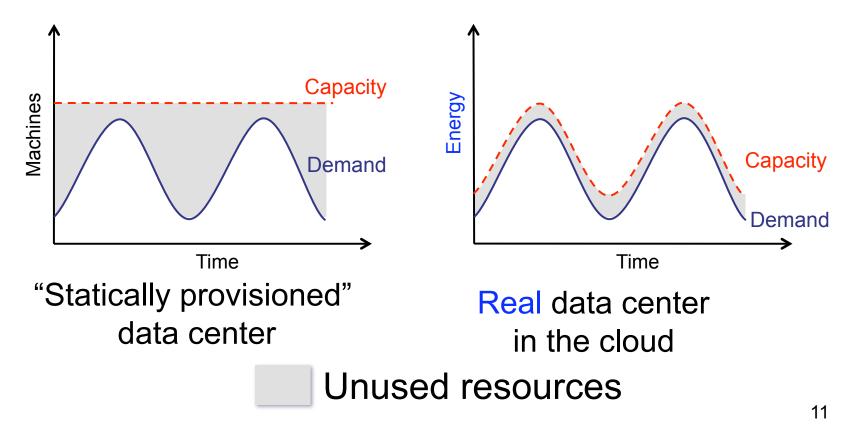
Rest of talk

- 1. What is it? What's new?
- 2. Challenges & Opportunities
- 3. "We should cloudify our datacenter/cluster/whatever!"
- 4. Academics in the cloud



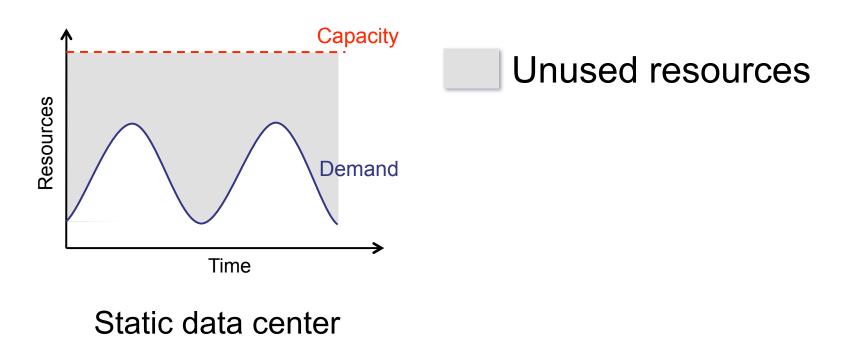
- Old idea: Software as a Service (SaaS), predates Multics
- New: pay-as-you-go, utility computing
 - Illusion of infinite resources on demand (minutes)
 - Fine-grained billing: release == don't pay
 - No minimum commitment
 - Earlier examples (Sun, Intel): longer commitment, more \$\$\$/hour, no storage

Cloud Economics 101

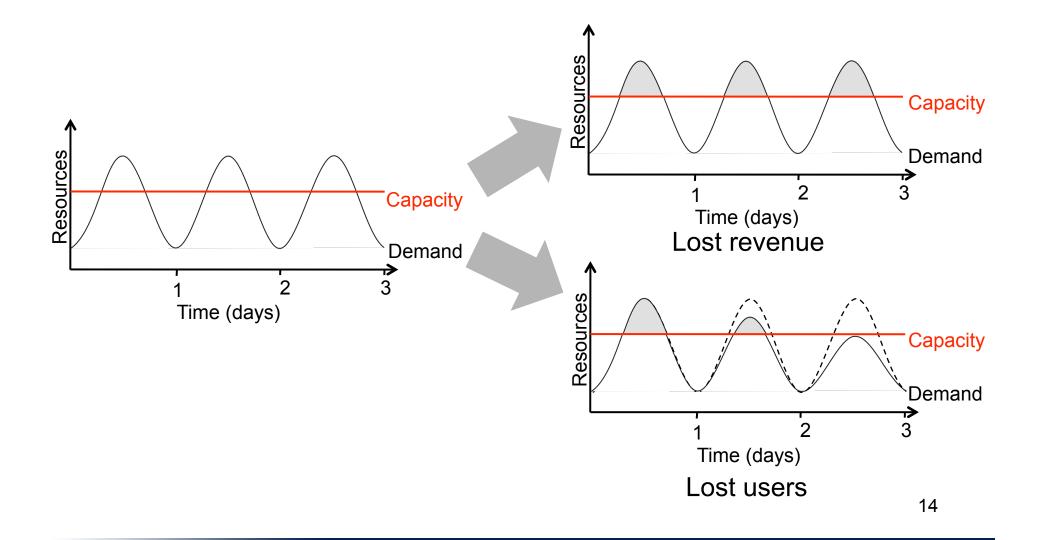

 Cloud Computing User: Static provisioning for peak - wasteful, but necessary for SLA

Cloud Economics 101

 Cloud Computing Provider: Could save energy


Back of the envelope

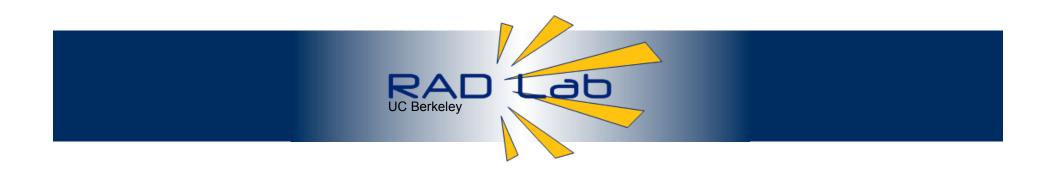
- Server utilization in datacenters: 5-20%
 - peaks 2x-10x average
- C = cost/hr. to use cloud (.085 for AWS)
- B = cost/hr. to buy server
 - \$2K server, 3-year depreciation: \$0.076
- HW savings = (peak/average util.) (C/B)
 - in this example, save \$\$ if peak > 1.1x average
 - can also factor in network & storage costs
- Caveat: IT accounting often not so simple



Risk of Overprovisioning

 Underutilization results if "peak" predictions are too optimistic

- Over long timescales, a dollar is a dollar
- CC is *not* necessarily cheaper, esp. if you have steady, known capacity needs
- But *risk transfer* opens fundamentally new opportunities.

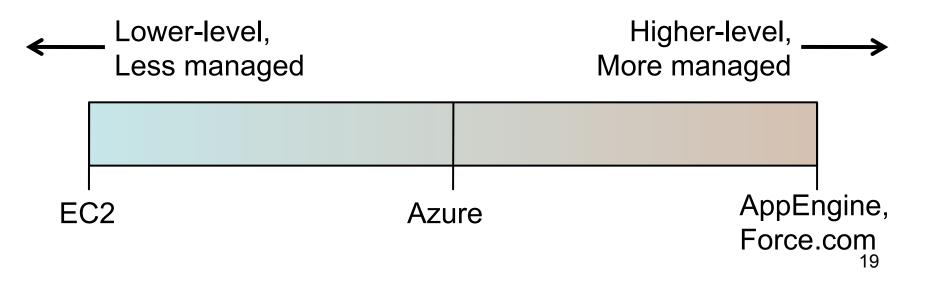

RAD RISK Transfer: new scenarios

- "Cost associativity":
 - 1K servers x 1 hour == 1 server x 1K hours
 - Washington Post: Hillary Clinton's travel docs posted to WWW <1 day after released
 - RAD Lab: publish results on 1,000+ servers
- Major enabler for SaaS startups
 - Animoto Facebook plugin => traffic doubled every 12 hours for 3 days
 - Scaled from 50 to >3500 servers
 - ...then scaled back down

Why Now (not then)?

- Build-out of extremely large datacenters (10,000s *commodity* PCs)
- ...and how to run them
 - Infrastructure SW: e.g., Google File System
 - Operational expertise: failover, DDoS, firewalls...
 - economy of scale: 5-7x cheaper than provisioning medium-sized (100s/low 1000s machines) facility
- Necessary-but-not-sufficient factors
 - pervasive broadband Internet
 - Commoditization of HW & Fast Virtualization
 - Standardized (& free) software stacks

2. Challenges & Opportunities


A subset of what's in the paper

Both technical & nontechnical

Classifying Clouds

- Instruction Set VM (Amazon EC2)
- Managed runtime VM (Microsoft Azure)
- Framework VM (Google AppEngine, Force.com)
- Tradeoff: flexibility/portability vs. "built in" functionality

Lock-in/business continuity

Challenge	Opportunity	
-	Multiple providers & datacenters	
business continuity	Open API's	

- Few enterprise datacenters' availability is as good
- "Higher level" (AppEngine, Force.com) vs. "lower level" (EC2) clouds include proprietary software
 - + richer functionality, better built-in ops support
 - structural restrictions
- FOSS reimplementations on way? (eg AppScale)

Challenge	Opportunity
Data lock-in	Standardization

- FOSS implementations of storage (eg HyperTable)
- 10/19/09: Google Data Liberation Front

Data is a Gravity Well

Challenge	Opportunity		
Data transfer bottlenecks	FedEx-ing disks, Data Backup/Archiving		
DULLEHEUKS	Data Dackup/Archiving		

- Amazon now provides "FedEx a disk" service
- and hosts free public datasets to "attract" cycles

Data is a Gravity Well

Challenge	Opportunity
Scale-up/scale-down structured storage	Major research opportunity

•Profileration of *non-relational* scalable storage:

SQL Services (MS Azure), Hypertable, Cassandra, HBase, Amazon SimpleDB & S3, Voldemort, CouchDB, NoSQL movement

Policy/Business Challenges

Challenge	Opportunity		
Reputation Fate Sharing	Offer reputation-guarding services like those for email		

4/2/09: FBI raid on Dallas datacenter shuts down legitimate businesses along with criminal suspects

10/28/09: Amazon will whitelist elastic-IP addresses and selectively raise limit on outgoing SMTP

Policy/Business Challenges

Challenge	Opportunity
	Pay-as-you-go licenses; Bulk licenses

2/11/09: IBM pay-as-you-go Websphere, DB2, etc. on EC2

Windows on EC2

FOSS makes this less of a problem for some potential cloud users

3. Should I cloudify?

Public vs. private clouds won't see same benefits

Benefit	Public	Private
Economy of scale	Yes	No
Illusion of infinite resources on-demand	Yes	Unlikely
Eliminate up-front commitment by users*	Yes	No
True fine-grained pay-as-you-go **	Yes	??
Better utilization (workload multiplexing)	Yes	Depends on size**
Better utilization & simplified operations through virtualization	Yes	Yes

* What about nonrecoverable engineering/capital costs?

** Implies ability to meter & incentive to release idle resources Consider getting best of both with surge computing

27

So, should I cloudify?

- Why? Is cost savings expected?
 - economies of scale unlikely for most shops
 - beware "double paying" for bundled costs
- Internal incentive to release unused resources?
 - If not...don't expect improved utilization
 - Implies ability to meter (technical) <u>and</u> charge (nontechnical)

- Authentication, data privacy/sensitivity
 - Data flows over public networks, stored in public infrastructure
 - –Weakest link in security chain == ?
- Support/lifecycle costs vs. alternatives
 - -Strong appliance market (e.g. spam filters)
 - "Accountability gap" for support


Hybrid/Surge Computing

- Use cloud for separate/one-off jobs?
- Harder: Provision steady state, overflow your app to cloud?
 - implies high degree of location
 independence, software modularity
 - -must overcome most Cloud obstacles
 - -FOSS reimplementations (Eucalyptus) or commercial products (VMware vCloud)?

Do my apps make sense in cloud?

- Some app types compelling
 - Extend desktop apps into cloud: Matlab, Mathematica; soon productivity apps?
 - Web-like apps with reasonable database strategy
 - Batch processing to exploit cost associativity, e.g. for business analytics
- Others cloud-challenged
 - Bulk data movement expensive, slow
 - Jitter-sensitive apps (long-haul latency & virtualization-induced performance distortion)³¹

4. Academics in the Cloud: some experiences

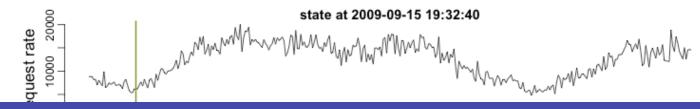
(thanks: Jon Kuroda, Eric Fraser, Mike Howard)

Clouds in the RAD Lab

- Eucalyptus on ~40-node cluster
- Lots of Amazon AWS usage
- Workload can overflow from one to the other (same tools, VM images, ...)
- Primarily for research/experiments that don't need to tie in with, eg, UCB Kerberos
- Permissions, authentication, access to home dirs from AWS, etc.—open problems

An EECS-centric view

- Higher quality research
 - routinely do experiments on 100+ servers
 - many results published on 1,000+ servers
 - unthinkable a few years ago
- Get results faster => solve new problems
 - lots of machine learning/data mining research
 - eg console log analysis [Xu et al, SOSP 09 & ICDM 09]: minutes vs. hours means can do in near-real-time
- Save money? um...that was a non-goal


Constant of the search

- Accounting models that reward costeffective cloud use
- Funding/grants culture hasn't caught up to "CapEx vs. OpEx"
- Tools still require high sophistication
 - but attractive role for software appliances
- Software licensing isn't "cost associative"
 - typically still tied to seats or fixed #CPUs
 - less problematic for us as researchers

Cloud Computing & Statistical Machine Learning

- Before CC, performance optimization was mostly focused on small-scale systems
- CC → detailed cost-performance model
 Optimization more difficult with more metrics
- CC → Everyone can use 1000+ servers
 - Optimization more difficult at large scale
- Economics rewards scale up <u>and down</u>
 - Optimization more difficult if add/drop servers
- SML[↑] as optimization difficulty increases

Example: "elastic" key-value store RAD Lab for SCADS [Armbrust et al, CIDR 09]

Capacity on demand Motivation to release unused Do the least you can up front 0 0

utiliz # keys 1500 3000

CS education in the Cloud

- Moved Berkeley SaaS course to AWS
 - expose students to realistic environment
 - Watch a database fall over: would have needed 200 servers for ~20 project teams
 - End of term project demos, Lab deadlines
- VM image simplifies courseware distribution
 - Students can be root

RAD Lab

– repair damage == reinstantiate image

Summary: Clouds in EECS

- Focus is new research/teaching opportunities vs. cost savings
- Mileage may vary in other departments
- Tools still require sophistication
- Authentication, other "admino-technical" issues largely unsolved
- Funding/costing models not caught up

Wrapping up...

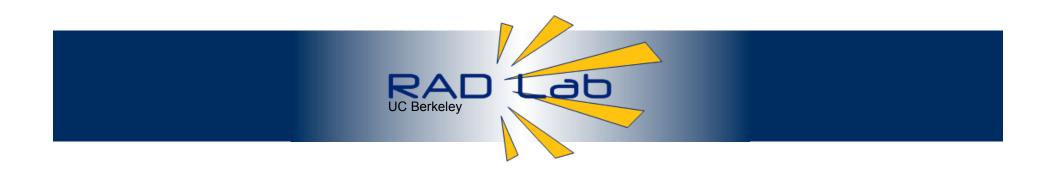
Summary: What's new

- CC "Risk transfer" enables new scenarios
 - Startups and prototyping
 - One-off tasks that exploit "cost associativity"
 - Research & education at scale
- Improved utilization and lower costs if scale down as well as up
 - Economic motivation to scale down
 - Changes thinking about load balancing, SW design to support scale-down

Summary: Obstacles

- How "dependent" can you become?
 - Data expensive to move, no universal format
 - Management API's not yet standardized
 - Doesn't (necessarily) eliminate reliance on proprietary SW
- SW licensing mostly cloud-unfriendly
- Security considerations, IT best practices
- Difficulty of quantifying savings
- Locus of administration/accountability?

Should I cloudify?

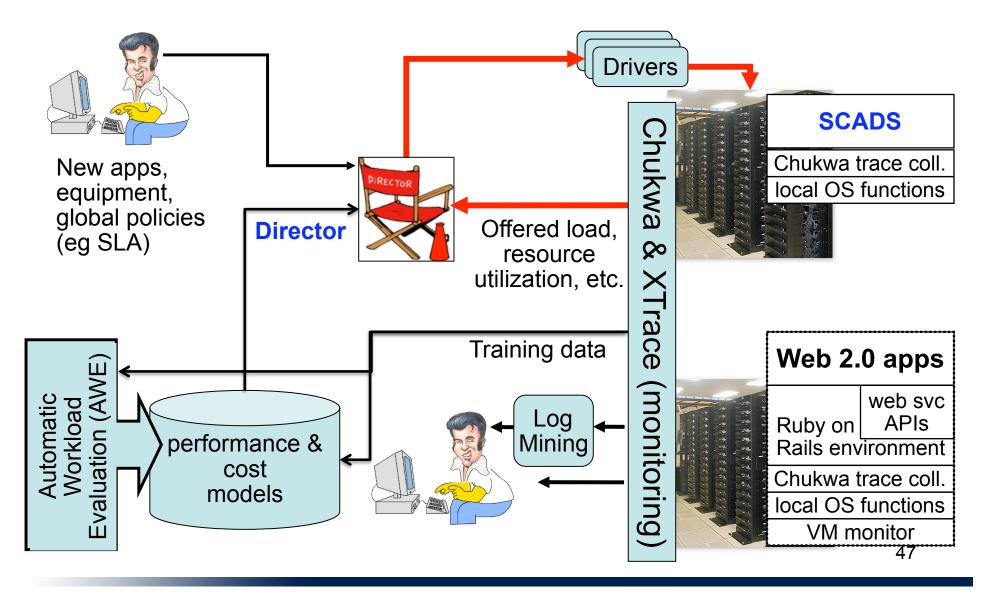

- Expecting to save money?
 - Economy of scale unlikely; savings more likely from better utilization
 - But must design for resource accounting & offer incentive to release
 - Does hybrid/surge make sense?
- Even if don't move to cloud...use as driver
 - enforce best practices
 - identify bundled costs => true cost of IT

Conclusion

Is cloud computing all hype? No.

Is it a fad that will fizzle out? We think it's a major sea change. Is it for everyone? No/not yet, but be familiar with obstacles & opportunities 44

Thank you!


More: *abovetheclouds.cs.berkeley.edu*

BACKUP SLIDES

RAD Lab Prototype: System Architecture

CC Changes Demands on Instructional Computing?

- Runs on your laptop or class Un*x account
- Good enough for course project
- project scrapped when course ends
- Intra-class teams
- Courseware: custom install
- Code never leaves UCB

- Runs in cloud, remote management
- Your friends can use it *ilities matter
- Gain customers app outlives course
- Teams cross UCB boundary
- Courseware: VM image
- Code released open source, résumé builder
- Per-student/per-course account
- General, collaborationenabling tools & facilities

Big science in the cloud?

• Web apps restructured to "shared-nothing friendly" thru 90s; can science do same?

RAD Lab

- gang scheduling for clouds/virtual clouds?
- rethink storage vs. checkpointing vs. code structure
- move to much higher level languages (leave tuning to macroblocks/runtime, not woven into source code)
- Data-intensive (I/O rates & volume) needs of science apps
- Opportunity for "cost associativity"!

SCADS: Scalable, Consistency-Adjustable Data Storage

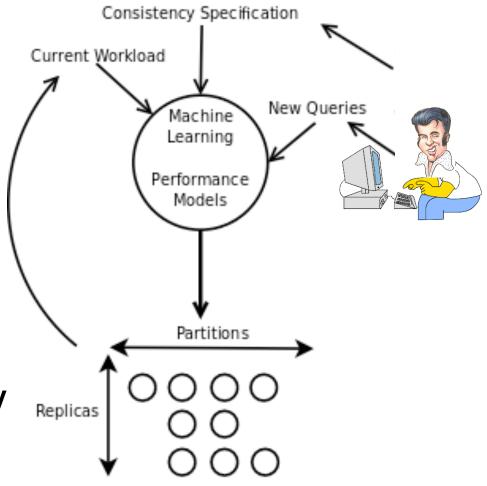
• Scale Independence – as #users grows:

- No changes to application
- Cost per user doesn't increase
- Request latency doesn't change

Key Innovations

- 1.Performance safe query language
- 2.Declarative performance/consistency tradeoffs

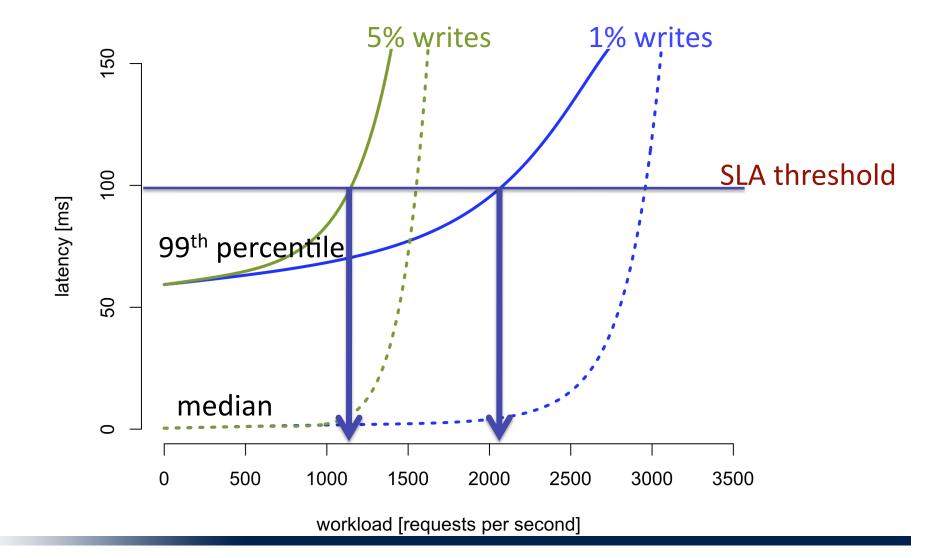
3.Automatic scale up and down using machine learning


Scale Independence Arch

 Developers provide performance safe queries along with consistency requirements

RAD

Lab


 Use ML, workload information, and requirements to provision proactively via repartitioning keys and replicas

SCADS Performance Model (on m1.small, all data in memory)

RAD

-90

